COMPLIANCE PROGRAM HEXAVALENT CHROMIUM MAXIMUM CONTAMINANT LEVEL (Cr6 MCL)

Water Supply Alternatives Analysis / Feasibility Study Report

Prepared for:

Santa Ynez River Water Conservation District Improvement District No. I

Prepared by:

William J. Brennan Water Systems Consulting

SEPTEMBER 2014

This page left intentionally blank

TABLE OF CONTENTS

1	E	XECUTIVE SUMMARY	1
2	IN	ITRODUCTION	4
	2.1	Purpose	4
	2.2	Background	4
	2.3	Cr6 Consultant Work Group	9
3	A	LTERNATIVES DEVELOPMENT	12
	3.1	Primary Considerations	12
	3.2	Potential Alternatives	14
4	S	OLUTIONS DEVELOPMENT	18
	4.1	"Screening" Criteria	18
5	IN	APLEMENTATION SOLUTION PACKAGES – "COMPLETE OPTIONS"	20
	5.1	Description of Complete Options	20
6	R	ANKING PROCESS FOR COMPLETE OPTIONS	25
	6.1	Ranking Analysis	25
	6.2	Ranking of Complete Options – Conclusion	26
7	Н	IGHEST RANKED COMPLETE OPTION	26
	7.1	Option A	26
	7.2	Discussion of Selection Criteria with respect to Option A	27
8	SI	ECOND HIGHEST RANKED COMPLETE OPTION	30
	8.1	Option D	30
	8.2	Discussion of Selection Criteria with respect to Option D	31
9	TI	HIRD HIGHEST RANKED COMPLETE OPTION	34
	9.1	Option E	34
	9.2	Discussion of Selection Criteria with respect to Option E	34
10)	SUMMARY OF TOP THREE COMPLETE OPTIONS	37
11		CONCEPTUAL IMPLEMENTATION APPROACH	38
12		APPENDICES	39
	A.	Hazen & Sawyer Evaluation of Complete Cr6 Options	39
	Β.	Hazen & Sawyer Treatment Process Evaluation	39
	C.	Stetson Engineers System Hydraulics Study	39
	D.	Dudek Well Profile Report	39

LIST OF ACRONYMS AND ABBREVIATIONS USED IN DOCUMENT

ADD	Average Day Demand (Water Consumption)
AF	Acre Feet (the volume of water to cover one acre one foot deep)
BAT	Best Available Technology
Cr6	Hexavalent Chromium
CWG	Consultant Work Group
CDPH	California Department of Public Health
CEQA	California Environmental Quality Act
District	Santa Ynez River Water Conservation District, Improvement District No. 1
ESA	Endangered Species Act
GPM / gpm	Gallons Per Minute
MCL	Maximum Contaminant Level
MDD	Maximum Day Demand (Water Consumption)
MHD	Maximum Hour Demand (Water Consumption)
POE	Point of Entry
PPB / ppb	Parts Per Billion
OEHHA	Office of Environmental Health Hazard Assessment (California)
RWQCB	Regional Water Quality Control Board
SWP	State Water Project
SWRCB	State Water Resources Control Board (California)

1 EXECUTIVE SUMMARY

The California Department of Public Health (CDPH) adopted a maximum contaminant level (MCL) for hexavalent chromium (Cr6) in drinking water of 10 parts per billion, effective July 1, 2014. In anticipation of this new standard being set, the Santa Ynez River Water Conservation District, Improvement District No. 1 Board authorized formation of a Consultant Work Group (CWG) to evaluate Cr6 presence in the District water supply, and to investigate various alternatives capable of achieving compliance with the new Cr6 MCL.

This report provides the results of effort by the Consultant Work Group, including multiple rounds of water quality sampling and well profiling to characterize the average concentration of Cr6 from each of the District Upland Wells; comparison of available treatment technologies for removal of Cr6 and conceptual design of treatment facilities; comprehensive hydraulic analyses addressing potential water blending between multiple wells and distribution of water among and between the existing District water zones; conceptual engineering design of a dedicated distribution system for irrigation water, separate from the domestic water distribution system; and quantification of water supplies from all sources available to the District, with consideration for augmenting those supplies not containing Cr6.

Water quality sampling and well profiling efforts concluded that naturally occurring Cr6 concentrations vary between the District Upland Wells. Four (4) of the eleven (11) total District Upland Wells were demonstrated to have Cr6 concentrations consistently above the 10 ppb Cr6 limit. Several other wells were demonstrated to have Cr6 concentrations hovering just below the 10 ppb Cr6 limit. Well profiling conducted for several of the Upland Wells identified elevation zones with high Cr6 concentrations, which contributed to the overall Cr6 concentration in produced water being very close to the 10 ppb Cr6 limit. Preventing water from entering the well casing from the higher Cr6 elevations could result in produced water which is well within the Cr6 MCL; this could theoretically be achieved using packers. Another potential approach for wells with total Cr6 concentrations very close to the Cr6 MCL would be to blend this well's water with another well that is producing water containing very low Cr6 concentrations. The water blended from the two well sources would then have Cr6 concentrations well within the MCL.

The CDPH has approved several treatment methods for removal of Cr6 from municipal drinking water, which have been identified as Best Available Technologies (BAT). The approved BATs include Reverse Osmosis (RO), Anion Exchange, and Reduction-Coagulation-Microfiltration (RCMF). Each of these technologies was examined for potential treatment of Upland Well water containing Cr6 concentrations above or near the MCL. RO was found not to be feasible for the circumstances present at potential treatment facility sites, and with the Cr6 concentrations identified. Both strong base anion (SBA) and weak base anion (WBA) exchange treatment could be feasible for removal of identified Cr6 concentrations from Upland Wells, as would RCMF. Conceptual layouts for both types of treatment plants have been developed as part of the alternatives analysis.

Cr6 MCL Compliance Program

Water Supply Alternatives Analysis / Feasibility Study Report

The District water storage and distribution system consists of three different pressure zones. Comprehensive hydraulic analysis was conducted as part of the feasibility study, in order to determine the ability to move water from any supply source throughout the distribution system. The hydraulic analysis also evaluated equipment and infrastructure necessary to support blending of water from multiple wells as well as raw water delivery to potential treatment plant locations and distribution of treated water. Additional lines, upsized lines, booster pumps, and additional water storage capabilities could be needed to support blending, treatment, or interconnection of the existing distribution for irrigation water, which would be supplied from wells with Cr6 concentrations above the MCL, one well with high nitrate (Well 3), and the gallery well. Such a system would involve a high redundancy of distribution lines, over and above the existing distribution system.

The CWG identified a total of six (6) different alternatives that could be employed by the District to achieve compliance with the Cr6 MCL. The identified alternatives are considered the building blocks for a potential integrated and comprehensive solution to be implemented by the District. The six alternatives include:

Alternative 1: Blending of Water from Multiple Wells/Sources Alternative 2: Separate Piping for Irrigation Water Alternative 3: Surface Water Treatment for Gallery Well Alternative 4: Minimize Use of Upland Wells with High Cr6 Alternative 5: Treatment Systems for Selected Upland Wells Alternative 6: Well Improvements (Modifications)

Each of the above technology alternatives has the capability of addressing, in some manner, elevated Cr6 concentrations in the District domestic water supply. However, use of a single technology in isolation would not necessarily achieve the highest efficiency or greatest ability to meet the water supply objectives of the District. Therefore, the next step was to develop "Solutions Packages" or "Complete Options" that combine various technology alternatives.

Following development and analysis of the six technology alternatives, complete options (implementation solution packages) were developed by combining appropriate alternatives. The CWG created a total of twelve separate "Complete Options" that include the full spectrum of combined alternatives - "Bookend to Bookend" (from "No Action" on the one end all the way to "Treat Everything" at the other end). The Complete Options were each designated with a letter "A" to "H".

The Complete Options were then evaluated to determine relative ranking of each in meeting District objectives. The three criteria used in the ranking determination are: 1) Water Quality Assurance; 2) Water Production Reliability; and 3) Annualized Cost.

Cr6 MCL Compliance Program

Water Supply Alternatives Analysis / Feasibility Study Report

The ranking evaluation resulted in the identification of three complete options which achieved the highest scoring; the CWG believes these three top-ranked Complete Options represent the best available solutions out of the total twelve studied, and therefore selection of a Complete Option for implementation should be made from among these three finalists.

Complete Option A achieved the highest ranking according to the applied criteria. Complete Option A represents the "full treatment" solution. Treatment would be provided for any well with produced water containing Cr6 concentrations above or near the MCL, and for the Gallery Well. Complete Option A consists of the following components:

- Five treatment plants (four groundwater and one surface water)
- All Upland wells in full production
- Reactivation of wells 1 and 3 in Santa Ynez
- Activation of the Gallery Well as a potable water source

Complete Option D achieved the second highest scoring in the ranking evaluation. Complete Option D (as well as variants D-P and D-C) can be characterized as a "two treatment plant" solution. The Gallery Well would not be treated, and Upland Wells with production water Cr6 concentrations near or marginally over the MCL would be addressed either with blending or well modification. Complete Option D consists of the following components:

- Two groundwater treatment plants
- Reactivation of Wells 1 and 3 in Santa Ynez
- Blending two marginal wells with compliant water
- Packers on two wells, as an alternative to blending, or combined with blending

Complete Option E achieved the third highest scoring in the ranking evaluation. Complete Option E (as well as variants E-P and E-C) can be characterized as a "one treatment plant" solution. Option E relies more heavily upon blending and well modification to address all but the most severely Cr6 impacted wells. The Gallery Well would not be treated. Complete Option E consists of the following components:

- One groundwater treatment plant
- Reactivation of Wells 1 and 3 in Santa Ynez
- Blending three marginal wells with compliant water
- Packers on one to three marginal wells, as an alternative to blending, or combined with blending

2 INTRODUCTION

2.1 Purpose

The purpose of this report is to summarize analyses and conclusions of a technical Consultant Work Group (CWG) assembled by the Santa Ynez River Water Conservation District, Improvement District No. 1 (District), whose assignment was to develop and evaluate a wide range of alternative solutions to achieve compliance with the adoption of a new maximum contaminant level (MCL) drinking water standard for hexavalent chromium (Cr6).

The reader is referred to the Appendices to this report for the detailed technical memos or reports from which the summary discussion in this Report is derived.

2.2 Background

2.2.1 Existing Water Supply

Water supply is best understood with some reference to the water consumption demands of District customers. The metrics used to describe demand include: average day demand (ADD), maximum day demand (MDD), and maximum hour demand (MHD). ADD for this discussion is based on the maximum annual water production during the most recent 10 year period. During the last 10 years (2004 to 2013) the annual water production for the District ranged from 4,850 to 6,274 acre-feet and averaged 5,582 acre-feet. The maximum annual water production occurred in 2007. An ADD based on the 2007 annual water use of 6,274 acre-feet equates to 3,890 gallons per minute (gpm). The maximum day demand (MDD) for the peak summer day occurred on July 12, 2006 with a flow rate of 9,527 gpm (2004 to 2013 period of record). The maximum hour demand (MHD) for the maximum summer day for each year occurred on June 21, 2008 with a flow rate of 14,175 gpm. The maximum day and maximum hour demand for frost protection of 22,701 gpm occurred on April 9, 2011.

Historically, the water supply from upland wells, river wells, Lake Cachuma and State Water Project (SWP) has been needed to satisfy the MDD of 9,527 gpm. For reference, the production capacity of the 11 upland wells has historically been approximately 7,200 gallons per minute, therefore providing the capacity to meet approximately 76% of the MDD. The remaining 24% of MDD has typically been met using river wells and Mesa Verde Pump Station which provides Lake Cachuma water, and to a lesser extent, from SWP deliveries.

On January 17, 2014 the Governor Declared a Drought State of Emergency, which called for conservation State-wide, directed the State to manage water for drought and called upon all Californians to reduce their water usage by 20 percent. Subsequently on January 21, 2014 the Santa Barbara County Board of Supervisors declared a County-wide drought emergency. The Board of Trustees declared a Water Shortage Emergency and adopted a Stage 1 Water Supply

Shortage on June 17, 2014 in response to surface water supply shortages caused by the drought conditions.

Based on the Governor's executive order, the State Water Resources Control Board ("SWRCB") adopted on July 15, 2014, the Emergency Regulations for Statewide Urban Water Conservation to address the prolonged drought in the State. The Office of Administrative Law reviewed and approved the Regulations which were filed with the Secretary of State on July 29, 2014 making it effective until April 25, 2015, unless extended or repealed.

The District's water supplies continue to be constrained from the drought conditions. The water levels in the operating Upland wells generally continue to decline and monitoring has indicated that the levels are now down by 60 feet. With the decline in these levels, water production is impacted resulting in lower gallon per minute flows. As an example, well 25 that produced 975 gpm, is now producing at 930 gpm with a level of decline of 54 feet. Production is expected to continue to ramp back from today's quantity across a continuing sustained drought, as ground water levels decline. The remaining Upland wells are experiencing the same effects.

In addition, extreme dry conditions continue to prevail across the State of California and locally for a successive third year with rainfall amounts in 2014 being the third lowest on record. In the local watershed, which is the source of runoff into Santa Ynez River, the Antecedent Index (AI) or the rain needed to saturate the soil to create runoff, is as dry as the level experienced in the 1988-91 drought. The rainfall in 2014 at Cachuma is only third lowest total since rainfall recording began in 1953. The sustained drought has resulted this year in a 55% reduction in the delivery of water from Lake Cachuma. The conditions described above have changed the water supply balance with Cachuma providing 16% of the total demand, 0% from the SWP, 34% of the water supplies from the Santa Ynez Upland Groundwater Basin, and approximately 50% from the Santa Ynez River wells.

In order to meet regional demand, water from the Cachuma Project that was being stored for the new water year beginning October 1, is now being used. Should the drought conditions prevail into next year, the District's sources will be greatly depleted in relation to this supply. For water year 2014/15, the District will only receive 45% or 1,193 AF of its 2,651 AF entitlement. Since SWP water availability is questionable next year (this year, project participants received only a 5% allocation) and a certain amount of 2014 Cachuma water is planned to be "banked" in the event of the dry conditions prevailing through the next rainfall season for 2015, the importance of the District's Upland and River Wells is paramount.

2.2.2 Occurrence of Chromium in Groundwater

The presence of chromium in groundwater can be derived from either or both natural and anthropogenic (i.e., man-made) sources. Locally, chromium is only found in chromium-rich rock formations and as natural deposits weathered from these materials.

As a naturally-occurring metal found in certain ore deposits (principally chrome ore or chromite), chromium is present throughout California. In fact, California's official State Rock is Serpentine, a shiny, green and blue rock that contains the State's principal deposits of chromite. Bordering the Santa Ynez Valley to the north are the rising San Rafael Mountains that are the source of the deposits of the Paso Robles Formation of the Santa Ynez Upland Groundwater Basin. The San Rafael Mountains are also part of the contributing watershed that provides recharge to the basin. The Franciscan Formation dominates the geology of these mountains, which locally include a serpentinite matrix known to contain chromite. Active geochemical processes in the environment favor the oxidation (the loss of electrons) of the Cr3 in chromite (FeCr₂O₄) to form Cr6, the more soluble form of chromium. The increased solubility of oxidized chromite means that it can more easily be dissolved in groundwater. As a result, groundwater Basin. Unlike an isolated contaminant plume of Cr6 from an industrial source, water will continue to react with chromium-bearing deposits in the Paso Robles Formation, resulting in a continuous source of Cr6 in the local groundwater.

Anthropogenic Cr6 contamination of groundwater has occurred in several industrialized areas of California from the use of chromium in chrome-plating, wood preservatives, paint pigments, manufacturing of stainless steel, and other industrial processes. This is not a contamination source affecting the Santa Ynez Upland Groundwater Basin.

2.2.3 Regulatory Framework

In 2001, the California state legislature mandated under SB351 that a state regulation be established to limit the concentration of hexavalent chromium (Cr6) in drinking water. This launched several years of study into the appropriate maximum contaminant level (MCL) to protect public health, sampling to measure the occurrence of Cr6 and Total Cr in drinking water systems, and testing of treatment technologies for Cr6 removal. A substantial factor in the timing of the release of the final Cr6 MCL was the litigation promulgated by the Natural Resources Defense Council, Environmental Working Group and Clean Water Action. These groups commented on the Draft MCL (10 ppb) stating that it failed to meet the CPDH statutory obligations to set the level as close as possible to OEHHA's PHG, and to place primary emphasis on public health. CDPH accelerated the release of the MCL in response to the litigation, but retained the draft MCL level of 10 ppb.

California Department of Public Health (CDPH) finalized the MCL of 10 parts per billion (ppb) for hexavalent chromium (Cr6) effective July 1, 2014. The total chromium (total Cr) MCL remains at 50 ppb.

2.2.4 Health Effects

Chromium has two preferred oxidation states, trivalent and hexavalent (Cr3 and Cr6). Trivalent chromium is an essential element in diet and has a very low toxicity level. Hexavalent chromium, on the other hand, has been identified in recent studies as carcinogenic by the oral route of exposure. Specifically, high concentrations of Cr6 in water given to mice and rats over a two-year period resulted in the formation of tumors affecting the tongue, mouth, and intestines (National Toxicology Program [NTP] 2007).

Chromium derived from both natural and anthropogenic sources is present in municipal drinking water throughout California. In 2011, the State of California Office of Environmental Health Hazard Assessment (OEHHA) set a new public health goal (PHG) for concentrations of hexavalent chromium in drinking water of 0.02 parts per billion (ppb). At this level, OEHHA estimated that there would be no discernable risk associated with inhalation, ingestion, or other contact; detailed studies of low concentration (low dose) Cr6 exposure were not available at the time OEHHA established the PHG, and therefore an extremely conservative and unsubstantiated value was employed. In contrast, the application of U.S. EPA risk assessment methodologies using data developed in more recent mode of action (MOA) studies supports a safe drinking water level higher than the current federal MCL for total chromium of 100 ppb.

Following circulation and review of the Draft MCL with a proposed limit of 10 ppb for Cr6, CDPH eventually adopted the Final Cr6 MCL incorporating the 10 ppb limit. While there are still differing opinions as to whether a 10 ppb MCL is unnecessarily low for the protection of public health, which is a concern due to the high costs associated with compliance, the newly adopted California MCL of 10 ppb for Cr6 appears to provide a wide margin of safety with respect to the protection of human health. The Federal Environmental Protection Agency is also scheduled to do a mode of action study on Cr6, but results are still several years away.

2.2.5 Compliance with Cr6 MCL is Mandatory

California Department of Public Health (CDPH) finalized the MCL of 10 parts per billion (ppb) for hexavalent chromium effective July 1, 2014. Initial compliance sampling results must be submitted to CDPH before January 1, 2015. If the running annual average of any four consecutive quarterly reports indicates Cr6 concentrations exceeding the MCL, a public water system will be deemed to be out of compliance. Notification of violation must be given to customers at that point, and a compliance performance schedule must be negotiated between the district and CDPH. Also, at any point where quarterly sampling results indicate a

Water Supply Alternatives Analysis / Feasibility Study Report

concentration so excessive that the annual average Cr6 MCL will be exceeded, notification must be provided to customers and a compliance performance schedule negotiated with CDPH.

The regulations do not allow a waiver or exemption for small public water systems, nor are there provisions providing relief in cases of financial hardship relative to the cost of necessary system improvements to address elevated Cr6 concentrations in public water supplies. The final version of the regulations does not establish a grace period or phasing schedule within which to achieve compliance with the new MCL standard.

Worth noting and a substantial factor in the timing of the release of the final Cr6 MCL was the lawsuit filed against DPH by the Natural Resources Defense Council and the Environmental Working Group, requesting a court ordered mandate to "ensure a speedy performance of the statutory duty" to establish a primary drinking water standard for hexavalent chromium. Additionally, these groups commented on the Draft MCL (10 ppb) stating that it failed to meet the CPDH statutory obligations to set the level as close as possible to OEHHA's PHG, and to place primary emphasis on public health. CDPH accelerated the release of the MCL in response to the litigation, but retained the draft MCL level of 10 ppb.

2.2.6 District Pro-active Stance on Cr6

CDPH released the Draft Cr6 MCL on August 22, 2013. The conceptual timeline for adoption of a final MCL was identified as June 2014. While it was not known at the time of release whether 10 ppb would be adopted as the final Cr6 MCL, District management staff recognized the potential for some Upland Wells to produce water with Cr6 concentrations above the pending MCL. As a result, the District Board of Trustees initiated and allocated funding for this alternatives study in January 2014, well ahead of the anticipated adoption date for the Final Cr6 MCL. For the development and analysis of project alternatives, the Cr6 consultant working group (CWG) assumed the Final MCL would specify a concentration of 10 ppb, and that the effective date of the regulation would be July 1, 2014.

2.2.7 Legislative and Regulatory Efforts by the District

The District became aware of potential regulatory changes when CDPH requested that all groundwater users in the State conduct analyses for Chromium 6, as part of a statewide occurrence study. The District complied with the request, beginning in 2002, and discovered that while it easily complied with the current standard, it may not be able to comply with new stricter regulations that could be demanded by the legislature.

Initial consultations with CDPH were encouraging in that it did not, at the time, believe that the new regulations would cause serious problems for the District. Even when the California OEHHA set a public health goal for Chromium 6 at 0.02 parts per billion in 2012, CDPH assured water districts that an enforceable regulation would be much more reasonable and achievable.

Water Supply Alternatives Analysis / Feasibility Study Report

It was not until the Natural Resources Defense Council sued CDPH to finalize an enforceable Chromium 6 regulation in August of 2012, that both districts and regulatory agencies became concerned that compliance with a new regulation would be likely difficult, expensive and time consuming. At that time, the District immediately contacted the Association of California Water Agencies (ACWA) to request support in helping to craft a regulation that was, first of all, fully protective to the public, but was also reasonable in its implementation and would provide financial support to districts when expensive treatment technologies were required.

The District joined the ACWA chromium work group and aligned itself with several other water agencies in the State facing similar issues. Through this group, the District was able to lobby legislators, government officials and regulatory agencies to include necessary provisions in the rule making process. The District also contacted the staffs of local legislators including the offices of Hannah-Beth Jackson and Das Williams on several occasions and in conference calls with regulatory officials.

The draft regulation for Chromium 6 was made public in August 2013. With assistance from its consulting engineering firm, the District provided substantial comments to the draft. It also worked closely with ACWA to ensure that its comments would reflect the needs of affected water districts. Additionally, the District submitted a detailed cost information report to ACWA (as did several other water agencies) for use in its education and lobbying efforts with legislators and regulators.

By January 2014, the District had also joined a Chromium 6 advocacy group that was being coordinated by ACWA. Together, the agencies in this group met with the Governor's office, legislators and high-ranking officials in CDPH and the State Water Resources Control Board. The purpose of these meetings was to educate staffs and demonstrate the costs and difficulties associated with anything other than the most thoughtful implementation of this new regulation. This group was able to show CDPH that the data it used for Chromium 6 occurrence throughout the State and the costs associated with treating water to the levels proposed, was deeply flawed.

The District continues to maintain its relationships with ACWA and the Chromium 6 groups to influence a pending bill that would provide compliance time for districts that need to make changes. It is also on the Water Bond Coalition team to ensure that funds are made available for agencies compelled to build expensive Chromium 6 treatment facilities. The District also continues to inform and request assistance from its local legislators.

2.3 Cr6 Consultant Work Group

In January 2014, the District Board authorized the formation of a Consultant Work Group (CWG) tasked with the identification and evaluation of possible approaches to achieve the District's compliance with the Cr6 MCL (pending at that time). Consultants for the work group were carefully selected to achieve necessary expertise in each critical area of the effort. The

credentials and experience of each consulting firm, as well as their assignment for the study, are presented below.

2.3.1 Credentials / Experience / Assignment

2.3.1.1 Hazen & Sawyer

Since 1951, Hazen and Sawyer has provided public works engineering to help clients provide safe drinking water to their customers, and control water pollution and its effects on the environment. It is the largest design firm in the nation focused entirely on water and wastewater (2010-2014, Engineering News-Record), employing nearly 800 engineering professionals. Hazen and Sawyer's reputation is founded on the superior technical work of many of the world's most knowledgeable and experienced water treatment experts, and it maintains the largest active research portfolio of any firm in the water industry. Dr. Nicole Blute, P.E. has been leading the 12-year Cr6 treatment technology research program at the City of Glendale funded by the State of California, and the Water Research Foundation, which provides the foundation for drinking water treatment knowledge on Cr6 treatment effectiveness and cost. In this project, Vice President Lynn Grijalva, P.E., and Project Manager Nicole Blute, PhD, P.E. led the District's treatment evaluation of options for wells above the Cr6 regulatory limit, including technologies, layouts, and costs. They also collaborated with the consultant group to develop an overall compliance strategy, and identify and assemble "complete options" consisting of combinations of alternatives (e.g., treatment and non-treatment) that effectively use District resources and allow for prioritization of considerations in option selection. Last, they spearheaded the effort to create and perform the ranking evaluation of identified complete options, based upon the criteria developed on a collaborative basis by the CWG.

2.3.1.2 Stetson Engineers

Established in 1957, Stetson Engineers, Inc. has a distinguished history in the civil engineering, environmental engineering and water resources fields, balancing environmental protection and enhancement efforts with development. Project Manager and Supervising Engineer, Joe DeMaggio, P.E. led the Stetson Team for the engineering feasibility study for the use of wells with high Cr6. Mr. DeMaggio has over three decades of project management and engineering experience focused on water system hydraulics, water system design and cost estimation, agricultural engineering, flood studies, and hydraulic structure design. The Stetson Team includes professional civil engineers, hydrologists and groundwater experts. The Stetson Team has an established reputation for producing water system solutions in mixed urban and agricultural watersheds that provide citizen and property protection in conjunction with water supply needs. Nationally, Stetson Engineers are recognized experts in hydrology, hydraulics, agricultural engineering, water system modeling, water rights and water resources management.

2.3.1.3 Dudek Hydrogeology

For more than 30 years, Dudek has helped California's water and wastewater agencies develop and implement cost-effective programs to improve the function and efficiency of their facilities, achieve regulatory compliance and maintain excellent customer service. Project Manager and Senior Hydrogeologist, Trey Driscoll, PG, CHG led the Dudek Hydrogeology team for Cr6 well profiling work performed on the District's Upland Wells. Other Dudek team members included Stephen K. Dickey, PG, CHG, CEG, Peter T. Quinlan, RG, Lydia Roach Dorrance, PhD, Steve Stuart, PE and Jeff Kubran. The Dudek team has extensive experience with Cr6 groundwater characterization and remediation having worked for over two decades on the cleanup of anthropogenic sources of Cr6. Dudek's water resource team specializes in forensic support, including water rights, groundwater supply, sustainable yield and watershed studies, groundwater modeling, groundwater recharge and groundwater treatment technologies.

2.3.1.4 Dudek Environmental

The Santa Barbara office of Dudek began preparing environmental review documents to satisfy requirements under the California Environmental Quality Act (CEQA) in 1978. Since that time, Dudek has functioned as environmental staff for many of the special services districts in the region, including water districts and sanitary districts. Dudek environmental staff routinely prepares environmental review documentation for water-related improvement projects and for water master plans, and also orchestrates the regulatory permitting process associated with these projects. Project Manager Jonathan Leech provided environmental constraints input, meeting coordination, schedule administration, and synthesis of technical reports into the Alternatives Analysis & Feasibility Study Report. Kenneth Marshall, Regional Office Director, contributed to the direction of work effort by the work group, consideration of alternatives technologies, evaluation of complete options, and report preparation.

2.3.1.5 William J. Brennan Water Systems Consulting

Bill Brennan has spent over 35 years as an industry leader in the fields of water quality, engineering, production and management, working for both the City of San Diego and the Central Coast Water Authority (CCWA). Additionally, he served as a Director for the State Water Project Contractors Authority and the State and Federal Water Contractors Agency. He represented CCWA on the State Water Contractors Inc. Engineering, Operations and Maintenance, Energy, Risk Oversight and Water Transfers Committees and has authored and co-authored several papers in the water quality field.

Since retiring in 2013, Bill formed a consulting firm, William J. Brennan Water Systems Consulting, and has been active in assisting water districts with water quality, reliability and public relations issues.

2.3.1.6 Fiona Hutton Associates

Fiona Hutton & Associates (FH&A) specializes in developing and implementing communications, public education and outreach programs for water agencies, local governments, trade associations, non-profit organizations and more. The firm has extensive experience in regional and statewide water supply and quality issues and understands California's ever-changing regulatory environment, supply and demand needs and the short and long-term challenges the state is facing. FH&A's in-depth knowledge of the state's complex water supply landscape has helped water agencies throughout the state navigate and communicate these challenges with stakeholders and the public.

More specifically, FH&A has assisted water districts and organizations in crafting communications pertaining to the Cr6 MCL. As a member of the CWG, FH&A is responsible for press releases, information packages for District customers, and public information materials.

3 ALTERNATIVES DEVELOPMENT

3.1 Primary Considerations

In developing alternatives that could address the ability of the District to comply with the new Cr6 MCL, the CWG focused on the three primary considerations discussed below: water supply quantity; water quality reliability; and, cost-effectiveness of water supply solution.

3.1.1 Water Supply Quantity

Prior to the new MCL effective date of July 1, 2014, the District water supply and distribution system was able to meet customer demands under nearly all circumstances. However, full use of reservoir storage and operation of all active Upland Wells was required to meet maximum day and maximum hour demand conditions. Historically, the District developed a portfolio of water resources including Cachuma Project Water, State Water Project (SWP) water and Santa Ynez River alluvial well water to serve the lower pressure zones (Zones 1 and 2) and Upland Well water to serve the higher pressure zones (Zone 3 and a portion of Zone 2) in the distribution system. Both the Cachuma Project and SWP water deliveries are dependent upon annual precipitation in the watersheds serving as the water source of supply. The Cachuma Project water allocation has been consistent with 100 percent deliveries occurring annually despite Endangered Species Act (ESA) constraints. However, drought conditions and future ESA requirements will cause shortages and reductions in deliveries. The quantity of water

Cr6 MCL Compliance Program

Water Supply Alternatives Analysis / Feasibility Study Report

available from the SWP is highly variable and cannot be assured from year to year. Extractions from the alluvial wells located within the Santa Ynez River are subject to quantity limits designated in State Water Resources Control Board licenses, and are also physically affected by the downstream alluvial conditions and the account-based water rights water held in storage behind Bradbury Dam. Additionally, these "river" wells and associated infrastructure are vulnerable to flood events resulting from significant rainfall in the watershed, at times leaving them damaged and unusable for extended periods. Given the variability and uncertainty of these water supplies, it has been the practice of the District to rely on the Upland Wells to provide the supplemental water necessary to meet system water demands. It is therefore absolutely critical the District maintain water production capacity related to the Upland Wells in order to address variability in the quantity of water available from other sources.

According to Stetson Engineers (Stetson) (refer to Appendix C), the production capacity of the 11 operational Upland Wells is approximately 7,200 gallons per minute (gpm). This production capacity can be compared to the water system average day demand (ADD), maximum day demand (MDD), and maximum hour demand (MHD). For the alternatives development, ADD was based on the average demand during the maximum annual water production during the last 10 years which occurred in 2007, with water use of 6,274 acre-feet or 3,890 gpm. The maximum day demand (MDD) for the peak summer day occurred on July 12, 2006 with a flow rate of 9,527 gpm. The maximum hour demand (MHD) for the maximum summer day occurred on June 21, 2008 with a flow rate of 14,175 gpm. The peak MHD associated with frost protection demand occurred on April 9, 2011 with a flow rate of 22,701 gpm. Based upon these demand figures, the Upland Well production capacity has historically been adequate to meet ADD. To meet MHD, the District must utilize all water stored in its three reservoirs in addition to full production of all Upland Wells.

In that reservoir storage is already required in order to satisfy the highest MDD and MHD recorded for the most recent 10-year period, any reduction in Upland Well production capacity places additional reliance on the water reservoir components, which may not be adequate. Reduction of Upland Well production capacity, due to the implementation of the new Cr6 MCL, results in the District not having the ability to meet MHD for maximum summer day water consumption events. Consequently, maximum water supply (production capacity) associated with the Upland Wells was a primary consideration in developing alternatives.

3.1.2 Water Quality Reliability

Santa Ynez River Water Conservation District, Improvement District No. 1 is a public water district with an obligation to provide assured water delivery to all domestic water connections. Water supply upon which the District relies in order to meet domestic demands must therefore be unquestionably reliable with respect to water quality (i.e., potable water that meets or

exceeds all regulatory drinking water standards). Solutions which theoretically render sufficient water quantity without assuring water quality compliance would be of little value to the District. Some options offer more risk to water quality non-compliance than others. Consequently, water quality reliability was a primary consideration in developing alternatives.

3.1.3 Cost-effectiveness of Water Supply Solution

Based upon preliminary evaluation of the potential extent of Cr6 impacts to Upland Wells, the CWG concluded that solutions for compliance with the Cr6 MCL would most likely exceed present cash reserves of the District. Cost-effectiveness should always be addressed in consideration of alternatives for large scale infrastructure proposals, but especially so when strong justification is anticipated to be necessary in relation to public funding mechanisms to implement the selected alternative.

Stetson and Hazen and Sawyer included initial capital costs and annual operations and maintenance costs as part of developing alternatives. Total costs were then divided by the water production associated with each alternative, to render cost per acre-foot of water produced by the alternative. Refer to Appendix C for the Stetson report, which includes the detailed cost analysis for each alternative.

3.2 Potential Alternatives

The CWG identified a total of six (6) different alternatives that could be employed by the District to achieve compliance with the Cr6 MCL. The identified alternatives are considered the building blocks for a potential integrated and comprehensive solution to be implemented by the District (identified as "complete options" later in this report). A description of each of the alternatives is provided in the following sub-sections.

3.2.1 Alternative 1: Blending of Water from Multiple Wells/Sources

Several Upland Wells produce water with concentrations of Cr6 approaching or slightly greater than the 10 ppb MCL. One method to achieve acceptable Cr6 concentrations in water delivered to customers involves blending of water from multiple District wells prior to delivery to customers. Alternative 1 therefore involves blending (mixing) of two wells or blending water from the distribution system with a well. This alternative is not anticipated to impact the overall water production. However, pipeline installation between wells will be required to enable this feature at locations where blending will be implemented. An examination of Cr6 concentrations from Upland Wells, derived from monthly sampling results in the period December 2013 through June 2014, identified four wells with produced water Cr6 concentrations near the MCL that would be excellent candidate wells to address with a potential blending solution. The following sub-alternatives were each examined for Alternative 1.

Cr6 MCL Compliance Program

Water Supply Alternatives Analysis / Feasibility Study Report

- Alt 1-1 Blend Well 7 with Well 24 in the existing 0.5 MG Zone 3 tank.
- Alt 1-2 Blend Well 7 with Well 24 at the Well 7 site.
- Alt 1-3 Blend Well 27 with Zone 2 water then pump into Zone 3.
- Alt 1-4 Blend Well 28 with Zone 2 water then pump into Zone 3.
- Alt 1-5 Blend Well 5 with Well 25 at the Well 25 site.
- Alt 1-6 Blend Well 24 with Well 25 at the Well 25 site.

3.2.2 Alternative 2: Separate Piping for Irrigation Water

The Cr6 MCL is a drinking water standard not applicable to water used for irrigation or other non-potable purposes. Alternative 2 considers the possibility of using Cr6 impacted wells for irrigation only, which would require installation of a separate dedicated irrigation water distribution system. Under this alternative, wells producing water with Cr6 concentrations greater than the MCL would be used for non-potable supply only; wells producing water with low or non-detectable Cr6 concentrations would supply the domestic (drinking water) distribution system.

3.2.3 Alternative 3: Surface Water Treatment for Gallery Well

The District Gallery Well extends approximately 300 feet into and 45 feet below the Santa Ynez River. Due to its construction within and beneath the active channel of river, the water collected by the Gallery Well is considered "surface water." The Gallery Well is currently not used because it does not meet the requirements of the Surface Water Treatment Rule, which mandates a more stringent treatment method than for typical groundwater wells.

Alternative 3 involves treatment of Gallery Well water to meet the Surface Water Treatment Rule. Reactivating this well would provide an additional source of water for the District, or be used to offset a reduction in water supply associated with adoption of *Alternative 4* or *Alternative 6*. Surface water treatment requires treatment for pathogens and other regulated constituents. While the Gallery Well has not been specifically sampled for Cr6, all historical sampling and analysis of the Gallery Well has shown non-detectable levels of total chromium (total Cr).

3.2.4 Alternative 4: Minimize Use of Upland Wells with High Cr6

Alternative 4 involves minimizing use of the Upland Wells in the overall District water supply management approach, excluding from the water supply inventory those wells producing water with Cr6 concentrations near or above the MCL. Thus, under Alternative 4, only Upland Wells producing water with Cr6 concentrations compliant with the MCL would continue to be employed; those wells with high Cr6 concentrations (above or near the MCL) in water would be shut-off.

Cr6 MCL Compliance Program

Water Supply Alternatives Analysis / Feasibility Study Report

Infrastructure improvements for Alternative 4 would be less extensive than for any of the other technology alternatives; however, the water supply would not provide the current level of water production used by the District. Stetson evaluated the system modifications needed in order to render the water system capable of meeting required system pressures and flow demands utilizing a combination of the Upland Wells with low Cr6 concentrations, water deliveries via the Mesa Verde Pump Station, and the 6-cfs and 4-cfs well fields (refer to Appendix C for detailed evaluation).

3.2.5 Alternative 5: Treatment Systems for Selected Upland Wells

Adoption of a primary drinking water standard requires the CDPH to also adopt best available technologies (BAT) for water systems to utilize in achieving compliance with the new standard. In determining BAT for a given contaminant, consideration is given to the costs and benefits of technologies that have been proven effective under full-scale field applications. Three BATs are included as part of the new regulation for Cr6: 1) reduction/coagulation/filtration; 2) ion exchange; and, 3) reverse osmosis. As the State-adopted BATs, these technologies were the only methods considered as part of this alternatives study. However, the establishment of the new Cr6 MCL has prompted engineering consultants and other specialists in water treatment to focus on new and innovative ways to reduce Cr6 concentrations for drinking water applications. Any new, alternative technologies will require pilot testing to prove feasibility and applicability specific to the water source to be treated in order to achieve CDPH approval. District staff and engineering consultants will continue to monitor these new developments and treatment methods to assure that the most cost effective groundwater treatment solutions available are considered in achieving compliance with the new Cr6 regulation.

An examination of Cr6 concentrations from Upland Wells, derived from monthly sampling results in the period December 2013 through June 2014, identified several wells with Cr6 concentrations near or above the MCL. These wells cannot be reliably used for domestic water supply unless the elevated Cr6 concentrations are addressed. Alternative 5 involves installing treatment for Cr6 removal at the impacted wells, either individually or for combinations of wells. This alternative maintains the same water production volume of each well, and allows wells with non-compliant Cr6 concentrations to be brought back into production (the short-term or interim approach to compliance with the Cr6 MCL is anticipated to involve taking all noncompliant wells offline). The following sub-alternatives were each examined for Alternative 5.

- Alt 5-1 Treat Wells 1, 2 and 15 at existing ID1 shop site. Add Well 3 as a redundant source, which is currently offline due to elevated nitrate concentrations.
- Alt 5-2 Treat Wells 27 and 28 at Well 27 site
- Alt 5-3 Treat Well 7 at Well 7 site
- Alt 5-4 Treat Well 25 at Well 25 site

3.2.6 Alternative 6: Well Improvements (Modifications)

Based upon review of water sampling results from all Upland Wells and examination of regional geologic formations in the Santa Ynez Valley, Dudek identified a potential for Cr6 concentrations to vary with depth below the ground surface. To evaluate whether Cr6 concentrations in groundwater correlate to discrete depths below the ground surface, Dudek performed profiling of selected Upland Wells. The profiling included collection of water samples at prescribed depth intervals with the well pump in operation (dynamic sampling). The results of the well profiling indicate a general decline in Cr6 concentration in groundwater with increasing depth; the deepest producing zone for each of the profiled wells demonstrated Cr6 concentrations in groundwater which are less than the 10 ppb MCL. Refer to Appendix D for the complete well profile evaluation results.

The well profile evaluation and examination of regional geologic formations in the Santa Ynez Valley concluded that it should be feasible to modify or improve some of the wells that have composite water concentrations above the Cr6 MCL, in order to extract water preferentially from depths with acceptable Cr6 concentration in groundwater. Refer to Appendix D for well profiling and geologic/hydrologic evaluations.

Alternative 6 is the installation of packers in wells to prevent the ingress of water from zones in the aquifer with high Cr6 concentrations. When a well is drilled, the bore hole is generally a larger diameter than the casing of the well; the extra space around the casing is normally filled with gravel to allow movement of water from the surrounding ground layers toward the casing and to filter finer materials. Certain portions of the solid casing consist of fine perforations or screen to allow water to pass from the ground, into the casing, for extraction by the well pump. A packer is a water proof barrier inflated inside the casing, to prevent vertical movement of water and preferentially pump from discrete zones. One or multiple packers can be installed to isolate production zones. Installation of packers is relatively straightforward, but is expected to result in lower overall production rates from each target well, compared to existing production rates without the packers. There is also a risk of some water from higher Cr6 zones being pulled into the well, that results in potential water quality uncertainty. The following sub-alternatives were each examined for Alternative 6.

- Alt 6-1 Well 7 block inflow from high Cr6 zone (install packer).
- Alt 6-2 Well 25 block inflow from high Cr6 zone (install packer).
- Alt 6-3 Well 28 block inflow from high Cr6 zone (install packer).
- Alt 6-4 Well 27 block inflow from high Cr6 zone (install packer).

4 SOLUTIONS DEVELOPMENT

Each of the identified technology alternatives has the capability of addressing, in some manner, elevated Cr6 concentrations in the District domestic water supply. However, use of a single technology in isolation would not necessarily achieve the highest efficiency or greatest ability to meet the water supply objectives of the District. Therefore, the next step was to develop "Solutions Packages" or "Complete Options" that combine various technology alternatives.

4.1 "Screening" Criteria

In developing solutions packages involving various combinations of the technology alternatives and designed to achieve compliance with the new Cr6 MCL, the CWG first applied a set of screening criteria, as described in the sub-sections below. Potential solutions that fared poorly under application of the screening criteria were dismissed from further consideration.

4.1.1 Engineering Feasibility

The first screening criteria applied during development of solutions packages was engineering feasibility. For dedicated treatment plants, the ability of various treatment methods or technologies were reviewed with respect to their proven ability to remove Cr6 from water. For wells considered to be candidates for blending to achieve acceptable Cr6 concentrations, the highest recorded Cr6 concentrations in water samples were identified for the target well across the six-month sampling period. Wells within reasonable proximity to the target well were then reviewed to determine highest recorded Cr6 concentrations, and whether it would be feasible to mix or blend the water from the two well sources to a composite concentration below the MCL.

Modeling of the existing water distribution system was conducted for each of the alternatives to evaluate system capacity and to determine needed improvements for the transmission of water between wells and proposed new system components, as well as between pressure zones. The most extensive distribution system modifications were modeled for a separate irrigation (i.e. non-potable) system; a separate irrigation water distribution system would require parallel piping throughout a large portion of the existing distribution system, but would be feasible from an engineering perspective.

4.1.2 Risk

Risk can generally be considered as the opposite of reliability with regard to infrastructure systems. In a public water district, delivery of water supply meeting all water quality standards must be assured. Substantial risks associated with water quantity or quality generally cannot be tolerated.

Cr6 MCL Compliance Program

Water Supply Alternatives Analysis / Feasibility Study Report

Completely avoiding risk often comes with a substantial expense, and therefore while solutions with minimum risk were a goal, solutions which balanced some risk with lower costs were also included for consideration. Solutions with one or more components thought to possess little or no risk were given additional attention to determine possible enhancement of water quantity with addition of one or two components possessing potentially moderate risk. The combination of very low risk components with moderate risk components was seen as a possible means to achieve acceptable system risks, with lower overall expenditures.

4.1.3 Water Quality

With the exception of a separate water distribution system (Alternative 2), solutions must be capable of providing water meeting the Cr6 MCL at each point of entry (POE). The MCL requires the concentration limit to be met at the point where water enters the distribution system, which means that water at any well-head which is not compliant with MCL must be addressed in some manner before introduction to the water system. Non-compliant wells must be shut-off until a method is developed to bring produced water from such wells into compliance with the MCL, or the District would have to issue Notices of Violation to customers.

4.1.4 Water Production

A primary goal for the solutions was set at achieving the same water production capability that existed before the new Cr6 MCL takes effect. It was recognized that some wells would need to be shut-off due to recorded water samples with Cr6 concentrations above the MCL, reducing overall water production capability. In order to "not lose ground" in terms of water production to achieve compliance with the MCL, solutions should be capable of restoring water production capacity.

Water deliveries by the District through agricultural meters is subject to interruption based upon lack of water availability; consequently there is some flexibility to respond to lower water production capability in the short-term, or permanently. On the other hand, solutions which deliver the exact water production as existed prior to the Cr6 MCL adoption would provide for no future expansion of domestic service connections in the future.

4.1.5 Permitting/Planning Issues

Improvements that include structural development would be subject to building permits from the County of Santa Barbara. Treatment plants would involve permits from the Regional Water Quality Control Board. All proposed physical development and contemplated actions by a public agency fall under the purview of the California Environmental Quality Act (CEQA). Solutions packages were therefore vetted at a cursory level for potential fatal flaws from the standpoint of land use policy, regulatory permitting, and CEQA environmental review.

5 IMPLEMENTATION SOLUTION PACKAGES – "COMPLETE OPTIONS"

Following development and analysis of the six technology alternatives, and using the screening criteria discussed above, complete options (implementation solution packages) were developed by combining appropriate alternatives. The CWG created a total of twelve separate "Complete Options" that include the full spectrum of combined alternatives - "Bookend to Bookend" (from "No Action" on the one end all the way to "Treat Everything" at the other end). Below is a description of the twelve complete options (A to H) that were evaluated to address the high Cr6 in the Upland Wells.

5.1 Description of Complete Options

5.1.1 Complete Option A

Complete Option A represents the "full treatment" solution. Treatment would be provided for any well with produced water containing Cr6 concentrations near or above the MCL, and for the Gallery Well. This option would result in five (5) separate water treatment plants. No blending or well modification would be included, and no Upland Wells would be excluded from long-term production. Complete Option A consists of the following Alternatives:

- Alt 3-1 Surface water treatment of Gallery Well
- Alt 5-1 Treat Wells 1, 2, 3 and 15 at existing District shop site
- Alt 5-2 Treat Wells 27 and 28 at Well 27 site
- Alt 5-3 Treat Well 7 at Well 7 site
- Alt 5-4 Treat Well 25 at Well 25 site

5.1.2 Complete Option B

Complete Option B represents the "Upland Wells full treatment" solution. Treatment would be provided for any well with produced water containing Cr6 concentrations near or above the MCL; unlike Option A, no treatment would be provided for the Gallery Well (and therefore this well would remain off line). This option would result in four (4) separate water treatment plants. Again, no blending or well modification would be included, and no Upland Wells would be excluded from long-term production. Complete Option B consists of the following Alternatives:

- Alt 5-1 Treat Wells 1, 2, 3 and 15 at existing ID#1 shop site
- Alt 5-2 Treat Wells 27 and 28 at Well 27 site
- Alt 5-3 Treat Well 7 at Well 7 site
- Alt 5-4 Treat Well 25 at Well 25 site

5.1.3 Complete Option C

Complete Option C can be characterized as the "three treatment plant" solution. The fourth treatment plant for Upland Wells (included in Options A & B) would be eliminated in favor of blending (Well 28) and well modification (Well 27) to address elevated Cr6 concentrations. No treatment would be provided for the Gallery Well under Option C; this well would therefore remain off line. Complete Option C consists of the following Alternatives:

- Alt 1-4 Blend Well 28 with Zone 2 water then pumped into Zone 3
- Alt 5-1 Treat Wells 1, 2, 3 and 15 at existing ID#1 shop site
- Alt 5-3 Treat Well 7 at Well 7 site
- Alt 5-4 Treat Well 25 at Well 25 site
- Alt 6-4 Well 27 install packer

5.1.4 Complete Option D

Complete Option D (as well as variants D-P and D-C) can be characterized as a "two treatment plant" solution. The Gallery Well would not be treated, and Upland Wells with production water Cr6 concentrations near or marginally over the MCL would be addressed either with blending or well modification. Complete Option D consists of the following Alternatives:

- Alt 1-2 Blend Well 7 with Well 24 at Well 7 site
- Alt 1-5 Blend Well 5 with Well 25 at Well 25 site
- Alt 5-1 Treat Wells 1, 2, 3 and 15 at existing ID1 shop site
- Alt 5-2 Treat Wells 27 and 28 at Well 27 site

5.1.5 Complete Option D-P

The "P" in Complete Option D-P designates "packer"; this Option is a two treatment plant solution, where Upland Wells with production water Cr6 concentrations near or marginally over the MCL would be addressed solely with packers (well modification). The Gallery Well would not be treated, and no blending of wells would be included. Complete Option D-P consists of the following Alternatives:

- Alt 5-1 Treat Wells 1, 2, 3 and 15 at existing ID1 shop site
- Alt 5-2 Treat Wells 27 and Well 28 at Well 27 site
- Alt 6-1 Well 7 install packer
- Alt 6-2 Well 25 install packer

5.1.6 Complete Option D-C

The "C" in Complete Option D-C designates "combined"; this Option is a two treatment plant solution, where Upland Wells with production water Cr6 concentrations near or marginally over the MCL would be addressed with a combination of <u>both</u> packers (well modification) and blending. This approach could allow for immediate installation of packers as a means of reducing well-specific concentrations of Cr6 in produced water, with blending as a longer term solution and/or in response to any gradual increases in Cr6 concentrations over time. The Gallery Well would not be treated, and would therefore remain off line. Complete Option D-C consists of the following Alternatives:

- Alt 1-2 Blend Well 7 with Well 24 at Well 7 site
- Alt 1-5 Blend Well 5 with Well 25 at Well 25 site
- Alt 5-1 Treat Wells 1, 2, 3 and 15 at existing ID1 shop site
- Alt 5-2 Treat Wells 27 and 28 at Well 27 site
- Alt 6-1 Well 7 install packer
- Alt 6-2 Well 25 install packer

5.1.7 Complete Option E

Complete Option E (as well as variants E-P and E-C) can be characterized as a "one treatment plant" solution. Option E relies more heavily upon blending and well modification with treatment providing Cr6 removal from the three most highly impacted wells. Non-treatment improvements would be used for three marginal wells: either blending with compliant Upland well water or installing packers to select water from low Cr6 strata in the aquifer. The Gallery Well would not be treated. Complete Option E consists of the following Alternatives:

- Alt 1-2 Blend Well 7 with Well 24 at Well 7 site
- Alt 1-4 Blend Well 28 with Zone 2 water then pumped into Zone 3
- Alt 1-5 Blend Well 5 with Well 25 at Well 25 site
- Alt 5-1 Treat Wells 1, 2, 3 and 15 at existing ID1 shop site
- Alt 6-4 Well 27 install packer

5.1.8 Complete Option E-P

The "P" in Complete Option E-P designates "packer". This Option is a one treatment plant solution, where the groundwater treatment plant would provide Cr6 removal from the three most highly impacted wells. Non-treatment improvements would be used for four marginal wells: one well via blending with compliant Upland well water, and three wells via installation of packers to select water from low Cr6 strata in the aquifer. The Gallery Well would not be treated, and would remain off line. Complete Option E-P consists of the following Alternatives:

Water Supply Alternatives Analysis / Feasibility Study Report

- Alt 1-4 Blend Well 28 with Zone 2 water then pumped into Zone 3
- Alt 5-1 Treat Wells 1, 2, 3 and 15 at existing ID#1 shop site
- Alt 6-1 Well 7 install packer
- Alt 6-2 Well 25 install packer
- Alt 6-4 Well 27 install packer

5.1.9 Complete Option E-C

The "C" in Complete Option E-C designates "combined"; this Option is a one treatment plant solution to address the most highly impacted wells, while Upland Wells with produced water Cr6 concentrations near or marginally over the MCL would be addressed with a combination of <u>both</u> packers (well modification) and blending. This approach could allow for immediate installation of packers as a means of reducing well-specific concentration of Cr6 in produced water, with blending as a longer term solution and/or in response to any gradual increases in Cr6 concentration levels over time. The Gallery Well would not be treated, and would therefore remain off line. Complete Option E-C consists of the following Alternatives:

- Alt 1-2 Blend Well 7 with Well 24 at Well 7 site
- Alt 1-4 Blend Well 28 with Zone 2 water then pumped into Zone 3
- Alt 1-5 Blend Well 5 with Well 25 at Well 25 site
- Alt 5-1 Treat Wells 1, 2, 3 and 15 at existing ID1 shop site
- Alt 6-1 Well 7 install packer
- Alt 6-2 Well 25 install packer
- Alt 6-4 Well 27 install packer

5.1.10 Complete Option F

Complete Option F does not consider treatment or non-treatment approaches, and instead relies on limiting the use of wells that have been impacted by the Cr6 MCL, requiring them to be shut down when Cr6 levels surpass the MCL. Under Option F, the distribution system will be supplied with water from Wells 5, 6, and 24 which contain relatively low Cr6 levels ranging from 0.7 to 4.1 ppb. Upland Wells that have produced water near or exceeding the Cr6 MCL of 10 ppb (based upon sampling results from December 2013 through June 2014) would be taken off line. Existing water supplies from the river wells and State Project Water would be pumped further into Zones 2 and 3. Additional booster pumps and some new distribution pipelines would be necessary to increase surface water deliveries to Zones 2 and 3. Complete Option F includes the following Alternative:

 Alt 4-1 – Minimize Use of Upland Wells with High Cr6 use Wells with Cr6 concentrations below 10 ppb

5.1.11 Complete Option G

Complete Option G would establish a new, completely separate distribution system dedicated to irrigation water supply. The existing water distribution system would be maintained for delivery of domestic water meeting the Cr6 MCL. The irrigation water distribution system would be supplied by wells with produced water containing Cr6 concentrations currently exceeding the MCL. The domestic water system would use the existing reservoirs, the river wells and Wells 5, 7, 24, 25, and 27. No treatment plants would be installed. Complete Option G includes the following Alternatives:

- Alt 1-2 Blend Well 7 with Well 24 at Well 7 site
- Alt 1-5 Blend Well 5 with Well 25 at Well 25 site
- Alt 2 Separate Irrigation System
- Alt 6-4 Well 27 install packer

5.1.12 Complete Option H

Complete Option H would avoid the high costs of either a dedicated irrigation water distribution system or any treatment plants. This option employs only blending and well modification technologies, targeting the Upland Wells with Cr6 concentrations that are near or marginally exceed the MCL. This Option would increase available water supply over Option F (turning off every well with Cr6 concentrations approaching the MCL), but would result in lower water production capability than any of the other Complete Options. Compliance reliability of Complete Option H is also the lowest of any Complete Option, in that fluctuations in Cr6 concentrations could cause the target wells to fail compliance even with blending or well modification (no treatment plants are included in the Option, which provide the highest reliability). Because of the compliance risks, this Option was not further evaluated. Complete Option H includes the following Alternatives:

- Alt 1-2 Blend Well 7 with Well 24 at Well 7 site
- Alt 1-5 Blend Well 5 with Well 25 at Well 25 site
- Alt 6-3 Well 28 install packer
- Alt 6-4 Well 27 install packer

6 RANKING PROCESS FOR COMPLETE OPTIONS

6.1 Ranking Analysis

Hazen and Sawyer employed a commercially available software program, Criterium DecisionPlus (CDP), to assist in the evaluation of the complete options. The software requires input from the user to determine:

- The end goal of the decision process,
- Decision criteria and weighting factors, and
- Complete options with scores by criteria.

Goal: The goal of the evaluation was to develop a ranking of the complete options.

Decision Criteria: The set of first order criteria and assigned weighting factors were determined through collaboration with the District staff and CWG. The three primary factors most critical to the District are the ability of the system to meet Cr6 compliance (i.e., the risk of non-compliance), water production reliability, and cost. For the first order ranking, an equal weighting factor was placed on water quality (50%), and on water production (50%). While very important, cost was considered separately and in parallel with the scoring, so that the District's decision-making can be based primarily on water quality and production.

Complete Options and Scoring: Scores were assigned with input from the District and CWG for decision criteria based on the distribution system modeling results that were completed for each complete option. The scores were assigned on a scale from 0 to 10, with a score of 0 representing the least and 10 representing the most favorable water quality assurance and production reliability. The key factors taken into consideration for each criteria include:

Water Quality Assurance – Water quality was considered from the perspective that water from the State Water Project and the Santa Ynez River supplies could be interrupted by prolonged drought, flood damage, environmental constraints, or seismic damage to water resource delivery systems. In those situations, local Upland Well groundwater that meets water quality regulations would provide the greatest assurance of compliance. Each option was evaluated with respect to risk of Cr6 concentration increase because of linked wells due to blending, likelihood of compliance, redundancy in the system, addition and contribution of low concentration sources, and accommodations for future demands. A full score of 10 was given to options in which the groundwater had historically low Cr6 levels, below 4 ppb, and treatment plants

would be installed to treat wells with high or marginal Cr6 concentrations to a target of 6 ppb. The maximum Cr6 levels entering the distribution system at each well, treatment plant or blending station were considered in evaluating every complete option. The resilience to changing water quality (i.e., fluctuating Cr6 concentrations) in the wells was also considered.

- Water Production Reliability Production reliability was considered from the perspective of using all water resources at their full production and from the perspective of the District relying on Upland wells when the river wells and surface water supplies are interrupted. Each option was evaluated based on the number of resources kept in use, comparison to current production, ability to meet MDD and ADD requirements, redundancy, and possible reductions to supply. The distribution system modeling conducted by Stetson provided information on the production of each water supply, the routing of supplies through the distribution system to meet customer demands, and the cost of necessary piping and pumping improvements to meet demands in each Complete Option.
- Annualized Cost The cost evaluation was based on the twenty-year life cycle costs, including annualized capital cost and anticipated annual operation, energy and maintenance costs.

6.2 Ranking of Complete Options – Conclusion

Details of the ranking all of Complete Options (A through G) are provided in Appendix A. The result of the ranking exercise was the identification of the three Complete Options with the highest ranking scores. Complete Option A ranked the highest in Water Quality and Water Production Reliability, but also carries the highest price tag. Complete Options D has the second highest scoring in the rankings, and Complete Option E has the third highest scoring. Complete Options D and E each have marginally lower Water Production Reliability (greater risk) than the top ranked Complete Option A. Each of these top three Complete Options are described below in more detail.

7 HIGHEST RANKED COMPLETE OPTION

7.1 Option A

7.1.1 Detailed Description of Option Components

Complete Option A represents the "full treatment" solution. Treatment would be provided for any well with produced water containing Cr6 concentrations above or near the MCL, and for the Gallery Well. Complete Option A consists of the following components:

Cr6 MCL Compliance Program

Water Supply Alternatives Analysis / Feasibility Study Report

- Five treatment plants (four groundwater and one surface water)
- All Upland wells in full production
- Reactivation of wells 1 and 3 in Santa Ynez
- Activation of the Gallery Well as a potable water source

The four groundwater treatment plants would provide Cr6 removal from all Upland wells impacted by the Cr6 MCL, without reducing any well pumping rates, or relying on blending to meet a water quality goal. The plants provide the opportunity to reactivate wells that were temporarily taken off line due to non-compliant Cr6 concentration levels, and bring them back into production through treatment and/or blending. The surface water treatment plant would allow the Gallery Well to become a potable water source, contributing 776 gpm to the District supply portfolio.

Upland wells producing water at or near the Cr6 MCL include Wells 1, 2, 7, 15, 25, 27, and 28, all of which are in Zone 2 or Zone 3. Wells 1, 2, and 15 would be combined and treated in one plant located at the District office and shop site; Wells 27 and 28 would be treated in a plant at the Well 27 site; and Well 7 and Well 25 would each have a dedicated treatment plant. Well 3 would serve as a redundant source in case of higher peak flows or when wells need to be maintained, that could blend with the treatment plant at 1, 2, and 15. All wells with Cr6 levels near or above the 10 ppb MCL would be treated in this option. Analysis of possible Cr6 treatment approaches is included in the Hazen and Sawyer Treatment Process Evaluation technical memorandum (Appendix B).

Withdrawing water from a depth of about 45 feet beneath the Santa Ynez River, the Gallery Well is classified as groundwater under the influence of surface water. In order to activate the Gallery Well as a potable water source, treatment, including filtration and disinfection, would be required to bring the supply into compliance with the Surface Water Treatment Rule.

The top ranked option, Complete Option A, provides the most diversified water portfolio, using surface water, river wells and Upland wells at multiple points of entry into the system, which gives the District the greatest flexibility to manage its resources to meet demands under any circumstances.

7.2 Discussion of Selection Criteria with respect to Option A

7.2.1 Water Quality

All well water above or near the Cr6 MCL would be treated to achieve a target goal of no more than 6 ppb entering the distribution system. Agencies often operate with a margin of safety, in case well concentrations, treated water concentrations, or laboratory analytical data fluctuate, and therefore a target concentration of no greater than 6 ppb Cr6 was used in the treatment design evaluation. The addition of the Gallery Well provides a low Cr6 source in addition to

Water Supply Alternatives Analysis / Feasibility Study Report

existing river wells and imported water. Inactive Wells 1 and 3 that are out of compliance for Cr6 and nitrate, respectively, can be reactivated and brought into compliance through treatment and blending. The plants can accommodate potentially worsening raw water quality in the future, and still produce finished water that meets the Cr6 MCL. This option received a score of ten (10) for water quality assurance because overall risks associated with water quality have been alleviated and are well controlled. This is the highest score possible for water quality assurance of the Complete Options considered (i.e., lowest water quality risk).

7.2.2 Water Production

In Option A, all wells would remain in full production in Zones 2 and 3. Currently inactive, Wells 1 and 3 would be reactivated to support the production and pressure in the Santa Ynez Pressure Zone 2. The Gallery Well would provide a new potable water source of 776 gpm (maximum volume of 515 acre-feet per year), entering the system in Zone 1 to use the District's full allocation. In years when surface water supplies are available, this option increases total system water production to 16,011 gpm, thus meeting peak existing demands and providing capacity to serve future customers. In times when surface water supplies are interrupted by prolonged drought, environmental constraints, flooding or seismic damage or system maintenance, the Upland wells would produce 6,600 gpm, which is sufficient to meet existing average day demand (3,890 gpm) with 70% surplus. Water quality objectives would be met via dedicated water treatment plants, and average day demand could be met without any external water supplies. A score of 10 would reflect full production at current levels. Because of the additional flow from Gallery well, this Option was given a score of 11 in the water production reliability rating. This is the highest ranking of all the Complete Options.

7.2.3 Annualized Cost

Implementation of Option A in the District's water delivery system would require construction of five treatment plants, additional pipelines, and booster pumps. The twenty-year annualized life cycle cost for capital and operation and maintenance is \$5.1 million. This is based on a total capital cost of \$25,773,000 and equates to a cost of \$914 per acre-foot of produced water.

7.2.4 Water Supply Delivered

The five proposed treatment plants would make available for unrestricted use the total water supplied by all 11 District Upland Wells and the Gallery Well. The total production from the Upland Wells, Gallery Well, and surface water deliveries would be 16,011 gpm, accounting for 168% of the maximum day demand (MDD) of 9,527 gpm. To assure supply reliability, agencies typically operate with a buffer with respect to MDD. With respect to volume of water supply delivered, Complete Option A ranks the highest of all the Complete Options.

7.2.5 System Redundancy

The five treatment plants provide redundancy in the event that any well or treatment unit is taken out of service in an emergency or for planned maintenance. Option A provides the best systems redundancy of all the Complete Options evaluated.

7.2.6 Ability to Meet Existing / Future Customer Water Demand

The total flow in the system provides up to 68% of contingency to supply the system during increased water demands. The contingency addresses short-term peaks from abnormally hot or dry climatic conditions, or sustained demand increases that could be associated with growth of customer connections in the District.

7.2.7 Feasibility of Permitting with Regulatory Agencies

The five treatment plants under this complete option would involve the most arduous permitting process of any of the complete options. Structural development would occur at five separate locations, each potentially requiring a building permit from Santa Barbara County. An individual permit from the RWQCB would potentially be necessary for each individual treatment plant. Due to Cr6 contained in the waste-stream, a small quantity waste generator permit for the District would likely be necessary from California Environmental Protection Agency. However, employing one or more of the BAT treatment methods approved by CDPH would streamline the permit review process and increase the feasibility of obtaining necessary permits from appropriate regulatory agencies.

Due to the number of facilities involved, and the potential need for resource agencies to rely upon environmental review conducted by the District in order to issue permits, a program level environmental impact report under CEQA would be recommended for this complete option. Field surveys for occurrence of natural resources can be completed concurrently for all proposed sites, project impacts quantified, and programmatic mitigation measures identified and assessed from a cost perspective.

Given probable treatment plant technology has been proven and permitted at other locations in California, even in Santa Barbara County, it should not prove infeasible to obtain necessary regulatory agency permits for Complete Option A. The treatment plant proposed at the existing District Office/Shop property would be considered in-fill development. Adequate area appears to exist in proximity to the gallery wells for a treatment plant siting. The placement of the other treatment plants may take refinement in order to minimize environmental impacts or land use conflicts.

7.2.8 Response to Changing External Water Supply Conditions

The five proposed treatment plants would make available for unrestricted use the total water supplied by all 11 District Upland Wells and the Gallery Well. This results in the greatest volume of water within the control of the District, and the best resiliency with respect to future restrictions in external water supplies from the SWP. In wet years, natural flows in the Santa Ynez River would contribute extra volume to the District supply via the new treatment plant for the Gallery Well; over a sustained period of drought and associated reductions in releases from Cachuma, the water supply from the Gallery Wells could be very limited.

8 SECOND HIGHEST RANKED COMPLETE OPTION

8.1 Option D

8.1.1 Detailed description of Option Components

Complete Option D (as well as variants D-P and D-C) can be characterized as a "two treatment plant" solution. The Gallery Well would not be treated, and Upland Wells with production water Cr6 concentrations near or marginally over the MCL would be addressed either with blending or well modification. Complete Option D consists of the following components:

- Two groundwater treatment plants
- Reactivation of Wells 1 and 3 in Santa Ynez
- Blending two marginal wells with compliant water
- Packers on two wells, as an alternative to blending, or combined with blending

The two groundwater treatment plants would provide Cr6 removal from the three most highly impacted wells and two of the marginally impacted wells. The plants provide the opportunity to reactivate wells that were temporarily taken out of service due to non-compliant Cr6 concentrations and bring them back into production through treatment and/or blending. Non-treatment improvements would be used for two marginal wells: either blending with nearby compliant wells or installing packers to select water only from low Cr6 strata in the aquifer.

High Cr6 Wells 1, 2, and 15 with concentrations above 24 ppb would be combined and treated in one plant located at the District office and shop site. Wells 27 and 28, which are marginally above the Cr6 MCL, would be treated at a second plant at the Well 27 site. Well 3 would serve as a redundant water source at times of high peak demand or when other wells are undergoing maintenance.

In sub-option D, Wells 7 and 24 would be blended together at the Well 7 site, and Wells 5 and 25 would be blended at the Well 25 site to produce an overall Cr6 concentration below the 10 ppb MCL.

In addition, there are opportunities for improving this option through future add-ons. These improvements include packers on wells 7 and 25 to reduce Cr6 level and installation of gallery well treatment to provide additional supply.

In sub-option D-P, packers would be installed on Wells 7 and 25 to achieve a Cr6 concentration below the 10 ppb MCL, rather than the blending.

Sub-option D-C combines all packer and blending alternatives: packers in Wells 7 and 25, blending Well 7 with Well 24, and blending Well 5 with Well 25.

8.2 Discussion of Selection Criteria with respect to Option D

8.2.1 Water Quality

Five of the Upland wells would be treated to achieve a target goal of 6 ppb in plants that could accommodate worsening raw water quality in the future and still produce finished water that meets the Cr6 MCL. The two marginal wells relying on blending are expected to achieve 7 to 8.5 ppb Cr6 entering the distribution system, but are at risk of non-compliance if the raw Cr6 concentration increases in either the compliant or non-compliant wells. Wells addressed with packers are expected to achieve Cr6 below 10 ppb if strata can be reliably separated, but are at risk of non-compliance if short-circuiting occurs (i.e., if water with Cr6 is able to migrate between groundwater elevation zones, despite the presence of a packer). Three Upland wells have consistently low Cr6 concentrations and are expected to remain in compliance. Option D received a water quality score of 7 because approximately 70% of the Upland water is assured of compliance, and 30% is vulnerable to groundwater quality conditions. This places Complete Option D tied for third place in the overall rankings for water quality (behind the options with 5, 4, and 3 treatment plants).

8.2.2 Water Production

In Option D, all wells in Zones 2 and 3 would remain in production. Inactive Wells 1 and 3 would be reactivated to support the production and pressure in Zone 2. In years when the alluvium wells and State Project Water are available, the Option D combination of surface water and groundwater would meet current production. In times when surface water supplies are interrupted by prolonged drought, environmental constraints, flooding, seismic damage or system maintenance, the Option D Upland wells would produce 6,600 gpm, which exceeds existing average day demands of 3,890 gpm by 70%. Options D-P and D-C would produce a lower flow rate, estimated at 6,100 gpm because of the packers are anticipated to reduce well production by 25%. The production rate of the blended wells may have to be reduced if the Cr6 concentration increases in either the compliant or non-compliant well, but less than a third of the groundwater production would be vulnerable. Option D is preferred over D-P and D-C, with

a score of 9 for production reliability. This places Complete Option D fourth in the rankings for reliability (behind the options with 5, 4, and 3 treatment plants).

8.2.3 Annualized Cost

Implementation of Option D includes two treatment plants, additional pipelines, booster pumps and blending facilities. Sub-option D-P has a lower cost because packers are substituted for blending. Sub-option D-C is higher in cost because it combines blending and packers. The use of non-treatment alternatives makes the total cost to implement and operate Option D less than an Option that solely relies on treatment plants. The twenty-year annualized life cycle cost is \$3.4 million. This is based on a total capital cost of \$17,507,000 and equates to a cost of \$609 per acre-foot of produced water (approximately the midpoint between Complete Option A at \$914 per acre-foot and Complete Option E (see below) at \$412 per acre-foot). Adding future projects such as packers on wells 7 and 25 for water quality improvements and the gallery well treatment for additional supply would increase the life cycle cost to \$4.2 million.

8.2.4 Water Supply Delivered

For Option D, the total flow of the system produces up to 15,235 gpm, accounting for 160% of the maximum day demand (MDD) of 9,527 gpm. The total flow in the system provides up to 60% of added contingency to supply the system during increased water demands. If packers are installed at Well 7 and Well 25 for Options D-P and D-C, the total production in the system would be reduced to 14,735 gpm, which accounts for 155% of the MDD. This option is ranked second with regard to water supply delivered.

8.2.5 System Redundancy

The treatment plants have internal redundancy in the event that any well or treatment unit is taken out of service in an emergency or for maintenance. There are also two treatment plants proposed, allowing for temporary unavailability of either due to emergency or planned maintenance. Water from three compliant wells and three wells addressed with packers and/or blending would be available to supply the water distribution system in the event that both treatment plants are simultaneously taken out of commission due to an emergency or disaster event.

8.2.6 Ability to Meet Existing / Future Customer Water Demand

The total flow in the system provides up to 55% of contingency to supply the system during increased water demands (assuming packers are installed in Wells 7 and 25, lowering well production rates for these wells). The contingency addresses short-term peaks from abnormally hot or dry climatic conditions, or sustained demand increases that could be associated with growth of customer connections in the District.

8.2.7 Feasibility of Permitting with Regulatory Agencies

The two treatment plants under this complete option would involve a less arduous permitting process overall than Complete Option A. Structural development would occur at only two separate locations, both potentially requiring a building permit from Santa Barbara County. An individual permit from the RWQCB would potentially be necessary for each individual treatment plant, but this would involve only two permits total; it is not likely that a permit from the RWQCB would be required for either of the blending systems. Due to Cr6 contained in the waste-stream, a small quantity waste generator permit for the District would still likely be necessary from California Environmental Protection Agency. But again, employing one or more of the BAT treatment methods approved by CDPH would streamline the permit review process and increase the feasibility of obtaining necessary permits from appropriate regulatory agencies.

Due to the number of individual facilities involved, and the potential need for resource agencies to rely upon environmental review conducted by the District in order to issue permits, a program level environmental impact report under CEQA would be also recommended for this complete option. Field surveys for occurrence of natural resources can be completed concurrently for all proposed sites, project impacts quantified, and programmatic mitigation measures identified and assessed from a cost perspective.

Given probable treatment plant technology has been proven and permitted at other locations in in Santa Barbara County, it should not prove infeasible to obtain necessary regulatory agency permits for Complete Option D. The treatment plant proposed at the existing District Office/Shop property would be considered in-fill development. Hazen & Sawyer provided a conceptual layout for the treatment plant at Well 27 which appears to potentially fit within available space.

8.2.8 Response to Changing External Water Supply Conditions

Considering water supply associated with alluvium wells and State Project Water, the Option D combination of surface water and groundwater would meet current production. If surface water supplies are interrupted by prolonged drought, environmental constraints, flooding, seismic damage or system maintenance, the Option D Upland wells would produce 6,600 gpm, which exceeds existing average day demands of 3,890 gpm, but which would not accommodate maximum day demand. Permanent reduction of water available from SWP or alluvium wells (as would occur with restrictions to Cachuma releases) could force the District to develop additional water storage facilities to accommodate peak demands, or could necessitate the addition of future treatment plants.

9 THIRD HIGHEST RANKED COMPLETE OPTION

9.1 Option E

9.1.1 Detailed description of Option Components

Complete Option E (as well as variants E-P and E-C) can be characterized as a "one treatment plant" solution. Option E relies more heavily upon blending and well modification to address all but the most severely Cr6 impacted wells. The Gallery Well would not be treated. Complete Option E consists of the following components:

- One groundwater treatment plant
- Reactivation of Wells 1 and 3 in Santa Ynez
- Blending three marginal wells with compliant water
- Packers on one to three marginal wells, as an alternative to blending, or combined with blending

The groundwater treatment plant would provide Cr6 removal from the three most highly impacted wells. The plant provides the opportunity to reactivate wells that were taken out of service due to non-compliant Cr6 concentration and bring them back into production through treatment and/or blending. Non-treatment improvements would be used for three marginal wells: either blending with compliant Upland waters or installing packers to select water from low Cr6 strata in the aquifer. Packers are assumed to reduce well flow rates by 25%.

High Cr6 Wells 1, 2, and 15 with concentrations above 24 ppb would be treated at a plant located at the District office and shop site. Well 3 would serve as a redundant source that could blend at the treatment plant in case of higher peak demand or when other wells are undergoing maintenance.

In addition, there are opportunities for improving this option through future add-ons. These improvements include packers on wells 7 and 25 to reduce Cr6 level and installation of surface gallery well treatment to provide additional supply.

Sub-option E-P would blend Well 28 with water in Zone 2, and install packers in Wells 7, 25, and 27. Sub-option E-C would install packers in Wells 7 and 25, and then blend them with Wells 24 and 5, respectively; Well 28 would be blended with water in Zone 2; a packer would be installed in Well 27.

9.2 Discussion of Selection Criteria with respect to Option E

9.2.1 Water Quality

Three wells with Cr6 concentrations above the MCL would be treated to achieve a target goal of no more than 6 ppb entering the distribution system. The plant would have redundancy for

Cr6 MCL Compliance Program

Water Supply Alternatives Analysis / Feasibility Study Report

emergencies or maintenance and can accommodate potentially worsening raw water quality. These treated wells and the existing compliant wells have a high degree of water quality assurance, but they represent less than half of the Upland groundwater resource. Three marginal wells would rely on blending that is expected to achieve 7 to 8.5 ppb Cr6 entering the distribution system. Two to four wells will rely on packers and are expected to achieve Cr6 below 10 ppb if aquifer strata are reliably separated. The untreated marginal wells provide more than half of the Upland groundwater and are vulnerable to several possible risks: Cr6 concentrations could rise in the marginal wells, Cr6 concentrations could rise in the compliant well could go out of service, and short-circuiting could occur in wells addressed with packers. The Water Quality Assurance score is 4, tied for 3rd place in the overall rankings for water quality of all Complete Options.

9.2.2 Water Production

In Option E, all wells in Zones 2 and 3 would remain in operation, and inactive Wells 1 and 3 would be reactivated to support the production and pressure in Zone 2, but reliance on packers would reduce the overall groundwater production. In years when surface water supplies are available through the river wells and State Project Water, this option produces 14,685 gpm which is less than current production. In times when surface water supplies are interrupted by prolonged drought, environmental constraints, flooding, seismic damage or system maintenance, Option E would produce 6,050 gpm from the Upland wells and is preferred over Options E-P and E-C that would produce 5,550 gpm. All three sub-options would be able to meet the existing ADD of 3,890 gpm during times that external water sources are not available. The production rate is at risk of being reduced by half if the Cr6 concentration increases in untreated wells. Option E is given a score of 7 for production reliability, giving it an overall ranking of 7th place for production reliability.

9.2.3 Annualized Cost

Implementation of Option E would require construction of one treatment plant, pipelines and improvements for blending and packers. The twenty-year annualized life cycle cost is \$2.3 million. This is based on a total capital cost of \$13,388,000 and equates to \$412 per acre-foot of produced water. Adding future projects such as packers on wells 7 and 25 for improved water quality and gallery well treatment for increased water production would increase the life cycle cost to \$3.1 million.

9.2.4 Water Supply Delivered

Option E was modeled for the ability to meet customer demands in the District's distribution system, using supplies from the Upland wells with only two packers, river wells and State Project Water. The total production would be 14,685 gpm, accounting for 154% of the

maximum day demand (MDD) of 9,527 gpm. The total flow in the system provides up to 54% of contingency to supply the system during increased water demands. System production would decrease to 14,185 gpm with the installation of two more packers in Sub-Options E-P and E-C.

9.2.5 System Redundancy

The one treatment plant option will have internal redundancy in the event that any well or treatment unit is taken out of service in an emergency or for maintenance. However, there would not be a second treatment plant at another site in the event an emergency or natural disaster impacted the treatment plant site. Water from three compliant wells and three wells addressed with packers and/or blending would be available to supply the water distribution system in the event that the treatment plant is taken out of commission due to an emergency or disaster event, but production volume capability would be limited. Option E has less system redundancy than either Complete Option A or D.

9.2.6 Ability to Meet Existing / Future Customer Water Demand

The total flow in the system provides up to 49% of contingency to supply the system during increased water demands (assuming packers are installed in a total of four wells, lowering well production rates for these wells). The contingency addresses short-term peaks from abnormally hot or dry climatic conditions, or sustained demand increases that could be associated with growth of customer connections in the District. Surplus water delivery capacity in Option E to accommodate future growth would be 19% less than in Option A and up to 6% less than in Option D.

9.2.7 Feasibility of Permitting with Regulatory Agencies

The one treatment plant under this complete option would result in substantially less permitting for this complete option, compared to Complete Option A or D. Structural development would occur at a single location, as an expansion to the existing District office and shop development, but still requiring a building permit from Santa Barbara County. One permit from the RWQCB would potentially be necessary the treatment plant, compared to five for Option A and two for Option D. Due to Cr6 contained in the waste-stream, a small quantity waste generator permit for the District would likely be necessary from California Environmental Protection Agency. However, employing one of the BAT treatment methods approved by CDPH would streamline the permit review process and increase the feasibility of obtaining necessary permits from appropriate regulatory agencies.

Pipe construction, booster pumps, and other minor equipment for the blending facilities could likely qualify for categorical exemptions under CEQA. The one treatment plant at the District

office/shop property could potentially be addressed with a mitigated negative declaration (MND).

Given probable treatment plant technology has been proven at other locations in Santa Barbara County, it should not prove infeasible to obtain necessary regulatory agency permits for Complete Option E. The treatment plant proposed at the existing District Office/Shop property would be considered in-fill development. Infrastructure improvements for blending would be located within alignments already dedicated to water extraction, distribution, and storage.

9.2.8 Response to Changing External Water Supply Conditions

With surface water supplies through the river wells and State Project Water, this option produces 14,685 gpm which is less than current production. In times when surface water supplies are interrupted by prolonged drought, environmental constraints, flooding, seismic damage or system maintenance, Option E would produce 6,050 gpm from the Upland wells, easily meeting the existing ADD of 3,890 gpm. Permanent reduction of water available from SWP or alluvium wells (as would occur with restrictions to Cachuma releases) could force the District to develop even greater additional water storage facilities than Complete Option D in order to accommodate peak demands, or could necessitate the addition of future treatment plants.

10 SUMMARY OF TOP THREE COMPLETE OPTIONS

Figure 1 presents the ranking described in Sections 7, 8, and 9 for Complete Options A, D, and E and an overview of cost estimates. The figure shows that Complete Option A offers the maximum (more than current) water production and assurance of achieving water quality goals, albeit at highest cost.

Complete Option D provides full production reliability and good assurance of water quality, for slightly lower cost.

Complete Option E is lowest cost of these three options but carries lower than current production reliability and more risk in terms of water quality compliance.

There is potential for future add-on projects for Complete Options D and E to improve water quality or gain additional production capacity, if desired, for additional cost. Adding packers on wells 7 and 25 and installing the gallery well treatment would increase the annualized cost of Option D to \$4.2 million and Option E to \$3.1 million.

Figure 1. Summary of Scoring and Cost Estimation for Complete Options A, D, and E

11 CONCEPTUAL IMPLEMENTATION APPROACH

Short-term

In order to comply with the newly adopted Cr6 MCL, and avoid delivering water to customers with Cr6 above the MCL, the first short term step is to immediately shut down Wells #2 and #15. These wells might be available in an emergency situation, subject to approval or allowance by CDPH and possible Notice of Violation required.

A second short-term step is to potentially modify wells #7 and/or #25 with packers to preferentially extract water from zones with lower Cr6 concentrations in these wells.

Long-term

The first step in long-term implementation is to prepare a preliminary design report for the entire program, followed by a programmatic CEQA environmental review. Final design of some projects may begin in parallel with the environmental review. Upon completion of the environmental review, obtain regulatory permits for each project in coordination with its final design. The five treatment plants, associated pipelines and pump stations will be constructed in a coordinated schedule with the five year compliance period.

12 APPENDICES

- A. Hazen & Sawyer Evaluation of Complete Cr6 Options
- **B. Hazen & Sawyer Treatment Process Evaluation**
- C. Stetson Engineers System Hydraulics Study
- **D. Dudek Well Profile Report**

APPENDIX A

Hazen & Sawyer Evaluation of Complete Cr6 Options

Technical Memorandum: Evaluation of Complete Cr6 Options

То:	Santa Ynez River Water Conservation District, Improvement District No. 1 – Chris Dahlstrom and Eric Tambini
From:	Hazen and Sawyer – Lynn Grijalva, PE, Nicole Blute, PhD, PE, Ian Mackenzie, PE, and Kenny Chau
cc:	Dudek – Ken Marshall, Jonathan Leech, and Trey Driscoll Stetson Engineers – Joe DeMaggio
Date:	September 16, 2014
Re:	Engineering Feasibility Study for Use of Wells with High Chromium 6: Evaluation of Complete Cr6 Options

Introduction

In 2001, the California state legislature mandated that a state regulation be established to limit the concentration of hexavalent chromium (Cr6) in drinking water. This launched several years of study into the appropriate maximum contaminant level (MCL) to protect public health, sampling to measure the occurrence of Cr6 and Total Cr in drinking water systems, and testing of treatment technologies for Cr6 removal. California Department of Public Health (CDPH) finalized the MCL of 10 parts per billion (ppb) for hexavalent chromium effective July 1, 2014. The total chromium (total Cr) MCL remains at 50 ppb.

There is naturally occurring chromium in the water bearing geology in the Santa Ynez River District, Improvement District #1 (District). As a result most wells in the District are impacted by the Cr6 MCL Three of the District's upland wells have shown Cr6 concentrations of 13 to 26 ppb and one inactive upland well was measured at 36 ppb when last active. Four upland wells have Cr6 concentrations between 8.4 and 10, which is in compliance, but very near the MCL. Only two active and two inactive upland wells are within a reliable range for Cr6 compliance.

The District's distribution system is comprised of three pressure zones, which rely on the Santa Ynez Upland groundwater basin, Santa Ynez River alluvium groundwater, and the State Water Project water. Zone 1 relies on the use of the River Wells and State Project Water delivered by the Mesa Verde (MV) Pump Station, which are not impacted by Cr6. Zones 2 and 3 rely on groundwater from the Upland Wells and have several wells that are impacted by Cr6 above the MCL. Table 1 presents a summary of Cr6 and Total Cr concentrations in District water supplies and in each zone.

Zone	Supply	Status	Capacity (gpm)	Cr6 (ppb)*	Total Cr (ppb)*
Zone 1	6.0 CFS Well field	Active	2260	ND***	ND
	4.0 CFS Well field	Active	1775	ND	ND
	MV	Active	5200	ND	ND
Zone 2	Well 1**	Inactive	200	36	59
	Well 2	Active	500	22 - 24	22
	Well 3**	Inactive	600	10	12
	Well 4**	Inactive	300	1.9	16
	Well 15	Active	1200	25 - 26	26
	Well 27	Active	1250	6.9 - 13	12
	Well 28	Active	750	8.7 - 9.2	9.5
Zone 3	Well 5	Active	250	0.7-1.1	1.9
	Well 6**	Inactive	300	ND	ND
	Well 7	Active	900	2.1 - 10	10
	Well 24	Active	300	1.3 - 4.1	4
	Well 25	Active	950	8.4 - 9.8	8.4

Table 1. District Sources of Supply and Chromium Concentrations

* Samples collected from 1/29/14 to 5/28/14.

** Currently inactive, flow rate recorded when last active

***ND = non-detect. Non-detect value is 0.02 ppb for Cr6 and 0.2 ppb for Total Cr

Alternatives for complying with the new Cr6 regulation were developed by the District in consultation with the team of engineers, hydrologists, and modelers. Six primary alternatives, and variations to those basic alternatives, are shown in the next section. The alternatives were then assembled into "complete options" reflecting the combination of alternatives necessary for the whole District. The purpose of this technical memorandum is to support the District's compliance planning and implementation by presenting a comparison of the options available to comply with the new Cr6 regulation. The options were developed and evaluated in terms of achieving three goals:

- 1. Comply with the water quality regulations, with high assurance and low risk
- 2. Meet current water production reliably, and look for opportunities to increase production
- 3. Minimize the cost impact to District customers

Alternatives Evaluation

The alternatives include both treatment and non-treatment methods. Four non-treatment alternatives were considered, including blending impacted and non-impacted wells (Alternative 1), using the Cr6 impacted wells only for irrigation (Alternative 2), minimizing the use of the impacted wells (Alternative 4), and installing packers in wells to target aquifer zones with lower Cr6 (Alternative 6). Two treatment

alternatives were considered. Alternative 5 is treatment for removing Cr6 from Upland wells exceeding the Cr6 MCL. Alternative 3 is surface water treatment for the Gallery Well to meet the requirements of the Surface Water Treatment Rule and allow this well to be reactivated.

Alternative 1 involves mixing of two wells or mixing water from the distribution system with a well. This alternative uses lower Cr6 water to dilute higher Cr6 concentrations, producing a lower Cr6 level in the overall blend. This alternative is not anticipated to impact the overall water production. However, minor pipe modifications will be required to enable to this feature at locations where blending will be implemented.

Alternative 2 considers the possibility of using Cr6 impacted wells for irrigation only, which would require installation of a separate irrigation distribution system. This alternative would accomplish compliance with the MCL using low Cr6 wells in the existing distribution system.

Alternative 3 is surface water treatment of the Gallery Well. This well is currently not used because it does not meet the requirements of the Surface Water Treatment Rule. Reactivating this well would provide an additional source of water for the District.

Alternative 4 involves minimizing use of the Upland Wells to achieve compliance using only wells in compliance with the Cr6 MCL. This alternative requires little infrastructure but will not provide the current level of water production used by the District.

Alternative 5 involves installing treatment for Cr6 removal at the impacted wells, either individually or for combinations of wells. This alternative maintains the same production of each well, and allows non-compliant inactive wells to be brought back into production.

Alternative 6 is the installation of a packers in wells to prevent the ingress of water from zones in the aquifer with high Cr6 concentrations. Installation of packers is relatively straightforward, but is expected to result in lower production rates. There is also a risk of some water from higher Cr6 zones leaking into the well. The work by Dudek, 2014, provides further information.

List of Alternatives

- 1. Alternative 1 Blending, there are 6 possible locations for blending
 - Alt 1-1 Blend well 7 with well 24 into existing 0.5 MG Zone 3 tank.
 - Alt 1-2 Blend well 7 with well 24 at well 7 site.
 - Alt 1-3 Blend well 27 with Zone 2 water then pump into Zone 3.
 - Alt 1-4 Blend well 28 with Zone 2 water then pump into Zone 3.
 - Alt 1-5 Blend well 5 with well 25 at well 25 site.
 - Alt 1-6 Blend well 24 with well 25 at well 25 site
- 2. Alternative 2 Separate Irrigation Water System, using wells 2,3,15 & gallery well.
- 3. Alternative 3 Surface Water Treatment Gallery Well
- 4. Alternative 4 Minimize Use of Upland Wells with High Cr6
 - Alt 4-1 Maximum hour demand (June), use wells 5,6 and 24, MVPS, 6.0 cfs and 4.0 cfs River wells, reservoir storage and additional booster pumps.
 - Alt 4-2 Frost protection historical demand (April), same system requirements as 4-1
- 5. Alternative 5 Well Treatment. Treatment was considered for groups of wells at 4 locations:
 - Alt 5-1 Treat wells 1, 2 and 15 at existing ID#1 shop site, 1,900 gpm add well 3 (600 gpm) as redundant source.
 - Alt 5-2 Treat well 27 and well 28 at well 27 site
 - Alt 5-3 Treat well 7 at well 7 site
 - Alt 5-4 Treat well 25 at well 25 site
- 6. Alternative 6 Well Improvements (packers), there are 4 packer options
 - Alt 6-1 Well 7 block inflow from high Cr6 zone, 25% flow reduction
 - Alt 6-2 Well 25 block inflow from high Cr6 zone, 25% flow reduction
 - Alt 6-3 Well 28 block inflow from high Cr6 zone, 25% flow reduction
 - Alt 6-4 Wells 27 block inflow from high Cr6 zone, 25% flow reduction

Each alternative was broken down into sub-alternatives to address either a set of wells or an individual well. Most of the alternatives only consider solutions for one zone and do not provide the District with a complete solution to achieve system wide Cr6 compliance and meet customer demands. Consequently, a list of feasible combinations of alternatives, or "complete options" were analyzed.

Complete Options

The list of complete options were developed and evaluated according to water production capabilities and water quality compliance assurance. A total of 11 complete options (A through G) were considered for the evaluation as shown in Table 2 as combinations of the previously identified alternatives and subalternatives. Distribution system modeling was completed by Stetson Engineers for each of the complete options to assess feasibility of the options and necessary infrastructure. A decision making process was then used to score and rank the options, which is described below. HAZEN AND SAWYER Environmental Engineers & Scientists

Table 2: Matrix of Complete Options Considered

sı	6-4			>				>	>	>		>
'ement rs)	ŝ	-										
lmprov (Packe	6-2 6					>	>		>	>		
Well	6-1					>	>		>	>		
	5-4	>	>	>								
tment	5-3	>	>	>								
ell Trea	5-2	>	>		>	>	>					
Š	5-1	>	>	>	>	>	>	>	>	>		
Ize High	elis 4-2											
Minim Use of I	4-1										>	
Alteri Gallery Well	3-1	>										*
Separate Irrigation	2-1											>
	1-6											
	1-5				>		>	>		>		>
ding	1-4			>				>	>	>		
Blen	1-3											
	1-2				>		>	>		>		>
	1-1											
		۲	В	U	۵	D-P	D-C	ш	E-P	E-C	щ	ט

9

Decision Making Process

A commercially available software program, Criterium DecisionPlus (CDP), was used to assist in the evaluation of the complete options. The software requires input from the user to determine:

- The end goal of the decision process,
- Decision criteria and weighting factors, and
- Complete options with scores by criteria.

Goal: The goal of the evaluation was to develop a quantitative evaluation of the complete options.

Decision Criteria: The set of criteria and assigned weighting factors were determined through a workshop with the District and consulting team (Table 3). The three primary factors most critical to the District were the ability of the system to meet Cr6 compliance (i.e., the risk of non-compliance), water production reliability, and cost. An equal weighting factor was placed on water quality, and on water production. While very important, cost was considered separately and in parallel with the scoring, so that the District's decision making can be based primarily on water quality and production.

Criteria	Definition	Weighting Factor (%)
Water Quality Compliance Assurance	The ability to meet the Cr6 MCL at each entry into the distribution system, mitigating the risk that Cr6 levels in the wells may fluctuate over time.	50
Water Production Reliability	The ability to produce a continuous and reliable supply to meet system demands.	50
Annualized Cost	Capital and O&M costs of the options, annualized over a 20 year period.	

Table 3: Evaluation Criteria and Weighting Factor

Complete Options and Scoring: Scores were assigned with input from the District and Consultant team for decision criteria based on the distribution system modeling results that were completed for each complete option. The scores were assigned on a scale from 0 to 10, with a score of 0 representing the least and 10 representing the most favorable water quality assurance and production reliability. The key factors taken into consideration for each criteria include:

 Water Quality Assurance – Water quality was considered from the perspective that the State Project Water and the Santa Ynez River alluvium supplies could be interrupted by prolonged drought, flood damage, environmental constraints, or seismic damage to water resource delivery systems. In those situations, local groundwater that meets water quality regulations would provide the greatest assurance of compliance. Each option was evaluated with respect to risk of concentration increase because of linked wells due to blending, likelihood of compliance, redundancy in the system, addition and contribution of low concentration sources, and accommodations for future demands. A full score of 10 was given to options in which the

groundwater had historically low Cr6 levels, below 4 ppb, and treatment plants would be installed to convert high or marginal Cr6 levels to a target of 6 ppb. The maximum Cr6 levels entering the distribution system at each well, treatment plant or blending station were considered in evaluating every complete option. The resilience to changing water quality in the wells was also considered.

- Water Production Reliability Production reliability was considered from the perspective of using all water resources at their full production, and from the perspective of the District relying on Upland wells when the river wells and surface water supplies are interrupted. Each option was evaluated based on the number of resources kept in use, comparison to current production, ability to meet Maximum Daily Demand (MDD) and Average Daily Demand (ADD) requirements, redundancy, and possible reductions to supply. The distribution modeling conducted by Stetson provided information on the production of each water supply, the routing of supplies through the distribution to meet system demands, and the cost of necessary piping and pumping improvements to meet demands in each Option.
- Annualized Cost The cost evaluation was based on the twenty-year life cycle costs, including annualized capital cost and anticipated annual operation, energy and maintenance costs.

Complete Options Evaluation

A summary of the complete options in relation to water quality and production are provided in Table 4. The wells were grouped by Cr6 levels which were determined by the Cr6 results provided by the District. All wells to be treated assumed a target Cr6 concentration of 6 ppb. Each complete option was evaluated to include the participating wells to provide an overall percentage for treated wells and nontreated wells (e.g. blending, etc.). Water quality assurance was determined by the percentage of treated vs non-treated wells.

A more thorough description of each complete option including background information on what each option encompasses, the distribution modeling results, and a summary of the results follows (Options A to G).

HAZEN AND SAWYER Environmental Engineers & Scientists Table 4: Complete Options Upland Well Water Production and Chromium 6 Compliance Assurance

Cr6		Normal Flow					Com	plete Op	tions				
Conditions	Well	(mdg)	Α	В	С	D	D-P	D-C	E	E-P	E-C	F	G^{**}
< 4 ppb	S	250	250	250	250	250	250	250	250	250	250	250	250
	9	300	300	300	300	300	300	300	300	300	300	300	300
	24	300	300	300	300	300	300	300	300	300	300	300	300
	Total Flow (gpm)		850	850	850	850	850	850	850	850	850	850	850
	% of Upland Wells		13%	13%	14%	13%	14%	14%	14%	15%	15%	100%	23%
	% of Total Supply		5%	6%	6%	6%	6%	6%	6%	6%	6%	9%	7%
6 ppb	(treated) 1	200	200	200	200	200	200	200	200	200	200	I	ı
after	(treated) 2	500	500	500	500	500	500	500	500	500	500	I	ı
treatment	(treated) 3	600	I	ı	ı	ı	ı	I	ı	ı	I	I	I
	(treated) 7	006	006	006	006	ı	ı	I	ı	ı	I	I	ı
	(treated) 15	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	ı	ı
	(treated) 25	950	950	950	950	ı	ı	I	ı	ı	I	I	ı
	(treated) 27	1250	1250	1250	ı	1250	1250	1250	ı	ı	I	I	ı
	(treated) 28	750	750	750	-	750	750	750	-	-	I	I	-
	Total Flow (gpm)		5750	5750	3750	3900	3900	3900	1900	1900	1900	0	0
	% of Upland Wells		87%	87%	62%	59%	64%	64%	31%	34%	34%	0%	%0
	% of Total Supply		36%	38%	26%	26%	26%	26%	13%	13%	13%	0%	0%0
8 - 10 ppb	L	006	I	ı	ı	006	650	650	006	650	650	I	006
	25	950	ı	ı	ı	950	700	700	950	700	700	ı	950
	27	1250	I	ı	950	I	ı	I	950	950	950	I	950
	28	750	I	ı	500	ı	ı	ı	500	500	500	I	ı
	Total Flow (gpm)		0	0	1450	1850	1350	1350	3300	2800	2800	0	2800
	% of Upland Wells		0%	0%	24%	28%	22%	22%	55%	50%	50%	0%	77%
	% of Total Supply		%0	%0	10%	12%	%6	6%	22%	20%	20%	%0	23%

ი

HAZEN AND SAWYER Environmental Engineers & Scientists

Table 4 (Co	nt'd)												
y. j		Normal Flow					Com	plete Op	tions				
Conditions	Well	(gpm)	Υ	В	С	D	D-P	D-C	E	E-P	E-C	F	\mathbf{G}^{**}
				ns	mmary o	of Results	74						
	Upland Wells	7200	6600	6600	6050	6600	6100	6100	6050	5550	5550	850	3650
	River Wells (4 cfs)	1775	1175	1175	1175	1175	1175	1175	1175	1175	1175	1175	1175
Flow	River Wells (6 cfs)	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260
(mdg)	Mesa Verde (SWP)	5200	5200	5200	5200	5200	5200	5200	5200	5200	5200	5200	5200
	Gallery Well	776	776	I	·	·	ı	ı	1		ŀ	ŀ	I
	Total (gpm)	17211	16011	15235	14685	15235	14735	14735	14685	14185	14185	9485	12285
Upland	Below 6 ppb		100%	100%	76%	72%	78%	78%	45%	50%	50%	100%	23%
Wells	Above 8 ppb		%0	%0	24%	28%	22%	22%	55%	50%	50%	%0	%LL
Total	Below 6 ppb		100%	100%	%06	88%	91%	91%	78%	80%	80%	100%	77%
Supply	Above 8 ppb		%0	%0	10%	12%	%6	%6	22%	20%	20%	%0	23%
	WQ Assuran	ice Score	10	10	٢	٢	٢	7	4	4	4	1	1
Wa	ter Production Reliabil	ity Score	11^{*}	10	8	6	8	×	٢	9	9	1	e
		:							c •				

*Score assigned from 0 to 10 was determined in the absence of the Gallery Well. An additional point was awarded for any complete option that supports or require supply from the Gallery Well. ** A total production rate of 16,311 gpm is achieved for the separate irrigation system (Option G) with 4,026 gpm, including the Gallery Well, dedicated solely for irrigation use.

10

Option A Maximum Treatment – Upland and Gallery Wells

Description: Option A is a combination of

- Five treatment plants (four groundwater and one surface water)
- All Upland wells in full production
- Reactivation of wells 1 and 3 in Santa Ynez
- Activation of the Gallery Well as a potable water source.

The four groundwater plants would provide Cr6 removal from all Upland wells impacted by the Cr6 MCL, without reducing any well pumping rates, or relying on blending to meet a water quality goal. The plants provides the opportunity to reactivate wells that were out of compliance, and bring them back into production through treatment and/or blending. The surface water plant would allow the Gallery Well to become a potable water source, contributing 776 gpm to the District supply portfolio.

The Cr6 impacted wells include wells 2, 7, 15, 25, 27, and 28, all of which are in Zone 2 or Zone 3. It is common practice for utilities to target between 50-80% of the MCL in treatment to provide a margin of safety. Wells 1, 2, and 15 would be combined and treated in one plant located at the District office and shop site; wells 27 and 28 would be treated in a plant at the well 27 site; and well 7 and well 25 would each have a dedicated treatment plant. Well 3 would serve as a redundant source in case of higher peak flows or when wells need to be maintained, that could blend with the treatment plant at 1, 2, and 15. All wells with Cr6 levels near or above the 10 ppb MCL would be treated in this option. Analysis of possible Cr6 treatment approaches is included in the Treatment Process Evaluation technical memorandum.

Withdrawing water from a depth of about 20 feet beneath the Santa Ynez River, the Gallery Well is classified as groundwater under the influence of surface water. In order to activate the Gallery Well as a potable water source, multiple treatment barriers of filtration and disinfection would be required to bring the supply into compliance with the Surface Water Treatment Rule.

Distribution System Analysis: This option was modeled for the ability to meet customer demands in the District's distribution system, using supplies from the Upland wells, Gallery Well, river wells and the State Water Project (via the Mesa Verde Pump Station). The total production would be 16,011 gpm, accounting for 168% of MDD of 9,527 gpm. The total flow in the system provides up to 68% of contingency to supply the system during increased water demands.

Table 5 summarizes the overall infrastructure and production of the proposed option:

	Quantity	Cr6, ppb	Production Capacity, gpm
Treatment plants	5		
Treated upland wells	7	6	5750
Untreated compliant wells	3	0.7 – 4.1	850
River wells	10	ND	3435
Gallery well	1	ND	776
Mesa Verde Pump Station	5	ND	5,200
Total water production			16,011

Table 5. Option A Features and Production Capacity

Water Quality Compliance Assurance

All well water above or near the Cr6 MCL would be treated to achieve a target goal of no more than 6 ppb entering the distribution system. The addition of the Gallery Well provides a low Cr6 source in addition to existing river wells and imported water. The five treatment plants provide redundancy in the event that any well or treatment unit is taken out of service in an emergency or for planned maintenance. Inactive wells 1 and 3 that are out of compliance for Cr6 and nitrate, respectively, can be reactivated and brought into compliance through treatment and blending. The plants can accommodate potentially worsening raw water quality in the future, and still produce finished water that meets the Cr6 MCL. Overall risks associated with water quality have been alleviated and are well controlled, which results in the highest score possible for water quality assurance of the options considered (i.e., lowest water quality risk).

Water Production Reliability

In Option A, all wells would remain in full production in Zones 2 and 3. Currently inactive wells 1 and 3 would be reactivated to support the production and pressure in the Santa Ynez Zone 2. The Gallery Well would provide a new potable water source of 776 gpm and a maximum volume of 515 acre-ft, entering the system in Zone 1 to use the District's full allocation. In years when surface water supplies are available, this option increases water production to 16,011 gpm, to meet peak demands, redundancy and future customers. In times when surface water supplies are interrupted by prolonged drought, environmental constraints, flooding or seismic damage or system maintenance the Upland wells would produce 6,600 gpm. Option A is able to produce the highest volume of water compared with all the other options. A score of 10 would reflect full production at current levels; because of the "bonus" additional flow from the Gallery Well, this Option was given a score of 11 in the water production reliability rating.

Annualized Cost

Implementation of Option A in the District's system would require construction of the treatment plants, additional pipelines, and booster pumps. The twenty-year annualized cost of capital and operation and maintenance is \$5.1 million/year.

Evaluation Criteria

Scores assigned to each criteria for Option A are shown below in Table 6, with a high score reflecting a relatively favorable option.

Criteria	Score (0 to 10)
Water Quality Compliance Assurance	10
Water Production Reliability	11*
Annualized Cost	\$5.1M

Table 6. Option A Summary of Evaluation

*Addition production from Gallery Well

Option B Maximum Well Treatment, No Gallery Well

Description: Option B is a combination of

- Four groundwater treatment plants
- All Upland wells in full production
- Reactivation of wells 1 and 3 in Santa Ynez

The four groundwater plants would provide Cr6 removal from all Upland wells impacted by the Cr6 MCL, without reducing any well pumping rates, or relying on blending to meet a water quality goal. The plants provide the opportunity to reactivate wells that were out of compliance, and bring them back into production through treatment and/or blending.

The Cr6 impacted wells include wells 2, 7, 15, 25, 27, and 28, all of which are in Zone 2 or Zone 3. Wells 1, 2, and 15 would be combined and treated in one plant located at the District office and shop site; wells 27 and 28 would be treated in a plant at the well 27 site; and well 7 and well 25 would each have a dedicated treatment plant. Well 3 would serve as a redundant source in case of higher peak flows or when wells need to be maintained, that could be blended with the treatment plant for wells 1, 2, and 15. All wells with Cr6 levels near or above the 10 ppb MCL would be treated in this option. Analysis of possible Cr6 treatment approaches is included in the Treatment Process Evaluation technical memorandum.

Distribution System Analysis: This option was modeled for the ability to meet customer demands in the District's distribution system, using supplies from the Upland wells, Gallery Well, river wells and the State Water Project. The total production would be 15,235 gpm, accounting for 160% of the maximum day demand (MDD) of 9,527 gpm determined by Stetson Engineers in their hydraulic analysis. The total flow in the system provides up to 60% of added contingency to supply the system during periods of increased water demands.

Table 7 summarizes the overall infrastructure and production of the proposed option:

	Quantity	Cr6, ppb	Production Capacity, gpm
Treatment plants	4		-
Treated upland wells	7	6	5,750
Untreated compliant wells	3	0.7 – 4.1	850
River wells	10	ND	3,435
Gallery well	0		0
Mesa Verde Pump Station	5	ND	5,200
Total well production			15,235

Table 7. Option B Features and Production Capacity

Water Quality Compliance Assurance

All groundwater above or near the Cr6 MCL would be treated to achieve a target goal of no more than 6 ppb entering the distribution system to provide buffering against fluctuations in treatment plant

performance and analytical variation. It is common practice for utilities to target between 50-80% of the MCL in treatment to provide a margin of safety. The four treatment plants provide redundancy in the event that any well or treatment unit is taken out of service in an emergency or for planned maintenance. Inactive wells 1 and 3 that are out of compliance for Cr6 and nitrate, respectively, can be reactivated and brought into compliance through treatment and blending. The plants can accommodate potentially worsening raw water quality in the future, and still produce finished water that meets the Cr6 MCL. Overall risks associated with water quality have been alleviated and are well controlled, which results in the highest score possible for water quality assurance of the options considered (i.e., lowest water quality risk).

Water Production Reliability

In Option B, all wells would remain in full production in Zones 2 and 3. Currently inactive wells 1 and 3 would be reactivated to support the production and pressure in the Santa Ynez Zone 2. In years when surface water supplies are available, this option maintains current water production at 15,235 gpm, to meet peak demands, redundancy and future customers. In times when surface water supplies are interrupted by prolonged drought, environmental constraints, flooding or seismic damage or system maintenance the Upland wells would produce 6,600 gpm. Option B is given a score of 10 reflecting full production at current levels.

Annualized Cost

Implementation of Option B in the District's system would require construction of the treatment plants, additional pipelines, and booster pumps. The twenty-year annualized cost of capital and operation and maintenance is \$4.8 million/year.

Evaluation Criteria

Scores assigned to each criteria for Option B are shown in Table 8, with a high score reflecting a relatively favorable option.

Criteria	Score (0 to 10)
Water Quality Compliance Assurance	10
Water Production Reliability	10
Annualized Total Cost	\$4.8M

Table 8. Option B Summary of Evaluation

HAZEN AND SAWYER Environmental Engineers & Scientists

Option C Three Treatment Plants

Description: Option C is a combination of system upgrades to achieve Cr6 compliance:

- Three groundwater treatment plants
- Reactivation of Wells 1 and 3 in Santa Ynez
- Blending one marginal well with compliant water
- Packers on one well

The groundwater treatment plants would provide Cr6 removal from the three most highly impacted wells and two of the marginally impacted wells. The plants provide the opportunity to reactivate wells that were out of compliance and bring them back into production through treatment and/or blending.

High Cr6 wells 1, 2, and 15 with concentrations above 24 ppb would be combined and treated in one plant located at the District office and shop site. Well 3 would serve as a redundant water source at times of high peak demand or when other wells are undergoing maintenance. Marginal wells 7 and 25 would each have a treatment plant. Non-treatment improvements would be used for two other marginal wells to produce an overall Cr6 concentration below the 10 ppb MCL. Marginal Well 28 would be turned down and blended with Zone 2 distribution system water, and a packer would be installed in Well 27 to select water only from low Cr6 strata in the aquifer.

Distribution System Analysis: This option was modeled for the District's distribution system, including the Upland wells and additional volumes coming from the river wells and from the State Water Project to meet the system demand. The total flow of the system produces up to 14,685 gpm, accounting for 154% of the maximum day demand (MDD) of 9,527 gpm. The total flow in the system provides up to 54% of added contingency to supply the system during increased water demands.

Table 9 summarizes the overall infrastructure and production of the proposed option:

	Quantity	Cr6, ppb	Production Capacity, gpm
Treatment plants	3		
Treated upland wells	5	6	3,750
Blended/packer upland wells	2	<10	1,450
Untreated compliant wells	3	0.7 – 4.1	850
River wells	10	ND	3,435
Gallery well	0		0
Mesa Verde Pump Station	5	ND	5,200
Total well production			14,685

 Table 9. Option C Features and Production Capacity

Water Quality Compliance Assurance

Five of the Upland wells would be treated to achieve a target goal of 6 ppb in plants that could accommodate worsening raw water quality in the future and still produce finished water that meets the Cr6 MCL. The plants would have internal redundancy in the event that any well or treatment unit is take out of service in an emergency or for maintenance. The marginal well relying on blending is expected to stay below 10 ppb Cr6 entering the distribution system, but is at risk of non-compliance if the raw Cr6 concentration increases in either the compliant or non-compliant wells. The packered well is expected to achieve Cr6 below 10 ppb if strata can be reliably separated, but is at risk of non-compliance if short-circuiting occurs. Three upland wells have consistently low Cr6 concentrations and are expected to remain in compliance. Approximately 75% of the upland water is assured of compliance, and 25% is vulnerable to groundwater quality conditions. Option C received a score of 7 for compliance assurance.

Water Production Reliability

In Option C, all wells in Zones 2 and 3 would remain in production. Inactive wells 1 and 3 would be reactivated to support the production and pressure in the Santa Ynez Zone 2. In years when the river wells and State Project Water are available, the Option C combination of surface water and groundwater would meet current production. In times when surface water supplies are interrupted by prolonged drought, environmental constraints, flooding, seismic damage or system maintenance, the Option C Upland wells would produce 6650 gpm. Well 27 is expected to be turned down to blend with water from the distribution system to achieve the MCL at the blended water point of entry. Packers are estimated to reduce well 27 production by 25%. The future production of the blended well may have to be reduced if the Cr6 concentration increases in either the compliant or non-compliant well, but only a quarter of the groundwater production would be vulnerable. Option was given a score of 8 for production reliability.

Annualized Cost

Implementation of multiple treatment plants on the District's system would significantly impact the overall costs. It would require plant construction, additional pipelines, and booster pumps.. As Option C combines both treatment and non-treatment alternatives to achieve compliance, the total cost to implement and operate the system would be less than the options that use only treatment plants. However, because treatment is still used to meet compliance, the overall annualized costs still remain high (\$3.7 million/year).

Evaluation Criteria

Scores assigned to each criteria for Option C are shown in Table 10, with a high score reflecting a relatively favorable option.

Criteria	Score (0 to 10)
Water Quality Compliance Assurance	7
Water Production Reliability	8
Annualized Cost	\$3.7M

Table 10. Option C Summary of Evaluation

Options D, D-P, and D-C Two Treatment Plants

Description: Option set D (divided into sub-options D, D-P, and D-C) is a combination of system upgrades to achieve Cr6 compliance:

- Two groundwater treatment plants
- Reactivation of Wells 1 and 3 in Santa Ynez
- Blending two marginal wells with compliant water
- Packers on two wells to isolate the aquifer zone from which water is extracted, as an alternative to blending, or combined with blending

The two groundwater treatment plants would provide Cr6 removal from the three most highly impacted wells and two of the marginally impacted wells. The plants provide the opportunity to reactivate wells that were out of compliance and bring them back into production through treatment and/or blending. Non-treatment improvements would be used for two marginal wells: either blending with nearby compliant wells or installing packers to select water only from low Cr6 strata in the aquifer.

High Cr6 wells 1, 2, and 15 with concentrations above 24 ppb would be combined and treated in one plant located at the District office and shop site. Wells 27 and 28, which are marginally above or near the Cr6 MCL, would be treated at a second plant at the well 27 site. Well 3 would serve as a redundant water source at times of high peak demand or when other wells are undergoing maintenance.

In sub-option D, wells 7 and 24 would be blended together at the well 7 site, and wells 5 and 25 would be blended at the well 25 site to produce an overall Cr6 concentration below the 10 ppb MCL.

In sub-option D-P packers would be installed on wells 7 and 25 to achieve a Cr6 concentration below the 10 ppb MCL, rather than the blending.

Sub-option D-C combines all packer and blending alternatives: packers in wells 7 and 25, blending well 7 with well 24, and blending well 5 with 25.

Distribution System Analysis: For Option D, the total flow of the system produces up to 15,235 gpm, accounting for 160% of the maximum day demand (MDD) of 9,527 gpm. The total flow in the system provides up to 60% of added contingency to supply the system during increased water demands. If packers are installed at well 7 and well 25 for Options D-P and D-C, the total production in the system would be reduced to 14,735 gpm, which accounts for 155% of the MDD. Table 11 summarizes the overall infrastructure and production of the proposed option:

	Quantity	Cr6, ppb	Production	Capacity, gpm (D, D-P, & D-C)
Treated upland wells	5	< 6	3,900	3,900	3,900
Blended/packer upland wells	2	7 – 8.5	1850	1350	1350
Untreated compliant wells	3	<6	850	850	850
River wells	10	ND	3,435	3,435	3,435
Gallery well	0	ND	0	0	0
Mesa Verde Pump Station	5		5,200	5,200	5,200
Total water production			15,235	14,735	14,735

Table 11. Option D Features and Production Capacity

Water Quality Compliance Assurance

Five of the Upland wells would be treated to achieve a target goal of 6 ppb in plants that could accommodate worsening raw water quality in the future and still produce finished water that meets the Cr6 MCL. The plants have internal redundancy in the event that any well or treatment unit is take out of service in an emergency or for maintenance. The two marginal wells relying on blending are expected to achieve 7 to 8.5 ppb Cr6 entering the distribution system, but are at risk of non-compliance if the raw Cr6 concentration increases in either the compliant or non-compliant wells. Packered wells are expected to achieve Cr6 below 10 ppb if strata can be reliably separated, but are at risk of non-compliance if short-circuiting occurs. Three upland wells have consistently low Cr6 concentrations and are expected to remain in compliance. Option D received a score of 7 because approximately 70% of the upland water is assured of compliance, and 30% is vulnerable to groundwater quality conditions.

Water Production Reliability

In Option D, all wells in Zones 2 and 3 would remain in production. Inactive wells 1 and 3 would be reactivated to support the production and pressure in the Santa Ynez Zone 2. In years when the river wells and State Project Water are available, the Option D combination of surface water and groundwater would meet current production. In times when surface water supplies are interrupted by prolonged drought, environmental constraints, flooding, seismic damage or system maintenance, the Option D Upland wells would produce 6,600 gpm. Options D-P and D-C would produce a lower flow rate, estimated at 6,100 gpm because of the packers are estimated to reduce well production by 25%. The production rate of the blended wells may have to be reduced if the Cr6 concentration increases in either the compliant or non-compliant well, but less than a third of the groundwater production would be vulnerable. Option D is preferred over D-P and D-C, with a score of 9 for production reliability. Packers can be tried for Cr6 reduction, but the production impact should be tested.

Annualized Cost

Implementation of Option D includes two treatment plants, additional pipelines, booster pumps and blending facilities. Sub-options D-P has a lower cost because packers are substituted for blending. Sub-option D-C is higher in cost because it combines blending and packers. The use of non-treatment alternatives makes the total cost to implement and operate Option D less than an Option that solely relies on treatment plants. The twenty-year annualized cost of capital and operation and maintenance is \$3.4 million/year.

Evaluation Criteria

Scores assigned to each criteria for Option D, D-P, and D-C are shown in Table 12, with a high score reflecting a relatively favorable option.

Criteria	Option D	Option D-P	Option D-C
Water Quality Compliance Assurance	7	7	7
Water Production Reliability	9	8	8
Annualized Total Cost	\$3.4M	\$3.3M	\$3.5M

Table 12. Option D Summary of Evaluation

Options E, E-P, and E-C Maximum Blending

Description: Option set E (divided into sub-options E, E-P, and E-C) is a combination of well treatment, well blending, and utilization of packers to achieve Cr6 compliance.

- One groundwater treatment plant
- Reactivation of Wells 1 and 3 in Santa Ynez
- Blending three marginal wells with compliant water
- Packers on one to three marginal wells, as an alternative to blending, or combined with blending

The groundwater treatment plant would provide Cr6 removal from the three most highly impacted wells. The plant provides the opportunity to reactivate wells that were out of compliance and bring them back into production through treatment and/or blending. Non-treatment improvements would be used for three marginal wells: either blending with compliant Upland waters or installing packers to select water from low Cr6 strata in the aquifer. Packers are assumed to reduce well flow rates by 25%.

High Cr6 wells 1, 2, and 15 with concentrations above 24 ppb would be treated at a plant located at the District office and shop site. Well 3 would serve as a redundant source that could blend at the treatment plant in case of higher peak demand or when other wells are undergoing maintenance.

For Sub-option E, wells 7 and 24 would be blended at the well 7 site, wells 5 and 25 would be blended at the well 25 site, and well 28 would be blended with Zone 2 distribution system water consisting of water from Zone 1 and wells in Zone 2. A packer will be installed in well 27.

Sub-option E-P would blend well 28 with water in Zone 2, and install packers in wells 7, 25, and 27.

Sub-option E-C would install packers in wells 7 and 25, and then blend them with wells 24 and 5, respectively. Well 28 would be blended with water in Zone 2. A packer would be installed in well 27.

Distribution System Analysis: Option E was modeled for the ability to meet customer demands in the District's distribution system, using supplies from the Upland wells with only one packer, river wells and State Project Water. The total production would be 14,685 gpm, accounting for 154% of the maximum day demand (MDD) of 9,527 gpm. The total flow in the system provides up to 54% of contingency to supply the system during increased water demands. System production would decrease to 14,185 gpm with the installation of two more packers in Sub-Options E-P and E-C. Table 13 summarizes the overall infrastructure and production of the proposed option:

	Quantity	Cr6, ppb	Production Capacity, gpm (E, E-P, E-C)		
Treatment plants	1				
Treated upland wells	3	<6	1,900	1,900	1,900
Blended/packer upland wells	4	7 - 8.5	3,300	2,800	2,800
Compliant wells	3	1 - 4	850	850	850
River wells	10	ND	3,435	3,435	3,435
Gallery well	0		0	0	0
Mesa Verde Pump Station	5	ND	5,200	5,200	5,200
Total water production			14,685	14,185	14,185

Table 13. Option E Features and Production Capacity

Water Quality Compliance Assurance

Three wells with Cr6 concentrations above the MCL would be treated to achieve a target goal of no more than 6 ppb entering the distribution system. The plant would have redundancy for emergencies or maintenance and can accommodate potentially worsening raw water quality. These treated wells and the existing compliant wells have a high degree of water quality assurance, but they represent less than half of the upland groundwater resource. Three marginal wells would rely on blending that is expected to achieve 7 to 8.5 ppb Cr6 entering the distribution system. Two to four wells will rely on packers and are expected to achieve Cr6 below 10 ppb if aquifer strata are reliably separated. The untreated marginal wells provide more than half of the upland groundwater and are vulnerable to several possible risks: Cr6 concentrations could rise in the marginal wells, Cr6 concentrations could rise in the compliant wells that provide blending water, a compliant well could go out of service, short-circuiting could occur in packered wells. The Water Quality Assurance score is 4.

Water Production Reliability

In Option E, all wells in Zones 2 and 3 would remain in operation, and inactive wells 1 and 3 would be reactivated to support the production and pressure in Santa Ynez Zone 2, but reliance on packers would reduce the overall groundwater production. In years when surface water supplies are available through the river wells and State Project Water, this option produces 14,685 gpm which is less than current production. In times when surface water supplies are interrupted by prolonged drought, environmental constraints, flooding, seismic damage or system maintenance, Option E would produce 6,050 gpm from the Upland wells and is preferred over Options E-P and E-C that would produce 5,550 gpm. The production rate is at risk of being reduced by half if the Cr6 concentration increases in untreated wells. Option E is given a score of 7 for production reliability.

Annualized Cost

Implementation of Option E would require construction of one treatment plant, pipelines and improvements for blending and packers. The twenty-year annualized cost for capital, operation and maintenance is \$2.3 million/year.

Evaluation Criteria

Scores assigned to each criteria for Option E, E-P and E-C are shown in Table 14. A score of 10 is most favorable. Option E received moderate scores in water quality compliance assurance and high scores in production reliability.

CRITERIA	Option E	Option E-P	Option E-C
Water Quality Compliance Assurance	4	4	4
Water Production Reliability	7	6	6
Annualized Total Cost	\$2.3M	\$2.3M	\$2.4M

Table 14. Option E Summary of Evaluation

Option F Minimum Well Production

Description: Option F considers minimizing the use of the Upland Wells to meet Cr6 compliance. The features of Option F are:

- Three small Upland wells in full production
- Inactivation of eight Upland wells
- Booster pumps and pipelines to increase surface water delivery to Zones 2 and 3

This option does not consider treatment or non-treatment approaches, and instead relies on limiting the use of wells that have been impacted with Cr6, requiring them to be shut down when Cr6 levels surpass the MCL. The system will be supplied with water from Wells 5, 6, and 24 which contain relatively low Cr6 levels ranging from 0.7 to 4.1 ppb. Existing water supplies from the river wells and State Project Water would be pumped further into Zones 2 and 3.

Distribution System Analysis: This option was modeled for the District's distribution system assuming that all impacted wells are out of service due to high Cr6 levels. The distribution model included water provided by the river wells and the State Water Project. The total flow of the system would produce up to 9,485 gpm, accounting for nearly 100% of the maximum day demand (MDD) of 9,527 gpm. This option does not provide any added contingency for peaking or increasing water demand.

Table 15 summarizes the overall infrastructure and production of the proposed option:

	Quantity	Cr6, ppb	Production Capacity, gpm
Treatment plants	0		
Treated upland wells	0		0
Compliant upland wells	3	0.7 – 4.1	850
Blended/packer wells	0		0
River wells	10	ND	3,435
Gallery well	0		0
Mesa Verde Pump Station	5	ND	5,200
Total well production			9,485

Table 15. Option F Features and Production Capacity

Water Quality Compliance Assurance

By turning off all the wells that are impacted by Cr6 levels above the MCL, the water throughout the distribution system would experience a low Cr6 concentration. There are potentially high risks involved in relying on a few wells to supply the system with water if the Cr6 levels increase in the wells over time. In a scenario in which surface water supplies are interrupted, and marginal wells are out of compliance, the only way for the District to meet the most basic customer demands would be to serve non-compliant water. Option F is given the lowest score of all options for water quality compliance assurance.

Water Production Reliability

Since most of the wells will not be used as a result of the Cr6 levels, only a limited number of wells will provide water to the system. No additional sources will make up for inactive wells resulting in a much lower overall production. In years when surface water supplies are available, the combination of river wells, State Project Water and the compliant wells is 9,485 gpm, which is far less than current production. In times when surface water supplies are interrupted by prolonged drought, environmental constraints, flooding, seismic damage or system maintenance, Option F would produce a mere 850 gpm. Option F achieves the lowest score of all options in regards to reliable water production.

Annualized Cost

Option F would require construction of booster pumps and pipelines to deliver surface water to Zones 2 and 3. The twenty-year annualized cost of capital, operation and maintenance is \$0.4 million/year.

Evaluation Criteria

Scores assigned to each criteria for Option F are shown in Table 16, with a high score reflecting a relatively favorable option.

Criteria	Score (0 to 10)
Water Quality Compliance Assurance	1
Water Production Reliability	1
Annualized Cost	\$0.4M

Table 16. Option F Summary of Evaluation

Option G Separate Irrigation System

Description: Option G would split the District water distribution system into a domestic water system and a separate irrigation water system, including

- Domestic water system
 - Existing river wells, and six existing Upland wells
 - Packer on one marginally compliant well
 - Blending two marginal wells with compliant wells
- Irrigation water system
 - o Existing gallery well and three existing non-compliant wells
 - Reactivation of wells 1 and 3
 - o Storage and distribution system

The domestic water system would use the existing reservoirs, the river wells and wells 5, 7, 24, 25, and 27. No treatment plants would be installed. Three small existing wells 5, 6 and 24 with low Cr6 would be used for the domestic system. Non-treatment improvements would be used for three larger marginal wells. Well 7 would be blended with compliant well 24, and well 25 would be blended with compliant well 5. A packer would be installed in well 27.

This requires a completely new irrigation water distribution system to be implemented to accept water from the gallery well and wells 1, 2, 3, 15, and 28 that does not meet drinking water standards. This water would be distributed to larger irrigation customers to be used solely for irrigation purposes. Two inactive wells that are out of compliance for Cr6 or nitrate would be brought back into production. To meet frost control demands, the domestic system would be connected via one-way valves to add production and storage for irrigation, prevent irrigation water from flowing into the domestic system.

Distribution System Analysis: Option G was modeled for the ability to meet customer demands in the two separate systems, using supplies from Upland wells, river wells, gallery well and State Project water. Total production would be 16,311 gpm. The domestic system could produce up to 12,285 gpm meeting 171% of the domestic maximum day demand (MDD) of 9,527 gpm, providing 71% of added contingency for increasing water demand and peaking. The irrigation system would supply up to 4,026 gpm. Table 17 summarizes the breakdown of the overall system with the proposed option:

	Quantity	Cr6, ppb	Domestic Capacity, gpm	Irrigation Capacity, gpm
Treatment plants	0			
Treated upland wells	0		0	0
Blended/packered wells	11	7 – 8.5	2800	0
Untreated compliant wells		0.7 – 4.1	850	0
Non-compliant upland wells		10-36	0	3,250
Gallery well	1	ND	0	776
River wells	10	ND	3,435	0
Mesa Verde Pump Station	5	ND	5,200	0
Total well production			12,285	4,026

Table 17. Option G Features and Production Capacity

Water Quality Compliance Assurance

The existing compliant wells have a high degree of water quality assurance, but they represent a small fraction of the upland groundwater resource. Two marginal wells would rely on blending that is expected to achieve 7 to 8.5 ppb Cr6 entering the distribution system. One well will rely on a packer and is expected to achieve Cr6 below 10 ppb if aquifer strata are reliably separated. The untreated marginal wells provide most of the upland groundwater and are vulnerable to several possible risks: Cr6 concentrations could rise in the marginal wells, Cr6 concentrations could rise in the compliant well could go out of service, short-circuiting could occur in packered wells. There are potentially high risks involved in relying on a few untreated wells if the Cr6 levels increase in the wells over time. In a scenario in which surface water supplies are interrupted, and marginal wells are out of compliance, the only way for the District to meet basic customer demands would be to serve non-compliant water. A low score of 1 was assigned for water quality assurance.

Water Production Reliability

In Option G, all wells in Zones 2 and 3 would remain in production. Inactive wells 1 and 3 and the Gallery Well would be reactivated to support irrigation. In years when the river wells and State Project Water are available, the combination of surface water and groundwater would meet current production. Although the irrigation system has access to all of the District water resources, the domestic system is at risk of inadequate production if surface water availability or groundwater quality diminish. In times when surface water supplies are interrupted by prolonged drought, environmental constraints, flooding, seismic damage or system maintenance, the domestic Upland wells would produce 3,650 gpm. If the marginal wells must be reduced for Cr6 compliance, the Upland well production could go down as low as 850 gpm in a worst case scenario. A score of 3 was assigned for water production reliability.

Annualized Cost

Option G requires construction and maintenance of separate irrigation system pipelines and reservoirs, and a modified domestic system. The twenty-year annualized cost is \$2.3 million/year.

Evaluation Criteria

Scores assigned to each criteria for Option G are shown in Table 18, with a high score reflecting a relatively favorable option.

Criteria	Score (0 to 10)
Water Quality Compliance Assurance	1
Water Production Reliability	3
Annualized Cost	\$2.3M

Table 18. Option G Summary of Evaluation

Summary of Complete Options Evaluation

In review of the all of the complete options, three emerge as distinctly different options with strong value for the cost. At the high end of the range is an option with full assurance and production, at the low end is moderate assurance and reliability and in the middle is a moderately priced with relatively good assurance and reliability. The scoring is summarized in Table 19, and also in Figure 8.

	Water Quality		Total Score	
	Compliance	Water Production		
Complete Option	Assurance	Reliability		Annualized Cost
Α	10	11	21	\$5.1M
В	10	10	20	\$4.8M
С	7	8	15	\$3.7M
D	7	9	16	\$3.4M
D-P	7	8	15	\$3.3M
D-C	7	8	15	\$3.5M
E	4	7	11	\$2.3M
E-P	4	6	10	\$2.3M
E-C	4	6	10	\$2.4M
F	1	1	2	\$0.4M
G	1	3	4	\$2.3M

Table 19. Scoring of Complete Options

High Level Costs

Complete Option A emerged at the high end of the range. Treatment plants on all non-compliant and marginal wells provide full assurance of Cr6 compliance, and allow inactive wells to be reactivated. The Gallery well treatment plant adds production capacity beyond the current production rate. Changes in water quality, or interruption to surface water supplies do not affect the production capacity of the system in Option A. The cost is highest at \$5.1 million.

The other option at this level is Option B, which did not include the Gallery Well plant. The cost savings (\$300,000) is relatively small for giving up the opportunity to utilize this water resource.

Mid Level Costs

Complete Option D is the favored option at the mid range of alternatives. Two groundwater treatment plants would give assurance that 70% of the groundwater would operate in full compliance and full production. The other third would rely on blending and packers, and have some vulnerability to changing Cr6 in the groundwater. The cost is in the midrange of \$3.4 million.

Other options at this level are Option C and variations of Option D. All of the variations provided a similar level of water quality compliance assurance, with approximately three quarters of the Upland groundwater in the range of 6 ppb or lower entering the system. One quarter of the Upland groundwater supplies rely on packers or blending, making them vulnerable to changes in groundwater

quality. The differences between these options and Option D are the location of the second groundwater plant and the different combinations of blending and packers. The water production reliability was lower than D in every case due to packers placed on more productive wells in the other options. The cost of other options was higher compared with their compliance and production values.

Low Level Costs

Complete Option E was clearly the favored option at the low end of the range. A single plant on the high Cr6 wells provide full assurance of Cr6 compliance and water production on approximately half of the Upland groundwater. Blending on most of the marginal wells and packers on one well provide compliance and production on the remainder of the wells, but are vulnerable to non-compliance and lower production if the Cr6 increases in those marginal wells. The cost is lowest at \$2.3 million.

The other options at this level are F and G. Option F has unacceptable risks because it inactivates all but three small wells and relies only on river wells and State Project Water which are subject to interruption by prolonged drought, environmental constraints or flooding. Option G creates two separate systems for Irrigation water and domestic water. The domestic water relies on the same river wells and State Water Project, and is vulnerable to supply interruptions. The cost of building separate parallel systems is equal to the cost of building treatment and water quality improvements in Option E, but without the compliance and domestic production capabilities.

Figure 8. Scoring and Cost Comparison of Complete Options

Conclusions

The consultant working group developed three options for consideration by the District.

"Complete Option A - Maximum Treatment" is the option with the greatest benefits in water production and quality. Every non-compliant and marginal well would receive treatment, giving full assurance that the Upland groundwater meets the Cr 6 MCL with redundancy and adaptability for future changes in groundwater quality. Option A increases the current production of water by utilizing the unused allocation for the Gallery Well and putting it into beneficial use as part of the potable water supply. Inactive wells will be put back into production also. This option provides the most diversified water portfolio, using surface water, river wells and Upland wells at multiple points of entry into the system, which gives the District the greatest flexibility to manage its resources to meet demands under any circumstances. This option mitigates all potential risks identified by the consultant working group, so no risks or future upgrade costs are listed for this Option, as shown in Tables 20 and 21.The drawback to this option is that it is also the most costly, with an annualized cost of \$5.1M.

Complete Option A Components	Expected Cr6 Results (ppb)	Potential Risks
Alternative 3-1 (Surface water	Meets target of 6 ppb	No risks
treatment of Gallery Well)		
Alternative 5-1 (Treat Wells 1,2,3	Meets target of 6 ppb	No risks
and 15 at existing ID#1 shop site)		
Alternative 5-2 (Treat Wells 27	Meets target of 6 ppb	No risks
and 28 at Well 27 site)		
Alternative 5-3 (Treat Well 7 at	Meets target of 6 ppb	No risks
Well 7 site)		
Alternative 5-4 (Treat Well 25 at	Meets target of 6 ppb	No risks
Well 25 site)		

Table 20. Risks Associated with Components of Complete Option A

Table 21. Annualized Costs to Upgrade Complete Option A in the Future

	Annualized Cost			
	Capital (\$)	O&M (\$)	Energy (\$)	Total (\$)
Option A Package	2,069,000	2,918,000	112,000	5,099,000
Add-ons:				
No add-ons for this option	-	-	-	-
Option A Package <i>plus</i> Add-ons Total:	No upgra	ades necessary	, cost remains	the same

"Complete Option D" is a feasible option with two treatment plants. All of the Upland Wells would be brought into compliance and the total production would be the same as current production. Seventy percent of the Upland groundwater would be in compliance with a high level of certainty. Thirty percent of the Upland groundwater supply would rely on blending and would be vulnerable to noncompliance if groundwater Cr6 concentrations increase in the future. The manageable risks associated with Complete Option D are listed below in Table 22.

Complete Option	Expected Cr6	
D Components	Results (ppb)	Potential Risks
Alternative 1-2 (Blend well 7 with well 24)	8.5	 Must maintain proper blending ratio to ensure overall Cr6 remains below MCL Well 7 must be operated only when Well 24 is operated, otherwise Well 7 may exceed the MCL Potential loss of up 1200 gpm (combined flow) if Well 24 is offline for maintenance Variable Cr6 levels in wells are dependent on several factors (e.g. flowrate, depth, etc.)
Alternative 1-5 (Blend well 5 with well 25)	8.0	 Must maintain proper blending ratio to ensure overall Cr6 remains below MCL Well 25 must be operated only when Well 5 is operated, otherwise Well 25 will likely exceed the MCL Potential loss of up 1200 gpm (combined flow) if Well 5 is offline for maintenance Variable Cr6 levels in wells are dependent on several factors (e.g. flowrate, depth, etc.)

Table 22.	Risks Assoc	iated with	Compon	ents of Co	mplete O	ption D
	1110110 / 10000					P

Complete Option D is an attractive alternative to the District despite the risks presented in Table 20. Two opportunities for improving the attractiveness of this option include packer installation and surface gallery treatment. The addition of other components such as installation of packers on wells used for blending could improve the overall water quality. Implementation of an additional treatment plant to treat the Gallery wells could supply additional capacity to meet future demands. Although there are additional costs affiliated with the upgrades (estimated in Table 23), the District has options to address the risks and future demands that can be added to Option D.

	Annualized Cost			
	Capital (\$)	O&M (\$)	Energy (\$)	Total (\$)
Option D Package	1,406,000	1,920,000	94,000	3,420,000
Add-ons:				
Packer Installation	23,000	20,000	6,000	49,000
May improve water quality for wells 7				
and 25 to reduce the overall Cr6 level in				
blend				
<u>Risks</u> : Packers do not guarantee				
sustainable, improved water quality and				
may reduce the production capacity of				
wells				
Surface Gallery Treatment	474,000	181,000	121,000	776,000
Allows for up to an additional 776 gpm of				
flow to meet future demands				
Option D Package plus Add-ons Total:				4,245,000

Table 23. Annualized	Costs to Upgrad	e Complete Or	otion D in the Future

"Complete Option E" has only one treatment plant, and only half of the Upland groundwater would achieve a high level of water quality assurance for Cr6 compliance. Half of the Upland groundwater would rely on blending and packers and would be vulnerable to non-compliance if Cr6 concentrations increase in groundwater. The total production is only slightly less than current production, but would be subject to flow reductions if groundwater quality diminishes in marginal wells or in the water used for blending.

Complete Option	Expected Cr6	
E Components	Results (ppb)	Potential Risks
Alternative 1-2 (Blend well 7 with well 24)	8.5	 Must maintain proper blending ratio to ensure overall Cr6 remains below MCL Well 7 must be operated only when Well 24 is operated, otherwise Well 7 may exceed the MCL Potential loss of up 1200 gpm (combined flow) if Well 24 is offline for maintenance Variable Cr6 levels in wells are dependent on several factors (e.g. flowrate, depth, etc.)
Alternative 1-4 (Blend well 28 with zone 2 water)	8 or below	 Must maintain proper blending ratio to ensure overall Cr6 remains below MCL Well 28 must be operated only when Zone 2 has adequate flows, otherwise Well 28 may exceed the MCL Variable Cr6 levels in wells are dependent on several factors (e.g. flowrate, depth, etc.)
Alternative 1-5 (Blend well 5 with well 25)	8.0	 Must maintain proper blending ratio to ensure overall Cr6 remains below MCL Well 25 must be operated only when Well 5 is operated, otherwise Well 25 will likely exceed the MCL Potential loss of up 1200 gpm (combined flow) if Well 5 is offline for maintenance Variable Cr6 levels in wells are dependent on several factors (e.g. flowrate, depth, etc.)
Alternative 6-4 (Packers on well 27)	10 or below	 Groundwater with high Cr6 may find a short circuit route around the packers Packers will reduce the production capacity

Table 24. Risks Associated with Components of Complete Option E

Despite the risks associated for Option E as presented in Table 22, there are opportunities for improving the attractiveness of this option by installing packers on the wells that will be blended to potentially improve the overall quality. Additionally, the gallery wells can be brought online and treated to provide an additional supply of 776 gpm to the District. Although there are additional costs affiliated with the upgrades (estimated in Table 25), the District has options to address the risks and future demands that can be added to Option E if it was considered.

	Annualized Cost			
	Capital (\$)	O&M (\$)	Energy (\$)	Total (\$)
Option E Package	1,075,000	1,240,000	23,000	2,338,000
Add-ons:				
Packer InstallationMay improve water quality for wells 7and 25 to reduce the overall Cr6 level inblend <u>Risks</u> : Packers do not guaranteesustainable, improved water quality andmay reduce the production capacity ofwells	8,000	18,000	6,000	32,000
Surface Gallery Treatment Allows for up to an additional 776 gpm of flow to meet future demands	474,000	181,000	121,000	776,000
Option E Package <i>plus</i> Add-ons Total:				3,146,000

Table 25. Annualized Costs to Upgrade Complete Option E in the Future

Figure 9 provides a summary comparison for the top three complete options: A, D, and E.

* Additional point was awarded to account for Gallery Well as a supplemental source

APPENDIX B

Hazen & Sawyer Treatment Process Evaluation

Technical Memorandum: Treatment Process Evaluation

То:	Santa Ynez River Water Conservation District, Improvement District No. 1 – Chris Dahlstrom and Eric Tambini
From:	Hazen and Sawyer – Nicole Blute, PhD, PE, Lynn Grijalva, PE, Ian Mackenzie, PE, Ying Wu, DEnv, PE, and Kenny Chau
cc:	Dudek – Ken Marshall, Jonathan Leech, and Trey Driscoll Stetson Engineers – Joe DeMaggio
Date:	August 28, 2014
Re:	Engineering Feasibility Study for Use of Wells with High Chromium 6

Treatment Process Evaluation

Several of the options under consideration by the Santa Ynez River Conservation District ID#1 (District) for achieving chromium 6 (Cr6) MCL compliance include removal of Cr6 from well water (i.e., treatment). The District evaluated applicability of the Best Available Technologies (BATs) listed by the California Department of Public Health (CDPH) for the District, including:

- Ion Exchange
 - Weak-base anion (WBA) exchange
 - Strong-base anion (SBA) exchange, single pass
 - Strong-base anion (SBA) exchange, re-generable
- Reduction Coagulation Filtration (RCF, or with microfiltration, RCMF)
- Reverse Osmosis (RO)

Each of the approaches is described below, then evaluated for the two primary treatment clusters identified in alternatives 5-1 and 5-2 of Appendix C. The treatment mechanisms of the BATs include removal with engineered media, a more conventional method similar to surface water treatment with chemical dosing and filtration, and removal by membranes.

Weak-Base Anion (WBA)

WBA treatment is comprised of three unit processes to remove Cr6, including pH adjustment, resin contact, and aeration for pH readjustment as shown in Figure 1.

Figure 1. Cr6 treatment with weak-base anion (WBA) exchange

Cr6 removal with WBA resin is highly pH dependent, hence raw water is dosed with either carbon dioxide gas (CO_2) or acid to drop the pH level down to 6.0. The water then flows through bag filters for particle removal prior to entering the WBA resin vessels, which typically operates in a lead-lag formation to fully utilize the life of the resins. Once the Cr6 is removed, the effluent leaving the vessels will require pH adjustment to increase the pH back to its original state; this is accomplished by either aeration or caustic soda, depending on the method of dropping the pH.

The WBA resin operates in single-pass mode (rather than regeneration), with disposal and replacement of resin when Cr6 in the finished water exceeds the District's treatment target. WBA generally requires lower maintenance and operator attention compared with other technologies. Long bed lives have been observed in other applications and tests of WBA resin.

Strong-Base Anion (SBA) Exchange

The SBA treatment process operates similarly to the WBA process with preferential removal of Cr6 from the water onto the resin beads. SBA resins have much lower capacity compared with WBA, and hence must either be replaced more frequently (single-pass) or regenerated with salt solution (regeneration). Figure 2 depicts an SBA process including regeneration. The brine components would not be needed for the single-pass application.

Figure 2. Cr6 treatment with strong-base anion (SBA) exchange

Like WBA, SBA also removes Cr6 by passing through the ion exchange vessels, but the removal does not require depression of pH or increasing pH after the treatment process. Particles in the groundwater are filtered out using bag filters prior to entering the SBA vessels. Cr6 is removed until breakthrough is achieved. Sulfate impacts the capacity of SBA resins for Cr6, with higher levels reducing the overall resin use time to replacement or regeneration.

The SBA process can be operated in single-pass or regeneration mode. Single-pass would involve disposal of the resin once breakthrough is achieved. Since the resin life is more variable for SBA resins, and breakthrough is likely to be more frequent, resin disposal may be very costly on an operations and maintenance (O&M) basis.

Regeneration with a salt (i.e., brine) solution decreases O&M costs but increases system complexity and capital expenditures. Regeneration mode would require additional tanks and pumps to store, prepare, and transfer the brine solution to the resins, and storage and possibly treatment for to remove the hazardous Cr6 component of the brine waste. Regeneration at the District would require trucking of brine off site for disposal.

Reduction Coagulation Filtration Process

The RCF process is comprised of multiple steps involving chemical dosing, reduction, oxidation, polymer dosing, and filtration as depicted below in Figure 3.

Figure 3. Cr6 treatment with reduction coagulation filtration (RCF or RCMF)

Raw water is dosed with ferrous iron to reduce the Cr6 to trivalent chromium (Cr3), which is associated with particles and can be physically removed by filtration. Sufficient reduction time is necessary for reduction of Cr6. Ferrous iron is added in excess of the Cr6, and remaining ferrous must be oxidized and filtered, which can be accomplished using air or a small dose of chlorine. Filtration can be either granular media filtration or microfiltration, with polymer used to build particle size for granular media filtration. Additional tanks and pumps are included in the RCF infrastructure for backwashing filters and handling backwash water.

The RCF process is more complex than the WBA process and the single-pass SBA process, requiring more attention from the operations staff. Regenerable SBA is expected to be of similar operational complexity as RCF. Waste generated in the RCF process includes backwash water (which may be largely recyclable with additional infrastructure) and precipitated solids that must be disposed offsite unless a local sewer allows for disposal of unsettled backwash water solids.

Reverse Osmosis (RO)

The RO process relies on the use of high pressure membranes to exclude chromium molecules through size and charge exclusion, and relies on pretreatment and post treatment (Figure 4).

Figure 4. Cr6 treatment with reverse osmosis (RO)

As RO membranes are prone to fouling, feed water quality is key to achieving successful performance of the RO units and pretreatment is critical. The pretreatment process varies widely depending on the water quality of the raw water source, however typically contains an antiscalant or scale inhibitor to mitigate scaling. The filtrate from the RO membranes is stripped of all minerals and as a result is considered corrosive. Blending of the filtrate with bypassed (untreated) water and/or post-treatment is necessary to remineralize the water for corrosion protection of the distribution system.

Overall, RO membranes can effectively remove chromium but results in much greater waste volumes compared with the other BATs.

Proposed Treatment of Wells

The District's Upland Wells contain Cr6 with levels ranging from 0.7 to 30 ppb, many of which exceed the 10 ppb MCL. Treatment options were considered for the wells near or exceeding the 10 ppb MCL, including wells 1, 2, 7, 15, 25, 27, and 28. The wells were grouped where feasible for cost savings and to decrease operational complexity. Potential treatment was considered for the following wells and groups:

- Wells 1, 2, and 15 combined and treated at the ID#1 site
- Wells 27 and 28 combined and treated at the Well 27 site
- Well 7 on site treatment
- Well 25 on site treatment

Analysis of the potential alternatives revealed that the first two treatment sites were more likely to be included in a complete option (Appendix C). Consequently, the first two treatment sites were evaluated to identify the primary factors important in technology selection, including water quality, residuals waste, operability, and cost. Summaries of the basis for technology selection at each site are provided in the following sections.

Basis for Technology Selection at the Group of Wells 1, 2, and 15

For the technology comparison, partial stream treatment was evaluated. Partial stream treatment would include bypass of a portion of the raw water around the treatment process, with blending into the treatment plant effluent water. The treatment goal assumed in this analysis was a Cr6 level of 6 ppb in the combined finished water to allow a margin of safety in operations and in analytical variation.

For partial treatment, wells 2 and 15 would be combined and treated to 2 ppb, and then blended with the bypass (well 1) to achieve an overall goal of 6 ppb to achieve compliance and minimize capital cost.

Treatment of partial flow (more complex operations but lower capital and O&M costs)

Total flow: 2,000 gpm Bypass flow: 300 gpm (well 1) Treated flow: 1,700 gpm (wells 2 and 15) Treatment system Cr6 goal: 2 ppb Final water Cr6 goal: 6 ppb

Treatment at full flow would require less attention from the operations staff compared to partial treatment since it would eliminate the additional blending procedure. An analysis of the increased cost for full flow treatment for the WBA system is included in Table 2 to characterize the difference.

Treatment of full flow (simpler operations but higher capital and O&M costs)

Total treated flow: 2,000 gpm

Treatment system and final water Cr6 goal: 6 ppb

The anticipated water quality characteristics for the blend was determined below in Table 1 based on the blending of wells 1, 2, and 15.

Parameter	Well 1 (300 gpm)	Well 2 (500 gpm)	Well 15 (1,200 gpm)	Whole Treatment (2,000 gpm)	Partial Treatment (1,700 gpm)
	(000 86)	(000 80)	(_) 86)	(_)	(=): == 8[:)
Cr6 (ug/L)	23	23	25	24	24
Sulfate (mg/L)	48	50	90	74	78
Alkalinity (mg/L as CaCO ₃)	330	330	320	324	323
Uranium (ug/L)	Not sampled	Not sampled	Not sampled	N/A	N/A
Nitrate (mg/L as NO ₃)	26	8.5	19	17	16
Calcium (mg/L as Ca)	48	45	43	44	44
pH*	7.8	7.8	7.7	7.7	7.7
Chloride (mg/L)	110	46	56	62	53
TDS (mg/L)	500	470	520	505	505
ССРР	28	28	18	24	31

Table 1. Water Quality of Wells 1, 2, and 15, and Anticipated Characteristics for the Treatment System Influent

The water quality information provided in Table 1 was used to evaluate the process performance of each treatment technology and to develop cost estimates. Factors evaluated included the impact of water quality on treatment performance, waste generation and disposal methods, impacts on O&M, and capital and O&M costs to implement and operate the technologies.

Table 2. Basis for Technology Selection at Wells 1, 2, and 15

					Cost Estimates	
	Water Quality Aspects and Pre- and Post- Treatment Requirements	Residuals Waste	Operability Considerations	Capital	O&M	Annualized*
SBA –	Sulfate concentrations in the blend are moderate, making single-pass SBA possible. Nitrate	Disposal of two beds of resin (each 341 cf) approximately every 3 days at the design	Single-use approach is much simpler than	\$2.8 M	\$15.8 M	\$16.0 M
Single pass operation	concentrations are low (16 mg/L as NO ₃), so additional vessels to blend down peaking are not needed.	flow rate and 24/7 use.	regeneration.			
SBA –	Same as above. Approximately 9 tons of salt every	Approximately 18,000 gallons of brine	Regeneration with brine	\$5.4M	\$2.6 M [#]	\$3.0 M [#]
Regenerahle	week.	every week (roughly two to three tanker trailers her week) [#] This may be	treatment will require	(\$4.0 M if hring is	(¢2 2 M if hrine is	(¢2 5 M if hrine is
operation		decreased if proven in piloting that the	with PLC controls, and	disposed of as	disposed of as	disposed of as
		more brine can be recycled, or more concentrated but smaller brine volumes	handling and/or disposal of a hazardous brine waste	hazardous)	hazardous) #	hazardous) #
WBA-	Alkalinities in the wells are high requiring large	Disposal of two heds of resin (each 341 cf)	Simulest onerations with	\$4.8 M	\$1.1 M	\$1.5 M
	quantities of CO ₂ to decrease pH for chromium	every 10 months, as a hazardous and	frequent CO ₂ deliveries)	1)
Single pass	removal. Pre-treatment for this design flow rate	TENORM waste.	and infrequent resin	(\$5.4 M if treating	(\$1.2 M if	(\$1.7 M if treating
operation	and 24/7 use would require approximately 40 tons		replacement. Air stripping	the whole flow to	treating the whole	the whole flow to
	of CO_2 per week (one 20 ton tanker truck every 4	Disposal of backwash water with each	for pH correction will	6 ppb)	flow to 6 ppb)	6 ppb)
_	days).	new resin bed. Requires temporary tankage to capture backwash water.	generate some noise.			
RCMF	Broadly applicable in District water qualities. Treatment chemicals needed include 600 gallons of	Sewer available. Settling, dewatering of solids, and recycling of backwash water	Automated operations will be necessary with PLC	\$7.2 M	\$0.8 M	\$1.4 M
	rerrous suitate and 120 gar of hypochionite per week operating at design flow rate and 24/7 use.	would be recommended based on sewer capacity, and requires testing to confirm	controls for the multiple chemical feed systems.			
	Hypochlorite for disinfection is additional. Smaller quantities of hypochlorite and/or citric acid for	proof of concept. Waste from periodic membrane cleaning requires	This system is more complex than the single-			
	membrane cleaning and sodium bisulfite and/or	neutralization prior to disposal to sewer.	pass ion exchange			
	causic for heurializing cleaning residuals are also required.	Estimated 2.8 toris of dewatered solids per week.	systems.			
ßO	Broadly applicable in District water qualities. Pre- treatment with carrides filters and chemical	Concentrate disposal to the sewer is not feasible due to salt restrictions and	N/A	N/A	N/A	N/A
	addition (acid and antiscalant) would be needed.	quantity (i.e., 15-25% of the flow).				
*Baced on 5% ir	aterest rate and a 20-wear life cwcle N/A – Not applicat		_			

est rate and a 20-year lite cycle. N/A – NOL applicable.

costs for the approach with brine treatment may be significantly decreased if proven in piloting that brine can be treated more efficiently, thus, less solid waste. The estimated costs for brine disposal # Based on 4 bed volumes of 9.5% brine and 1 bed volume of slow rinse per regeneration. 1.5 bed volumes of spent brine and 0.5 bed volume of slow rinse wastewater are reclaimed. The estimated as hazardous are based on a preliminary quote from a hazardous disposal service provider, which can change significantly with market conditions due to limited number of providers and capacity. SBA – Strong base anion exchange; WBA – Weak base anion exchange; RCMF – Reduction coagulation microfiltration; RO – Reverse osmosis.

Basis for Technology Selection at Wells 27 and 28

Cr6 concentrations in wells 27 and 28 are near or just under the 10 ppb MCL. Partial treatment and blending was evaluated to reduce the overall treatment system capacity and to produce a finished water quality of 6 ppb. The well with a higher Cr6 concentration was considered for treatment (i.e., 80% of the flow from well 27 treated and blended with the remaining 20% from well 28). The treatment plant influent will therefore receive the water quality characterized by well 27, as shown in Table 3.

Treatment of partial flow

Total flow: 2,000 gpm Bypass flow: 1,000 gpm – including 250 gpm from Well 27 and 750 gpm from Well 28 Treated flow: 1,000 gpm –partially treating Well 27 (1,000 gpm of 1,250 gpm) Treatment system Cr6 goal: 2 ppb Final water Cr6 goal: 6 ppb

Table 3. Water Q	uality of Wells 27	7 and 28 and	Anticipated	Characteristics f	f <mark>or the 1</mark>	Freatment
System Influent						

Parameter	Well 27	Well 28	Treatment system influent (Well 27)
Cr6 (ug/L)	10	8.9	10
Sulfate (mg/L)	100	150	100
Alkalinity (mg/L as CaCO ₃)	280	270	280
Uranium (ug/L)	4.1	4.6	4.1
Nitrate (mg/L as NO ₃)	7.1	8.4	7.1
Calcium (mg/L as Ca)	58	77	58
pH*	7.5	7.3	7.5
Chloride (mg/L)	35	35	35
TDS (mg/L)	480	480	480
ССРР	18	16	18

* Field pH needs to be confirmed to assess whether pH adjustment is necessary to avoid scale formation.

An evaluation of each technology for the treatment system at wells 27 and 28 is presented in Table 4. Treatment robustness, waste disposal, O&M, and the costs associated with each of the technologies were considered in this analyses.

Table 4. Basis for Technology Selection at Wells 27 and 28

					Cost Estimates	
	Water Quality Aspects and Pre- and Post- Treatment Requirements	Residuals Waste	Operability Considerations	Capital	O&M	Annualized*
SBA –	Sulfate concentrations in well 27 are high, making replacement of single-pass SBA more	Disposal of two beds of resin (each 201 cf) approximately every 5 days at the design	Single-pass approach is much simpler than	\$1.8 M	\$12 M	\$12.1 M
Single pass operation	frequent. Nitrate concentrations are low (7 mg/L as NO ₃), so chromatographic peaking (resulting in higher effluent concentrations than influent) is not a major concern.	flow rate and continuous use.	regeneration.			
SBA –	Same impacts of water quality as presented above Approximately 5 to 6 tons of salt every	For regeneration of SBA, approximately 12 000 allons of hrine every week froughly	Regeneration with brine treatment will require	\$4.0 M	\$2.0 M [≭]	\$2.3 M [≭]
Regenerable operation	week.	two tanker trailers per week) [*] . This may be decreased if proven in piloting that the brine can be recycled, or more concentrated but smaller brine volumes used	automated operations with controls, and handling of a hazardous	(53.2 M if brine is disposed of as hazardous rather than being	(\$1.7 M if brine is disposed of as hazardous rather than being treated	(\$1.9 M if brine is disposed of as hazardous rather than being treated
				treated on site)	on site) [≠]	on site) [*]
WBA -	Alkalinities in the wells are high, requiring large quantities of CO ₂ to decrease pH for chromium	Disposal of two beds of resin (each 200 cf) approximately every 10 months, as a	Simplest operations with frequent CO ₂ deliveries	\$3.2 M	\$0.7 M	\$1.0 M
Single pass operation	removal. Pre-treatment for this design flow rate and continuous use would require approximately 22 tons of CO ₂ per week (one 20	hazardous and TENORM waste. Disposal of backwash water with each new resin bed. Requires temporary tankage to capture	and infrequent resin replacement. Air stripping for pH adjustment will			
	ton tanker truck every 7 days).	backwash water.	generate some noise.			
RCF or RCMF	Treatment chemicals needed include approximately 350 gallons of ferrous sulfate and 70 gal of hypochlorite per week operating at	No sewer access at this location. Settling, dewatering of solids, and recycling of backwash water would be necessary due to	Automated operations will be necessary with controls for the multiple chemical	\$6.0 M	\$0.6 M	\$1.0 M
	design how rate and commous use. Hypochlorite for disinfection is additional. Clean-in-place chemicals are also additional.	lack of sever in this part of the system, and requires testing to confirm proof of concept. Waste from periodic membrane cleaning would need to be hauled off site. Estimated 1.6 tons of dewatered solids per week.	red systems. This system is more complex than the single-pass ion exchange systems.			
ß	Pre-treatment with cartridge filters and chemical addition (acid and antiscalant) would be needed.	No sewer access. Waste is anticipated to be 15-25% of the flow rate, making this approach infeasible at this site.	N/A	N/A	N/A	N/A

"Based on 5% interest rate and a 20-year life cycle. N/A – Not applicable.

costs for the approach with brine treatment may be significantly decreased if proven in piloting that brine can be treated more efficiently, thus, less solid waste. The estimated costs for brine disposal #Based on 4 bed volumes of 9.5% brine and 1 bed volume of slow rinse per regeneration. 1.5 bed volumes of spent brine and 0.5 bed volume of slow rinse wastewater are reclaimed. The estimated as hazardous are based on a preliminary quote from a hazardous disposal service provider, which can change significantly with market conditions due to limited number of providers and capacity. SBA – Strong base anion exchange; WBA – Weak base anion exchange; RCF – Reduction coagulation filtration; RCMF – Reduction coagulation microfiltration; RO – Reverse osmosis.

Decision Making Process

After performing the technology evaluation, a commercially available software program, Criterion DecisionPlus (CDP), was used to apply weighting and judgment to decision criteria. The software requires input from the user to determine:

- The end goal of the decision process,
- Decision criteria and weighting factors, and
- Complete options with scores by criteria.

The goal of the evaluation was to develop a ranking of the treatment technologies to decide on the best treatment option for the criteria noted below. The set of criteria and assigned weighting factors were determined by the District and the consulting team. Seven factors were selected to evaluate the treatment options, including: treatment robustness of the technology, the complexity on operations and maintenance (O&M), the amount of water loss from the treatment process, waste disposal and handling generated from the treatment process (if applicable), the ability to treat other constituents, footprint requirements, and the annualized cost. Each of the criteria were assigned weights, with a total weight of 100%. Sub-criteria and weights were assigned to support the evaluation of the key criteria. Treatment robustness, residuals handling, annualized costs, and O&M complexity were assigned with higher weights (25%, 25%, 20% and 15%, respectively) than other factors, as they were viewed as the primary factors in the technology evaluation. The definitions that describe what each criteria and sub-criteria entail are described in Table 5.

The Hazen and Sawyer team consisting of three chromium treatment experts served as an expert panel to assign scores for each decision criteria based on the findings in Tables 2 and 4. The scores were assigned on a scale from 0 to 10 (with 10 being the more favorable option) for each of the treatment technologies as shown below in Tables 6 (wells 1, 2, and 15) and 7 (wells 27 and 28) for each of the criteria and sub-criteria. Tables 6 and 7 provide an average of the team's scoring results. The scores were then input into the CDP software to generate results that consider the scoring and applied weights to determine the more favored technology to be recommended for the District's two sites.

Table 5. Decision Criteria

_			Weight
	Criteria/Sub-criteria	Definition	(%)
Ч	Treatment Robustness		25
	Reliability to Meet Cr(VI) Goal of 6 ppb	Ability to achieve or exceed water quality goals	40
	System Resilience to Change	Ability to handle fluctuations in water quality or changes in the treatment goal without significant operational changes	30
	Impact from Competing Constituents	Interfering constituents (i.e. sulfate, silica, iron, manganese)	20
	Concern of Chromatographic Peaking	Co-occurring constituents exceed half the MCL and have the potential for release at higher than influent concentrations (e.g., nitrate from SBA resins)	10
7	O&M Complexity		15
	Equipment Complexity	Chemical feed system requirements and the need for constant monitoring. Multiple components requiring frequent maintenance.	40
	Chemical Deliveries	Frequency of chemical deliveries	40
	Operations Certification	Level of operations staff required for the system	10
	Number of Full-time Employees (FTEs)	Number of staff required to maintain operation of process and the need for operator attention.	10
e	Water Loss	Water loss associated from process	S
4	Residuals Handling		25
	Disposal of Liquid Waste	Is liquid waste generated? Is there access to a sewer?	80
	Offsite Disposal of Solid Waste	How frequent are truck trips to dispose of waste offsite?	20
ß	Removal of Other Constituents	Technology removal of co-occurring constituents requiring treatment	5
6	Footprint	Treatment plant footprint and land requirements	5
2	Annualized Cost	Construction, equipment, engineering, and O&M	20

Table 6. Assigned Scores for Technologies to Treat Wells 1, 2, and 15

		SBA	SBA	WBA		
	Criteria/Sub-criteria	(Single-Pass)	(Regenerable)	(Single-Pass)	RCMF	
1	Treatment Robustness					
	Reliability to Meet Cr(VI) Goal of 6 ppb	10	10	10	10	
	System Resilience to Change	6	9	8	10	
	Impact from Competing Constituents	5	5	10	10	
	Concern of Chromatographic Peaking	10	10	10	10	
2	O&M Complexity					
	Equipment Complexity	10	2	۷	4	
	Chemical Deliveries	10	2	2	7	
	Operations Certification	10	4	۲	4	
	Number of Full-time Employees (FTEs)	10	5	10	9	
e	Water Loss	6	7	10	9	
4	Residuals Handling					
	Disposal of Liquid Waste	10	3	10	8	
	Offsite Disposal of Solid Waste	0	3	9	2	
S	Removal of Other Constituents	10	10	10	10	
9	Footprint	10	5	5	5	
~	Annualized Cost	1	5	ø	∞	

10 = Most favorable compared to other technologies; 0 = Least favorable.

Table 7. Assigned Scores for Technologies to Treat Wells 27 and 28

		SBA	SBA	WBA		
	Criteria/Sub-criteria	(Single-Pass)	(Regenerable)	(Single-Pass)	RCMF	RO
Η	Treatment Robustness					
	Reliability to Meet Cr(VI) Goal of 6 ppb	10	10	10	10	10
	System Resilience to Change	9	6	8	10	10
	Impact from Competing Constituents	3	3	10	10	10
	Concern of Chromatographic Peaking	10	10	10	10	10
2	O&M Complexity					
	Equipment Complexity	10	2	۷	4	7
	Chemical Deliveries	10	2	4	2	۲
	Operations Certification	10	4	7	4	4
	Number of Full-time Employees (FTEs)	10	5	10	9	9
e	Water Loss	8	6	10	9	1
4	Residuals Handling					
	Disposal of Liquid Waste	10	3	10	3	1
	Offsite Disposal of Solid Waste	0	1	9	2	10
S	Removal of Other Constituents	10	10	10	10	10
9	Footprint	10	5	5	5	5
7	Annualized Cost	T	9	8	8	0
1						

10 = Most favorable compared to other technologies; 0 = Least favorable.

Decision Software Output

The results of the CDP Software for Wells 1, 2 and 15 and Wells 27 and 28 are summarized in Figures 5 and 6, respectively. For both clustered groups, WBA received the highest ranking among the technologies evaluated (WBA, SBA regenerable and single pass, RCMF, and RO). For Wells 1, 2 and 15, the score for WBA was 8.3 out of 10, followed by 7.6 for RCMF and 7.0 for SBA single pass. For Wells 27 and 28, WBA received a score of 8.5 out of 10, followed by 6.8 for SBA single pass and 6.7 for RCMF. For WBA, the sub-criteria which had relatively low scores include chemical deliveries and footprint, both of which are affected by a large carbon dioxide dose required to reduce pH for effective treatment. The advantages of WBA include robust treatment, simple operations, minimal liquid waste, removal of other constituents and relatively low treatment cost.

Treatment Selection for Wells 1, 2, and 15

15

Figure 5. Treatment Evaluation of Wells 1, 2, and 15

HAZEN AND SAWYER Environmental Engineers & Scientists

Treatment Sellection for Wells 27 and 28

Figure 6. Treatment Evaluation of Wells 27 and 28

Summary

The analyses completed for both treatment plants determined that WBA would be the most preferred option for treating Cr6 in the District's distribution system as depicted in Figures 5 and 6. WBA treatment is the preferred BAT option resulting in relatively high scores in treatment robustness, residuals handling, and the annualized cost.

Advantages of the WBA approach identified included handling fluctuations in the water quality over time without the need for significant operational changes and requiring simple operations. The primary focal point for WBA will be in sustaining the pH adjustment processes (CO_2 and aeration). The WBA resin would be replaced once breakthrough occurs (i.e. Cr6 concentration exceeds 6 ppb in the treated water from the lag bed), which is anticipated to be as frequent as two resin changes annually if the system is continuously run. The used resin will be disposed of as a hazardous and TENORM waste. Additional disposal consideration to consider is necessary for storing backwash water with each new resin bed installation, which would require a temporary tankage to capture backwash water.

APPENDIX C

Stetson Engineers System Hydraulics Study

DRAFT

ENGINEERING FEASIBILITY STUDY FOR THE USE OF WELLS THAT EXCEED THE NEW MAXIMUM CONTAMINATE LEVEL OF HEXAVALENT CHROMIUM 6

SANTA YNEZ RIVER WATER CONSERVATION DISTRICT, IMPROVEMENT DISTRICT NUMBER 1

SEPTEMBER 15, 2014

WATER RESOURCE PROFESSIONALS SERVING CLIENTS SINCE 1957

♦ NORTHERN AND SOUTHERN CALIFORNIA ♦ ARIZONA ♦ COLORADO

Table of Contents

1.0	INT	RODUCTION	1
	1.1	WATER QUALITY	1
2.0	EXI	STING SYSTEM	3
	2.1	WATER SYSTEM DEMAND DISTRIBUTION FOR HYDRAULIC MODEL	3
	2.2	WATER DEMAND AND WATER SUPPLY FOR EXISTING SYSTEM	6
3.0	ALT	ERNATIVES WITH OPTIONS	9
	31	ALTERNATIVE 1 – BLENDING OPTIONS	12
	5.1	3.1.1 Alternative 1-1 – Blend Well 7 and 24 in Existing 0.5 MG Zone 3 Tank	
		3.1.2 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site	13
		3.1.3 Alternative 1-3 – Blend Well 27 with Zone 2 Water then Pumped into Zone 3	13
		3.1.4 Alternative 1-4 – Blend Well 28 with Zone 2 Water then Pumped into Zone 3	14
		3.1.5 Alternative 1-5 – Blend Well 24 with Well 25 at Well 25 Site	14 15
	32	ΔI TEDNATIVE 2 - SEDADATE IDDIGATION WATED SYSTEM	
	5.2	3.2.1 Irrigation Demand for Irrigated Lands for Separate Irrigation Water System	
		3.2.2 Pipelines for Separate Irrigation Water System	17
		3.2.3 Tank for Separate Irrigation Water System	17
		3.2.4 Booster Pump for Separate Irrigation Water System	
		3.2.5 Wells for Separate Irrigation Water System	19
		3.2.0 Frost Protection for Separate Irrigation Water System	19 22
		3.2.8 Costs for Separate Irrigation Water System	
	3.3	ALTERNATIVE 3 – SURFACE WATER TREATMENT GALLERY WELL	23
		3.3.1 Gallery Well Water Treatment	23
		3.3.2 Conventional Treatment	24
		3.3.3 Granular Activated Carbon (GAC) Treatment Method	25
		3.3.4 Membrane Filter Treatment and System Improvements	25
	2.4	S.S.S Cosis for Gallery well Treatment and System Improvements	20
	3.4	ALTERNATIVE 4 – MINIMIZE USE OF UPLAND WELLS WITH HIGH CRO	28 28
		3.4.2 Water Demand and Water Supply	20
		3.4.3 System Operational Settings	
		3.4.4 Evaluation Criteria and Hydraulic Modeling Results for Alternative 4-1	31
		3.4.5 Cost Summary and Conclusions for Alternative 4-1	
		3.4.6 Costs for Alternative 4-1 System Improvements Maximum Hour Demand	
	25	5.4.7 Cosis for Alternative 4-2 System Improvements Prost Protection Demana	
	5.5	ALTERNATIVE 5 - WELL TREATMENT OPTIONS	
		3.5.2 Alternative 5-2 Wells 27 and 28 Treatment at Well 27 Site	
		3.5.3 Alternative 5-3 Well 7 at Well 7 Site	36
		3.5.4 Alternative 5-4 Well 25 at Well 25 Site	36
	3.6	ALTERNATIVE 6 – INSTALL PACKERS AS WELL TREATMENT OPTIONS	
		3.6.1 Alternatives 6-1 to 6-4- Install Packers in Wells 7, 25, 28 and 27	3/
4.0	ENG	SINEERING COST ESTIMATION FOR ALTERNATIVES	
	4.1	MOBILIZATION AND DEMOBILIZATION COST	
	4.2	PIPELINES	
	4.3	CONTROL VALVES	41
	4.4	TANKS	41

Table of Contents (continued)

	4.5	PUMP STATIONS	41
	4.6	ELECTRICAL CONTROLS	41
	4.7	SCADA System	41
	4.8	WATER TREATMENT PLANT OR WELL TREATMENT	42
	4.9	WATER TREATMENT PLANT DESIGN BY HAZEN & SAWYER	42
	4.10	ELECTRICAL POWER FACILITIES	42
	4.11	LAND AND RIGHT OF WAYS	42
	4.12	CONTINGENCIES	43
	4.13	ENGINEERING AND DESIGN	43
	4.14	CONSTRUCTION MANAGEMENT AND BIDDING	43
	4.15	ANNUALIZED CAPITAL COST	43
	4.16	ANNUAL OPERATION AND MAINTENANCE COST	43
	4.17	ENERGY COST	43
5.0	СОМ	PLETE OPTIONS	45
5.0	COM		40
	5.1	COMPLETE OPTION A	
		5.1.1 Alternative 5-1 Surface water Treatment of Gattery wett	49 49
		5.1.3 Alternative 5-2 Wells 27 and 28 Treatment at Well 27 Site	
		5.1.4 Alternative 5-3 Well 7 at Well 7 Site	50
		5.1.5 Alternative 5-4 Well 25 at Well 25 Site	
		5.1.6 Complete Option A Cost Summary	50
	5.2	COMPLETE OPTION B	
		5.2.1 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site	
		5.2.2 Alternative 5-2 Wells 27 and 28 Treatment at Well 27 Site	
		5.2.4 Alternative 5-4 Well 25 at Well 25 Site	
		5.2.5 Complete Option B Cost Summary	52
	5.3	COMPLETE OPTION C	52
		5.3.1 Alternative 1-4 – Blend Well 28 with Zone 2 Water then Pumped into Zone 3	
		5.3.2 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site	
		5.3.5 Alternative 5-5 Well 7 at Well 7 Site	
		5.3.5 Alternative 6-4 Install Packer in Well 27	
		5.3.6 Complete Option C Cost Summary	53
	5.4	COMPLETE OPTION D	53
		5.4.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site	54
		5.4.2 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site	54
		5.4.3 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site	
		5.4.4 Alternative 5-2 Wells 27 and 28 Treatment at Well 27 Site	
	5 5	5.7.5 Complete Option D Cosi Summary	
	5.5	5.5.1 Alternative 5-1 Wells 1.2.3 and 15 Treatment at ID1 Shop Site	
		5.5.2 Alternative 5-2 Wells 27 and 28 Treatment at Well 27 Site	
		5.5.3 Alternative 6-1 and 6-2 Install Packers in Wells 7 and 25	56
		5.5.4 Complete Option D-P Cost Summary	56
	5.6	COMPLETE OPTION D-C	56
		5.6.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site	
		5.6.2 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site	57
		5.0.5 Auernauve 5-1 weus 1, 2, 5, and 15 Treatment at IDI Shop Site	

Table of Contents (continued)

5.6.5 Alternative 6-1 and 6-2 Install Packers in Wells 7 and 25		5.6.4 Alternative 5-2 Wells 27 and 28 Treatment at Well 27 Site	57
5.6.6 Complete Option D-C Cost Summary		5.6.5 Alternative 6-1 and 6-2 Install Packers in Wells 7 and 25	58
5.7 COMPLETE OPTION E. 58 5.7.1 Alternative 1-2 - Blend Well 7 and 24 at Well 7 Site 58 5.7.2 Alternative 1-4 - Blend Well 28 with Zone 2 Water then Pumped into Zone 3 59 5.7.3 Alternative 1-5 - Blend Well 5 and 25 at Well 25 Site 59 5.7.4 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site 59 5.7.6 Complete Option E Cost Summary 59 5.8 COMPLETE OPTION E-P 60 5.8.1 Alternative 1-4 - Blend Well 28 with Zone 2 Water then Pumped into Zone 3 60 5.8.2 Alternative 1-4 - Blend Well 28 with Zone 2 Water then Pumped into Zone 3 60 5.8.4 Complete Option E Cost Summary 61 5.8.5 Alternative 1-4 - Blend Well 7 and 24 at Well 7, 25, and 27 61 5.8.4 Complete Option E-C 61 5.9.1 Alternative 1-2 - Blend Well 7 and 24 at Well 7 Site 62 5.9.2 Alternative 1-4 - Blend Well 25 with Zone 2 Water then Pumped into Zone 3 62 5.9.3 Alternative 1-5 - Blend Well 7 and 24 at Well 7, 25, and 27 62 5.9.4 Alternative 1-5 - Blend Well 7 and 24 at Well 7, 25, and 27 62 5.9.5 Alternat		5.6.6 Complete Option D-C Cost Summary	58
5.7.1 Alternative 1-2 - Blend Well 7 and 24 at Well 7 Site 58 5.7.2 Alternative 1-5 - Blend Well 28 with Zone 2 Water then Pumped into Zone 3 59 5.7.3 Alternative 1-5 - Blend Well 5 and 25 at Well 25 Site 59 5.7.4 Alternative 6-1 Install Packer in Well 27 59 5.7.5 Alternative 6-4 Install Packer in Well 27 59 5.7.6 Complete Option E Cost Summary 59 5.8 COMPLETE OPTION E-P 60 5.8.1 Alternative 1-4 - Blend Well 28 with Zone 2 Water then Pumped into Zone 3 60 5.8.2 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7, 25, and 27. 61 5.8 Complete Option E-P Cost Summary 61 5.9 COMPLETE OPTION E-C 61 5.9.1 Alternative 1-2 - Blend Well 28 with Zone 2 Water then Pumped into Zone 3 62 5.9.2 Alternative 1-2 - Blend Well 28 with Zone 2 Water then Pumped into Zone 3 62 5.9.3 Alternative 1-3 Blend Well 28 with Zone 2 Water then Pumped into Zone 3 62 5.9.4 Alternative 6-1, 6.2, 6-4 Install Packers in Wells 7, 25, and 27. 61 5.9 62 5.9.4 Alternative 6-1, 6.2, 6-4 Install Packers in Wells 7,25, a	5.7	COMPLETE OPTION E	58
5.7.2 Alternative 1-4 Blend Well 28 with Zone 2 Water then Pumped into Zone 3 59 5.7.3 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site 59 5.7.5 Alternative 6-4 Install Packer in Well 27 59 5.7.6 Complete Option E Cost Summary 59 5.8 COMPLETE OPTION E-P 60 5.8.1 Alternative 1-4 Blend Well 28 with Zone 2 Water then Pumped into Zone 3 60 5.8.2 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site 60 5.8.4 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site 60 5.8.4 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7, 25, and 27 61 5.8.4 Complete Option E-C Cost Summary 61 5.9.1 Alternative 1-2 - Blend Well 28 with Zone 2 Water then Pumped into Zone 3 62 5.9.3 Alternative 1-4 - Blend Well 28 with Zone 2 Water then Pumped into Zone 3 62 5.9.4 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site 62 5.9.4 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site 62 5.9.5 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7,25, and 27 62 5.9.6		5.7.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site	58
5.7.3 Alternative 5-1 Belnd Well 5 and 25 at Well 25 Site 59 5.7.4 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site 59 5.7.5 Alternative 6-4 Install Packer in Well 27 59 5.7.6 Complete Option E Cost Summary 59 5.8 COMPLETE OPTION E-P 60 5.8.1 Alternative 1-4 Blend Well 28 with Zone 2 Water then Pumped into Zone 3 60 5.8.2 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site 60 5.8.3 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7, 25, and 27 61 5.9.4 Complete Option E-P Cost Summary 61 61 5.9.1 Alternative 1-2 Blend Well 7 and 24 at Well 7 Site 61 5.9.2 Alternative 1-2 Blend Well 28 with Zone 2 Water then Pumped into Zone 3 62 5.9.2 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site 62 5.9.4 5.9.3 Alternative 5-1 Blend Well 7 and 24 at Well 7 Site 62 5.9.5 62 5.9.4 Alternative 5-1 Blend Well 7 and 24 at Well 7 Site 63 63 511 5.10 Compl		5.7.2 Alternative 1-4 – Blend Well 28 with Zone 2 Water then Pumped into Zone 3	
5.7.4 Alternative 6-4 Install Packer in Well 27 59 5.7.6 Complete Option E Cost Summary 59 5.8 COMPLETE OPTION E-P 60 5.8.1 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site 60 5.8.2 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site 60 5.8.3 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7, 25, and 27 61 5.8.4 Complete Option E-P Cost Summary 61 5.9 COMPLETE OPTION E-C 61 5.9.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 61 5.9.2 Alternative 1-4 – Blend Well 28 with Zone 2 Water then Pumped into Zone 3 62 5.9.3 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site 62 5.9.4 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7, 25, and 27 62 5.9.4 Alternative 1-5 – Blend Well 7 and 24 at Well 7 Site 62 5.9.5 Alternative 1-5 – Blend Well 7 and 25 at Well 25 Site 63 5.10 Complete Option F-C Cost Summary 63 5.10 Complete Option G Cost Summary 64 5.11.2 Alternative 1-2 – Blend Well		5.7.4 Alternative 5.1 Wells 1.2.2 and 15 Transformed at ID1 Share Site	
5.7.5 Complete Option E Cost Summary. 59 5.8 COMPLETE OPTION E-P 60 5.8.1 Alternative 1-4 – Blend Well 28 with Zone 2 Water then Pumped into Zone 3 60 5.8.2 Alternative 1-4 – Blend Well 28 with Zone 2 Water then Pumped into Zone 3 60 5.8.3 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site 60 5.8.4 Complete Option E-P Cost Summary. 61 5.8 COMPLETE OPTION E-C 61 5.9.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 61 5.9.2 Alternative 1-2 – Blend Well 28 with Zone 2 Water then Pumped into Zone 3 62 5.9.4 Alternative 1-5 – Blend Well 28 with Zone 2 Water then Pumped into Zone 3 62 5.9.3 Alternative 1-5 – Blend Well 2 and 15 Treatment at ID1 Shop Site 62 5.9.4 Alternative 5-1, 6-2, 6-4 Install Packers in Wells 7,25, and 27 62 5.9.5 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7,25, and 27 63 5.10 COMPLETE OPTION F. 63 5.10 COMPLETE OPTION F. 63 5.11 Complete Option E-C Cost Summary. 63 5.11.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site		5.7.4 Alternative 5-1 wells 1, 2, 5, and 15 Treatment at ID1 Snop Site	
5.8 COMPLETE OPTION E-P 60 5.8.1 Alternative 1-4 – Blend Well 28 with Zone 2 Water then Pumped into Zone 3 60 5.8.2 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site 60 5.8.3 Alternative 5-1, 6-2, 6-4 Install Packers in Wells 7, 25, and 27 61 5.8.4 Complete Option E-P Cost Summary 61 5.9 COMPLETE OPTION E-C 61 5.9.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 61 5.9.2 Alternative 1-4 – Blend Well 28 with Zone 2 Water then Pumped into Zone 3 62 5.9.4 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site 62 5.9.5 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7,25, and 27 62 5.9.6 Complete Option E-C Cost Summary 63 5.10 COMPLETE OPTION F 63 5.10 COMPLETE OPTION F 63 5.11 Complete Option F 64 5.11.2 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 64 5.11.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 64 5.11.1 Alternative 2-1 – Separate Irrigation Water System 64 5.11.3		5.7.6 Complete Option F Cost Summary	
5.8 COMPLETE OPTION E-F 60 5.8.1 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site 60 5.8.2 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site 60 5.8.3 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7, 25, and 27 61 5.8.4 Complete Option E-P Cost Summary 61 5.9 COMPLETE OPTION E-C 61 5.9.1 Alternative 1-2 Blend Well 28 with Zone 2 Water then Pumped into Zone 3 62 5.9.2 Alternative 1-4 Blend Well 28 with Zone 2 Water then Pumped into Zone 3 62 5.9.3 Alternative 1-5 Blend Well 28 with Zone 2 Water then Pumped into Zone 3 62 5.9.3 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site 62 5.9.4 62 5.9.4 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site 62 5.9.6 62 5.9.4 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7, 25, and 27 63 63 5.10 COMPLETE OPTION F 63 63 63 5.11 Complete Option G 63 5.11.1 Alternative 1-2 Blend Well 7 and 24 at Well 7 Site	58	Complete Option E D	رو 60
5.8.2 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site 60 5.8.3 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7, 25, and 27 61 5.8.4 Complete Option E-P Cost Summary 61 5.9 COMPLETE OPTION E-C 61 5.9.1 Alternative 1-2 Blend Well 2 and 24 at Well 7 Site 61 5.9.2 Alternative 1-4 Blend Well 28 with Zone 2 Water then Pumped into Zone 3 62 5.9.3 Alternative 1-5 Blend Well 2 Site 62 5.9.4 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7, 25, and 27 62 5.9.4 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7, 25, and 27 62 5.9.5 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7, 25, and 27 63 5.10 COMPLETE OPTION F 63 5.11 Complete Option E-C Cost Summary 63 5.11 Complete OPTION F 63 5.11 Complete Option G 64 5.11.1 Alternative 1-2 Blend Well 7 and 24 at Well 7 Site 64 5.11.2 Alternative 1-5 Blend Well 7 and 25 at Well 25 Site 64 5.11.2	5.0	5.8.1 Alternative 1-4 – Blend Well 28 with Zone 2 Water then Pumped into Zone 3	
5.8.3 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7, 25, and 27		5.8.2 Alternative 5-1 Wells 1. 2. 3. and 15 Treatment at ID1 Shop Site	
5.8.4 Complete Option E-P Cost Summary 61 5.9 COMPLETE OPTION E-C. 61 5.9.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 61 5.9.2 Alternative 1-4 – Blend Well 28 with Zone 2 Water then Pumped into Zone 3 62 5.9.3 Alternative 1-5 – Blend Well 28 with Zone 2 Water then Pumped into Zone 3 62 5.9.4 Alternative 1-5 – Blend Well 3 and 25 at Well 25 Site 62 5.9.5 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7,25, and 27 62 5.9.6 Complete Option E-C Cost Summary 63 5.10 COMPLETE OPTION F. 63 5.11 COMPLETE OPTION G 63 5.11 COMPLETE OPTION G 63 5.11 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 64 5.11.2 Alternative 1-5 – Blend Well 7 and 24 at Well 7 Site 64 5.11.3 Alternative 2-1 – Separate Irrigation Water System 64 5.11.4 Alternative 2-1 – Blend Well 7 and 24 at Well 7 Site 64 5.11.4 Alternative 6-1 Install Packer in Well 27 64 5.11.5 Complete Option G Cost Summary 64 5.12.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 65 5.12.2 Alternative 1-5 – Blend Well 7 and 24 at Well 7 Site 65 5.12.1 Alternative 6-3 and 6-4 Install Packer in Well 27		5.8.3 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7, 25, and 27	61
5.9 COMPLETE OPTION E-C 61 5.9.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 61 5.9.2 Alternative 1-4 – Blend Well 28 with Zone 2 Water then Pumped into Zone 3 62 5.9.3 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site 62 5.9.4 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site 62 5.9.5 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7,25, and 27 62 5.9.6 Complete Option F. 63 5.10 COMPLETE OPTION G 63 5.11 COMPLETE OPTION G 63 5.11.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 64 5.11.2 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site 64 5.11.3 Alternative 2-1 – Separate Irrigation Water System 64 5.11.4 Alternative 6-4 Install Packer in Well 27 64 5.11.5 Complete Option G Cost Summary 64 5.12.0 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 65 5.12.1 Alternative 6-4 Install Packer in Well 27 64 5.11.4 Alternative 6-5 Install Packer in Well 25 Site 65 </td <td></td> <td>5.8.4 Complete Option E-P Cost Summary</td> <td>61</td>		5.8.4 Complete Option E-P Cost Summary	61
5.9.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 61 5.9.2 Alternative 1-4 – Blend Well 28 with Zone 2 Water then Pumped into Zone 3 62 5.9.3 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site 62 5.9.4 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site 62 5.9.5 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7,25, and 27 62 5.9.6 Complete Option F. 63 5.10 COMPLETE OPTION F. 63 5.11 COMPLETE OPTION G. 63 5.11.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 64 5.11.2 Alternative 1-5 – Blend Well 7 and 24 at Well 25 Site 64 5.11.3 Alternative 2-1 – Separate Irrigation Water System 64 5.11.4 Alternative 1-5 – Blend Well 7 and 24 at Well 7 Site 64 5.11.2 COMPLETE OPTION G 65 5.12 COMPLETE OPTION H 65 5.12 COMPLETE OPTION H 65 5.12.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 64 5.12 COMPLETE OPTION H 65 5.12 COMPLETE OPTION H 65 5.12.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 65 5.12.2 Alternative 1-5 – Blend Well 7 and 24 at Well 7 Site 65 5.12.4 Complete Option H C	5.9	COMPLETE OPTION E-C	61
5.9.2 Alternative 1-4 – Blend Well 28 with Zone 2 Water then Pumped into Zone 3 62 5.9.3 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site 62 5.9.4 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site. 62 5.9.5 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7,25, and 27 62 5.9.6 Complete Option E-C Cost Summary 63 5.10 COMPLETE OPTION F 63 5.11 COMPLETE OPTION G 63 5.11.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 64 5.11.2 Alternative 2-1 – Separate Irrigation Water System 64 5.11.3 Alternative 2-1 – Separate Irrigation Water System 64 5.11.4 Alternative 6-4 Install Packer in Well 27 64 5.12 COMPLETE OPTION H 65 5.12.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 65 5.12.2 Alternative 1-5 – Blend Well 7 and 24 at Well 7 Site 65 5.12.2 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site 65 5.12.2 Alternatives 6-3 and 6-4 Install Packers in Wells 28 and 27 65 5.12.3 Alternatives 6-3 and 6-4 Install Packers in Wells 28 and 27 65 <		5.9.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site	61
5.9.3 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site 62 5.9.4 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site 62 5.9.5 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7,25, and 27 62 5.9.6 Complete Option E-C Cost Summary 63 5.10 COMPLETE OPTION F 63 5.11 COMPLETE OPTION G 63 5.11.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 64 5.11.2 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site 64 5.11.3 Alternative 2-1 – Separate Irrigation Water System 64 5.11.5 Complete Option G Cost Summary 64 5.12 COMPLETE OPTION H 65 5.13.2 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 64 5.11.2 Alternative 1-5 – Blend Well 7 and 24 at Well 7 Site 64 5.11.5 Complete Option G Cost Summary 64 5.12 COMPLETE OPTION H 65 5.12.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 65 5.12.2 Alternative 1-5 – Blend Well 7 and 24 at Well 7 Site 65 5.12.3 Alternatives 6-3 and 6-4 Install Packers in Wells 28 and 27 65 5.12.4 Complete Option H Cost Summary 65 5.12.4 Complete Option H Cost Summary 65 5.12.		5.9.2 Alternative 1-4 – Blend Well 28 with Zone 2 Water then Pumped into Zone 3	62
5.9.4 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site. 62 5.9.5 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7,25, and 27 62 5.9.6 Complete Option E-C Cost Summary. 63 5.10 COMPLETE OPTION F. 63 5.11 COMPLETE OPTION G 63 5.11 COMPLETE OPTION G 63 5.11.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 64 5.11.2 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site 64 5.11.3 Alternative 2-1 – Separate Irrigation Water System 64 5.11.5 Complete Option G Cost Summary 64 5.12 COMPLETE OPTION H 65 5.12.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 65 5.12.2 Alternative 1-3 – Blend Well 7 and 24 at Well 7 Site 65 5.12.1 Alternative 1-4 – Blend Well 7 and 24 at Well 7 Site 65 5.12.2 Alternative 1-5 – Blend Well 7 and 24 at Well 7 Site 65 5.12.3 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site 65 5.12.4 Complete Option H Cost Summary 65 5.12.4 Complete Option H Cost		5.9.3 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site	62
5.9.5 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7,25, and 27		5.9.4 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site	
5.9.5 Complete Option E-C Cost Summary. 65 5.10 COMPLETE OPTION F. 63 5.11 Complete Option G 63 5.11 Complete Option G 63 5.11 Complete Option G 63 5.11 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 64 5.11.2 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site 64 5.11.3 Alternative 2-1 – Separate Irrigation Water System 64 5.11.4 Alternative 6-4 Install Packer in Well 27 64 5.11.5 Complete Option G Cost Summary 64 5.12 COMPLETE OPTION H 65 5.12.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 65 5.12.2 Alternative 1-5 – Blend Well 7 and 24 at Well 7 Site 65 5.12.1 Alternative 1-5 – Blend Well 7 and 25 at Well 25 Site 65 5.12.2 Alternative 6-3 and 6-4 Install Packers in Wells 28 and 27 65 5.12.4 Complete Option H Cost Summary 65 5.12.4 Complete Option H Cost Summary 65 5.12.4 Complete Option H Cost Summary 65 5.12.4 Comple		5.9.5 Alternative 0-1, 0-2, 0-4 Install Packers in Wells 7,25, and 27	02
5.10 COMPLETE OPTION F	5 10	5.9.0 Complete Option E-C Cost Summary	03
5.11 COMPLETE OPTION G 63 5.11.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 64 5.11.2 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site 64 5.11.3 Alternative 2-1 – Separate Irrigation Water System 64 5.11.4 Alternative 6-4 Install Packer in Well 27 64 5.11.5 Complete Option G Cost Summary 64 5.12 COMPLETE OPTION H 65 5.12.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 65 5.12.2 Alternative 1-5 – Blend Well 7 and 25 at Well 25 Site 65 5.12.2 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site 65 5.12.3 Alternatives 6-3 and 6-4 Install Packers in Wells 28 and 27 65 5.12.4 Complete Option H Cost Summary 65 S.12.4 Complete Option H Cost Summary 65 S.13.4 Complete Option H Cost Summary 65	5.10	COMPLETE OPTION F	
5.11.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 04 5.11.2 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site 64 5.11.3 Alternative 2-1 – Separate Irrigation Water System 64 5.11.4 Alternative 6-4 Install Packer in Well 27 64 5.11.5 Complete Option G Cost Summary 64 5.12 COMPLETE OPTION H 65 5.12.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 65 5.12.2 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site 65 5.12.3 Alternatives 6-3 and 6-4 Install Packers in Wells 28 and 27 65 5.12.4 Complete Option H Cost Summary 65 5.12.4 Complete Option H Cost Summary 65 5.12.4 Complete Option H Cost Summary 65 65 65 65 66 ABBREVIATIONS AND ACRONYMS USED IN THE REPORT 68 REFERENCES 71	5.11	COMPLETE OPTION G	63
5.11.2 Alternative 1-5 – Blend well 5 and 25 al well 25 site 64 5.11.3 Alternative 2-1 – Separate Irrigation Water System 64 5.11.4 Alternative 6-4 Install Packer in Well 27 64 5.11.5 Complete Option G Cost Summary 64 5.12 COMPLETE OPTION H 65 5.12.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site 65 5.12.2 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site 65 5.12.3 Alternatives 6-3 and 6-4 Install Packers in Wells 28 and 27 65 5.12.4 Complete Option H Cost Summary 65 5.12.4 Complete Option H Cost Summary 65 65 5.12.4 Complete Option H Cost Summary 65 65 65 65 66 ABBREVIATIONS AND ACRONYMS USED IN THE REPORT 68 REFERENCES 71		5.11.1 Alternative 1-2 – Blend Well / and 24 at Well / Site	04 64
5.11.5 Anternative 2.1 Separate Infiguration mater by stem mater by s		5.11.2 Alternative 2-1 – Separate Irrigation Water System	
5.11.5 Complete Option G Cost Summary .64 5.12 COMPLETE OPTION H .65 5.12.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site .65 5.12.2 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site .65 5.12.3 Alternatives 6-3 and 6-4 Install Packers in Wells 28 and 27 .65 5.12.4 Complete Option H Cost Summary .65 ENGINEERING COST ESTIMATION FOR COMPLETE OPTIONS .66 ABBREVIATIONS AND ACRONYMS USED IN THE REPORT .68 REFERENCES .71		5.11.4 Alternative 6-4 Install Packer in Well 27	
5.12 COMPLETE OPTION H		5.11.5 Complete Option G Cost Summary	64
5.12.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site .65 5.12.2 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site .65 5.12.3 Alternatives 6-3 and 6-4 Install Packers in Wells 28 and 27 .65 5.12.4 Complete Option H Cost Summary .65 ENGINEERING COST ESTIMATION FOR COMPLETE OPTIONS 66 ABBREVIATIONS AND ACRONYMS USED IN THE REPORT 68 REFERENCES 71	5.12	COMPLETE OPTION H	65
5.12.2 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site		5.12.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site	65
5.12.3 Alternatives 6-3 and 6-4 Install Packers in Wells 28 and 27		5.12.2 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site	65
5.12.4 Complete Option H Cost Summary		5.12.3 Alternatives 6-3 and 6-4 Install Packers in Wells 28 and 27	65
ENGINEERING COST ESTIMATION FOR COMPLETE OPTIONS		5.12.4 Complete Option H Cost Summary	65
ABBREVIATIONS AND ACRONYMS USED IN THE REPORT	ENG	GINEERING COST ESTIMATION FOR COMPLETE OPTIONS	66
REFERENCES71	ABE	BREVIATIONS AND ACRONYMS USED IN THE REPORT	68
	REF	FERENCES	71

6.0 7.0 8.0

List of Tables

TABLE 1.	UPLAND WELL SUMMARY	2
TABLE 2.	HISTORICAL WATER PRODUCTION SUMMARY (ACRE-FEET) 2004-2013	5
TABLE 3.	WATER DEMAND DISTRIBUTION BY PRESSURE ZONES (SUMMERY)	6
TABLE 4.	WELL AND PUMP OPERATION SUMMARY FOR MAXIMUM HOUR DEMAND	8
TABLE 5.	WATER USE BY PRESSURE ZONE	10
TABLE 6.	ALTERNATIVES 1-1 TO 6-4 WELL AND PUMP FLOW SUMMARY	11
TABLE 7.	2013 Agricultural Water Use	16
TABLE 8.	SEPARATE IRRIGATION SYSTEM WATER USE BY PRESSURE ZONE	17
TABLE 9.	REQUIRED FLOW RATE FOR FROST PROTECTION	21
TABLE 10.	WATER DEMAND DISTRIBUTION BY PRESSURE ZONES (SUMMER)	29
TABLE 11.	WATER DEMAND DISTRIBUTION BY PRESSURE ZONES (FROST PROTECTION)	29
TABLE 12.	CAPITAL COST, ANNUALIZED CAPITAL COST AND O&M COST SUMMARY FOR EACH	
TABLE 13.	UNIT PIPE COSTS	40
TABLE 14.	TREATMENT COST BY HAZEN & SAWYER	42
TABLE 15.	PUMPING COST FOR 2013	44
TABLE 16.	ENERGY COST FOR PUMPING WATER	44
TABLE 17.	COMPLETE OPTIONS A TO H WELL AND PUMP FLOW SUMMARY	48
TABLE 18.	CAPITAL COST, ANNUALIZED CAPITAL COST AND O&M COST SUMMARY FOR EACH COMPLETE OPTION	67

List of Figures

Ergraph 1		4
FIGURE 1.	EXISTING SYSTEM, MAXIMUM HOUR DEMAND – MODEL RESULTS	4
FIGURE 2.	SEPARATE IRRIGATION WATER SYSTEM TANK LOCATION	.18
FIGURE 3.	PROPOSED SEPARATE IRRIGATION WATER SYSTEM	20
FIGURE 4.	GALLERY WELL TREATMENT PLANT LOCATION	27
FIGURE 5.	PIPELINES TO TREATMENT PLANT AT ID#1 SHOP SITE	34
FIGURE 6.	PIPELINES TO TREATMENT PLANT AT WELL 27	35

Attachments

ATTACHMENT A – COST SUMMARY TABLES FOR EACH ALTERNATIVE
ATTACHMENT B – MAP OF PROPOSED SOLUTIONS FOR EACH ALTERNATIVE
ATTACHMENT C – FLOW FROM WELLS AND PUMPS FOR EACH ALTERNATIVE
ATTACHMENT D – COST SUMMARY TABLES FOR EACH COMPLETE OPTION
Attachment $E-Maps \mbox{ of Proposed Solutions for Each Complete Option}$
ATTACHMENT F – FLOW FROM WELLS AND PUMPS FOR EACH COMPLETE OPTION

1.0 INTRODUCTION

The purpose of this report is to document Stetson Engineers Inc. (Stetson) engineering feasibility study for use of wells with that exceed the mew maximum contaminant level (MCL) of Cr6. A comprehensive list of project alternatives and options was prepared by the consultant work group (CWG) and Santa Ynez River Water Conservation District, Improvement District No. 1 (ID1). This engineering feasibility study provides descriptions of alternatives and complete options to address the wells that exceed the new MCL for Cr6 (greater than 10 ppb) in the upland wells. The engineering feasibility study estimated the cost for various alternatives including blending, separating agricultural and irrigation water, gallery well with surface water treatment, minimum use of upland wells, well treatment, and installing packers in the well to reduce flow from detectable Cr6 formations. The engineering feasibility study uses the hydraulic model developed by Stetson to determine the water system deficiencies and proposed solutions for each alternative and complete options. Stetson also worked with Hazen & Sawyer to perform hydraulic modeling for water treatment facilities for Wells 1, 2, 3, 7, 15, 25, 27, and 28. After the analysis was performed on each alternative, potential complete options were developed by combining appropriate alternatives. In addition, engineering cost analysis was preformed to compare potential complete options, which combine the alternatives and options. Engineering cost analysis includes project costs, capitalized project cost along with annual costs for energy, operation, and maintenance. Cost summary tables for each alternative and complete options are shown in Attachments A and D, respectively. Maps of proposed solutions for each alternative and complete options are shown in Attachments B and E, respectively. Flow from wells and pumps for each alternative and complete options are shown in Attachment C and F, respectively.

1.1 Water Quality

ID1's 11 uplands wells contain concentrations of Cr ranging from zero to 26 parts per billion (ppb) and Cr6 ranging from zero to 26 ppb. Only three of ID1's uplands wells, Wells 5, 6 and 24 contain Cr6 concentration well below the new 10 ppb MCL.

The ID1 system was designed and configured based on the presumed usability of State Water Project (SWP) and Santa Ynez River well water (alluvium) to serve the lower zones, Zones 1 and 2, and uplands well water to serve the higher zones, Zone 3 and a portion of Zone 2. The production capacity of the 11 upland wells is approximately 7,200 gallons per minute (gpm). The three wells below 5 ppb Cr6 are Well 5, which produces approximately 250 gpm, Well 6, which produces approximately 300 gpm, and Well 24, which produces approximately 300 gpm. Table 1 shows a list of the 11 upland wells normal flow rates and Cr6 incidence range along with a summary of normal flow rates for the remaining wells (<5 ppb), along with wells (5 to 10 ppb, which require monitoring) and wells that exceed 10 ppb.

			Normal	Cr6
Well	Cr6	Pressure	Flow	Range
No.	Incidence	Zone	(gpm)	(ppb)
1	Offline Pending Treatment	2	200	36
2	Offline Pending Treatment	2	500	22 - 24
3	Offline Pending Treatment	2	600	0
5	Low (Available for Use)	3	250	0.7 - 1.1
6	Low (Available for Use)	3	300	0
7	Monitor	3	900	2.1 - 10
15	Offline Pending Treatment	2	1,200	25 - 26
24	Low (Available for Use)	3	300	1.3 - 4.1
25	Monitor	3	950	8.4 - 9.8
27	Monitor	2	1,250	6.9 – 13
28	Monitor	2	750	8.8 - 9.2
		Total	7,200	
<5 ppb	Low (Available for Use)		850	
5 to 10	Monitor		3 850	
>10			5,050	
ppb	Offline Pending Treatment		2,500	
		Total	7,200	

TABLE 1. UPLAND WELL SUMMARY

ppb = parts per billion

gpm = gallons per minute

Well 3 added to offline pending treatment well flow because of high nitrates

2.0 EXISTING SYSTEM

The most recent version of the hydraulic model was used as a baseline to determine the water system improvements needed during the summer time maximum hour demand (14,175 gpm) that are needed to provide minimum required system pressure of 25 psi and maximum pipeline velocity of 4 feet per second. The existing upland wells were operated (except Wells 1 and 3) along with the MVPS and river wells to provide the minimum number of model nodes with pressures less than 25 psi. There are two model nodes located southeast of Zone 2 tank as shown on Figure 1 with pressures of 17.5 and 19.3 psi, respectively. These nodes will be reviewed during the planning process and upgraded as appropriate. An additional low-pressure model node has a pressure of 24.9 psi (Figure 1) but this is close enough to the minimum pressure of 25 psi. The only other discrepancies with the existing system are a few pipelines with velocity greater than 4 feet per second, two are located near Well 15 and the other is located near Well 2 as shown on Figure 1. These pipe velocities will also be reviewed as part of the planning process and upgraded as appropriate.

2.1 Water System Demand Distribution for Hydraulic Model

The hydraulic model developed by Stetson was used to determine potential water system issues and to propose solutions for each alternative and complete options. Model input includes an estimation of the water system average day demand (ADD), maximum day demand (MDD), and maximum hour demand (MHD). ADD was based on the maximum annual water production during the last 10 years. During the last 10 years (2004 to 2013) the annual water production ranged from 4,850 to 6,274 acre-feet and averaged 5,582 acre-feet as shown on Table 2. The maximum annual water production occurred in 2007. The ADD was based on the 2007 water use of 6,274 acre-feet or 3,890 gpm. The water demand was distributed throughout the system for the hydraulic model based on 2005 water meter deliveries.

% of	Average	109%	92%	6%%	112%	111%	103%	%06	87%	97%	103%	87%	112%	100%
	Annual	6,071	5,150	5,351	6,274	6,187	5,754	4,997	4,850	5,429	5,755	4,850	6,274	5,582
	Dec	167	196	211	207	139	157	134	190	115	262	115	262	178
	Nov	173	312	437	455	376	384	245	255	350	368	173	455	336
	Oct	427	487	535	522	582	413	354	453	505	477	354	582	476
	Sept	812	665	684	665	737	714	682	609	640	584	584	812	679
	Aug	867	859	857	826	836	775	796	714	832	709	60L	867	807
	Jul	907	850	914	885	864	866	787	757	736	778	736	914	834
	Jun	814	637	681	767	800	653	670	582	672	756	582	814	703
	May	716	442	375	689	678	704	542	517	560	636	375	716	586
	Apr	576	343	124	506	594	548	285	357	271	560	124	594	416
	Mar	286	123	156	402	375	216	279	141	297	344	123	402	262
	Feb	161	125	240	137	100	101	106	129	215	162	100	240	148
	Jan	165	111	137	213	106	223	117	146	236	119	106	236	157
	Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	Minimum	Maximum	Average

TABLE 2. HISTORICAL WATER PRODUCTION SUMMARY (ACRE-FEET) 2004-2013

Stetson Engineers Inc.

The ADD is 3,890 gallons per minute (gpm). The maximum day demand (MDD) for the peak summer day occurred on July 12, 2006 with a flow rate of 9,527 gpm (2004 to 2013 period of record). The maximum hour demand (MHD) for the maximum summer day for each year occurred on June 21, 2008 with a flow rate of 14,175 gpm. The summer time average day demand, maximum day demand, and maximum hour demand for each of the three pressure zones are shown on Table 3. Also shown on Table 3 are the maximum hour demand (22,701 gpm) for frost protection that occurred on April 9, 2011.

Pressure Zone	Average Day Demand (gpm)	Maximum Day Demand (gpm)	Maximum Hour Demand (gpm)	Percent
Zone 1	513	1,258	1,871	13%
Zone 2	2,171	5,312	7,910	56%
Zone 3	1,206	2,957	4,394	31%
Total	3,890	9,527	14,175	100%

 TABLE 3. WATER DEMAND DISTRIBUTION BY PRESSURE ZONES (SUMMERY)

Pressure Zone	Maximum Hour Demand (gpm)
Zone 1	10,995
Zone 2	8,177
Zone 3	3,529
Total	22,701

2.2 Water Demand and Water Supply for Existing System

The water supply from upland wells, river wells, and State Water Project (SWP) delivered through the Mesa Verde Pump Station (MVPS) are needed to satisfy the maximum day demand of 9,527 gpm. The maximum hour demand of 14,175 gpm is typically met by tank storage. The most recent version of the hydraulic model was used as a baseline to determine the water system improvements needed during the summer time maximum hour demand (14,175 gpm) that are needed to provide minimum required system pressure of 25 psi and maximum pipeline velocity of 4 feet per second. All the existing upland wells were operated (except Wells 1 and 3) along with the MVPS and river wells to provide the minimum number of model nodes with pressures less than 25 psi. During the maximum hour demand the flow out of the storage tanks are 594 gpm for Zone 1, 1,820 gpm for Zone 2 and -381 gpm (inflow) for Zone 3 as shown on Figure 1. At a maximum flow rate out of the tank of 1,820 gpm for Zone 2 tank with storage capacity of 6.5 million gallons (MG), there is adequate tank storage to satisfy the maximum hour demand for about 30 hours assuming the tank is depleted to 50% of capacity and starts full.

Some of the 6-cfs and 4-cfs well field wells need to be operating to provide water to meet the maximum day demand. Most of the 6-cfs and 4-cfs well field wells need to be operating to provide water to meet the maximum day demand if the high Cr6 Upland Wells are not in operation. In addition, three of the five Mesa Verde Pumps must operate to meet the maximum day demand. A summary of the flow rates from the wells and Mesa Verde Pump Station are shown in Table 4 for the baseline model run for the existing system. The total water supply flow is 12,143 gpm with the maximum day demand flow requirement of 9,527 gpm leaving a water supply surplus of 2,616 gpm.

Water also must be provided to each pressure zone to meet the MDD of each pressure zone as previously shown in Table 3. Because significant portion of the water supply is located in pressure Zone 1, booster pumps convey the water from Zone 1 to Zones 2 and 3. Zone 3 MDD is 2,957 gpm. Wells 5, 6, 7, 24 and 25 provide 4,803 gpm and Alamo Pintado booster pump provide 787 gpm and Refugio-3 booster pump provide 1,022 gpm for a total inflow to Zone 3 of 6,612 gpm which is 3,655 gpm greater than the MDD and 2,218 greater than the MHD (4,394 gpm). The wells and booster pumps in Zone 3 need to be operated to provide system pressure during the MHD. Stetson considered the operation of all the existing Zone 3 booster pumps and operating one of the small booster pumps at Alamo Pintado and Refugio-3 provided the best hydraulic condition for both Zones 2 and 3 even though the flow is 3,655 gpm greater than what is needed to satisfy the MDD in Zone 3. With the Zone 2 booster pumps operating (3,864 gpm) and the Zone 2 upland wells operating (4,036 gpm) there is a net inflow to Zone 2 of 779 gpm (6,091 – 5,312 gpm) taking into consideration the water pumped to Zone 3 (1,809 gpm). Zone 2 has a MDD of 5,312 gpm and a net inflow of 4,630 resulting in a surplus of approximately 779 gpm to satisfy the MDD in Zone 2. No additional booster pumping capacity from Zone 1 to Zone 2 is needed to satisfy the MDD of Zone 2 when the upland wells are in operation. For some of the following alternatives additional flow must be added to Zone 2 to satisfy the MDD of Zones 2 and 3 when the upland wells are not operating.

			Normal	Model	
Water		Well	Flow	Flow	Pressure
Source	Location	No.	(gpm)	(gpm)	Zone
Wells					
	Upland	1	200	0	2
	Upland	2	500	621	2
	Upland	3	600	0	2
	Upland	5	250	238	3
	Upland	6	300	350	3
	Upland	7	900	1,029	3
	Upland	15	1,200	1,214	2
	Upland	24	300	300	3
	Upland	25	950	1,051	3
	Upland	27	1,250	1,342	2
	Upland	28	750	859	_ 2
		Upland Wells Subtotal	7,200	7,004	
	6 cfs well field	8	150	0	1
	6 cfs well field	9	375	0	1
	6 cfs well field	10	600	626	1
	6 cfs well field	19	260	0	1
	6 cfs well field	21	275	304	1
	6 cfs well field	22	200	0	1
	6 cfs well field	23	400	0	1
		6 cfs Well Field Subtotal	2,260	930	
	4 cfs well field	12	600	0	1
	4 cfs well field	14	600	441	1
	4 cfs well field	17	375	321	1
	4 cfs well field	18	200	164	1
		4 cfs Well Field Subtotal	1,175	926	
	Gallery Well		776	0	1
		Total Wells	12,011	8,860	
State W	ater Project (SW	P)			
	Mesa Verde Pum	p Station			
		MV-1	1,200	1,194	1
		MV-2	1,145	1,171	1
		MV-3	885	0	1
		MV-4	865	918	1
		MV-5	1,105	0	1
		Mesa Verde Total	5,200	3,283	1
	Total Water Su	pply (Wells & Mesa Verde)	17,211	12,143	

TABLE 4. WELL AND PUMP OPERATION SUMMARY FOR MAXIMUM HOUR DEMAND

3.0 ALTERNATIVES WITH OPTIONS

A comprehensive list of project alternatives and options were prepared by the consultant work group (Stetson, Hazen & Sawyer, and Dudek) and ID No.1 and include blending, separate irrigations system, water treatment, well treatment, and minimum use of wells with high Cr6. Below is a list of six (6) alternatives and options that were evaluated to address the Cr6 that exceed and are close to the MCL in the upland wells.

- 1. Alternative 1 Blending Options, there are six blending options Blending options considered include the following six options:
 - Alt 1-1 Blend Well 7 with Well 24 into existing 0.5 MG Zone 3 tank.
 - Alt 1-2 Blend Well 7 with Well 24 at Well 7 site.
 - Alt 1-3 Blend Well 27 with Zone 2 water then pumped into Zone 3.
 - Alt 1-4 Blend Well 28 with Zone 2 water then pumped into Zone 3.
 - Alt 1-5 Blend Well 5 with Well 25 at Well 25 site.
 - Alt 1-6 Blend Well 24 with Well 25 at Well 25 site
- 2. Alternative 2 Separate Irrigation Water System, use Wells 2,3,15 & Gallery Well
- 3. Alternative 3 Surface Water Treatment Gallery Well
- 4. Alternative 4 Minimize Use of Upland Wells affected by High Cr6
 - Alt 4-1 Maximum hour demand (June), use Wells 5,6 and 24
 - Alt 4-2 Frost protection historical demand (April)
- 5. Alternative 5 Well Treatment Location Options, there are four well treatment options. Treatment location options considered include the following four options:
 - Alt 5-1 Treat Wells 1, 2 and 15 at existing ID1 shop site, 1,900 gpm add Well 3 (600 gpm) as redundant source.
 - Alt 5-2 Treat Wells 27 and 28 at Well 27 site
 - Alt 5-3 Treat Well 7 at Well 7 site
 - Alt 5-4 Treat Well 25 at Well 25 site
- 6. Alternative 6 Well Improvements (packers), there are four packer options
 - Alt 6-1 Well 7 block inflow from zone affected by Cr6 regulations, 25% flow reduction
 - Alt 6-2 Well 25 block inflow from zone affected by Cr6 regulations, 25% flow reduction

- Alt 6-3 Well 28 block inflow from zone affected by Cr6 regulations, 25% flow reduction
- Alt 6-4 Well 27 block inflow from zone affected by Cr6 regulations, 25% flow reduction

Each alternative and option needs to satisfy the maximum day demand and the annual water requirements for each pressure zone in the water system. Existing water use for each pressure zone is shown in Table 5.

- Zone 1 uses 736 acre-feet (AF) per year on average or 13% of the total system water use.
- Zone 2 uses 3,115 AF per year on average or 56% of the total system water use.
- Zone 3 uses 1,731 AF per year on average or 31% of the total system water use.

The total average water use is 5,582 AF per year as previously shown on Table 4. Some of the alternatives transfer some of the water use from Zone 1 into Zone 2 and from Zone 2 into Zone 3. The redistribution of water use by zone for the alternative analysis is also shown on Table 5.

Existing System		
Water Use by Zone	Percent	AF
Zone 1	13%	736
Zone 2	56%	3,115
Zone 3	31%	1,731
	100%	5,582
Proposed System with S	Some Demands	2.4
Proposed System with S Transferred from Zone Solve Low Pressure Pro	Some Demands s 3 and 1 to Zon oblems	e 2 to
Proposed System with S Transferred from Zone Solve Low Pressure Pro Water use by Zone	Some Demands s 3 and 1 to Zon oblems Percent	e 2 to
Proposed System with S Transferred from Zone Solve Low Pressure Pro Water use by Zone Zone 1	Some Demands s 3 and 1 to Zon blems Percent 13%	AF 713
Proposed System with S Transferred from Zone Solve Low Pressure Pro Water use by Zone Zone 1 Zone 2	Some Demands s 3 and 1 to Zon oblems Percent 13% 56%	AF 713 3,136
Proposed System with S Transferred from Zone Solve Low Pressure Pro Water use by Zone Zone 1 Zone 2 Zone 3	Some Demands s 3 and 1 to Zon oblems Percent 13% 56% 31%	AF 713 3,136 1,733

 TABLE 5. WATER USE BY PRESSURE ZONE

A summary of the wells and pumps operating for each alternative is shown on Table 6 along with the percent of maximum day demand (MDD). Following the discussion of each alternative is the description of the engineering cost estimate followed by a discussion of complete options which combine appropriate alternatives.

Table 6 - Alternatives 1-1 to 6-4 Well and Pump Flow Summary

		Normal																
Water	Well or Pump	Flow	,	4	4	•	1	Alt	ernatives v	vith Norm	ıl Flow Ra	tes (gpm)	,	4	1	4	4	
Source Name	No.	(mdg)	Ŧ	I-7	1-3	1-4	<u>.</u>	-1 -0	7	v	4-1	4-2	1-0	7-0		7-0	6-3	4
Taland I Taland	-	000	C	¢	<	¢	¢	<	000	<	<	¢	000	¢	<	¢	<	<
Upland	- c	2002							2002				2002					
Upland	4 6	200							000				000 9009					
Upland	סע ה	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250
Upland	9	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300
Upland	7	006	006	006	0	0	0	0	006	0	0	0	0	0	650	0	0	0
Upland	15	1,200	0	0	0	0	0	0	1,200	0	0	0	1,200	0	0	0	0	0
Upland	24	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300
Upland	25	950	0	0	0	0	700	700	950	0	0	0	0	0	0	700	0	0
Upland	27	1,250	0	0	1,000	0	0	0	1,250	0	0	0	0	1,250	0	0	0	950
Upland	28	750	0	0	0	750	0	0	750	0	0	0	0	750	0	0	500	0
	Subtotal	7,200	1,750	1,750	1,850	1,600	1,550	1,550	7,200	850	850	850	3,350	2,850	1,500	1,550	1,350	1,800
6 cfs field	8	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150
6 cfs field	6	375	375	375	375	375	375	375	375	375	375	375	375	375	375	375	375	375
6 cfs field	10	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600
6 cfs field	19	260	260	260	260	260	260	260	260	260	260	260	260	260	260	260	260	260
6 cfs field	21	275	275	275	275	275	275	275	275	275	275	275	275	275	275	275	275	275
6 cfs field	22	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
6 cfs field	23	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400
	Subtotal	2,260	2,260	2,260	2,260	2,260	2,260	2,260	2,260	2,260	2,260	2,260	2,260	2,260	2,260	2,260	2,260	2,260
4 cfs field	12	600	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4 cfs field	14	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600
4 cfs field	17	375	375	375	375	375	375	375	375	375	375	375	375	375	375	375	375	375
4 cfs field	18	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
	Subtotal	I,775	1,175	1,175	1,175	1,175	1,175	1,175	1,175	1,175	1,175	1,175	1,175	1,175	1,175	1,175	1,175	1,175
Gallery well		776	0	0	0	0	0	0	776	776	0	776	0	0	0	0	0	0
	Wells Total	12,011	5,185	5,185	5,285	5,035	4,985	4,985	11,411	5,061	4,285	5,061	6,785	6,285	4,935	4,985	4,785	5,235
State Water Project	/ Exchange																	
Mesa Verde	Pump Station																	
	MV-1	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200
	MV-2	1,145	1,145	1,145 005	1,145 005	1,145	1,145 005	1,145 995	1,145	1,145	1,145 995	1,145	1,145	1,145	1,145 005	1,145	1,145 005	1,145
	C- V IVI	000	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
	MV-4	865	865	865	865	865	865	865	865	865	865	865	865	865	865	865	865	865
	MV-5 Subtotal	5 200	5 200	5 200	1,105 5 200	1,105 5 200	1,105 5 200	5 200	5 200	5 200	5 200	5 200	5 200	5 200	1,105	5 200	1,105	5 200
	= mnonome	117.11	10.205	10.205	10.405	10.225	10105	10 105	112.21	10.240	0,405	10.2401	11 005	11 405	1012(0	10105	0,02,0	10.425
	I otal System	0 577	0 577	0 577	0 577	0 577	0 577	0 577	10,011 0 577	10,201 0 577	9,485	10,201 0 577	0 577	0 577	0 577	0 577	0 577	0 577
	% of MDD	1810%	100%	100%	1100%	107%	1070%	1070%	17/0%	1080%	100%	108%	176%	1210%	1060%	1070%	1050%	1100%
Maximum dav deman	MDD) based o	n July 12, 2	006 maxim	um day for	2004 to 20	13 period o	f record	N/ / NT	N/L/T	0/001	1/0/T	1001	1/071	~ 171	1001	101	10.01	110/0

3.1 Alternative 1 – Blending Options

Stetson Engineers performed hydraulic modeling analysis to determine system modifications that would be needed in order to render the water system capable of meeting required system pressures and flow demands utilizing each of the upland well water system blending options. Various options addressing the water system blending were evaluated including; 1) Blending monitored wells with nearby complying wells, 2) Blending wells close to the new MCL with water from adjacent pressure zone. Engineers cost estimate for each blending option was prepared. Blending options considered include the following options:

- Alt 1-1 Blend Well 7 with Well 24 into existing 0.5 MG Zone 3 tank.
- Alt 1-2 Blend Well 7 with Well 24 at Well 7 site.
- Alt 1-3 Blend Well 27 with Zone 2 water then pumped into Zone 3.
- Alt 1-4 Blend Well 28 with Zone 2 water then pumped into Zone 3.
- Alt 1-5 Blend Well 5 with Well 25 at Well 25 site.
- Alt 1-6 Blend Well 24 with Well 25 at Well 25 site.

3.1.1 Alternative 1-1 – Blend Well 7 and 24 in Existing 0.5 MG Zone 3 Tank

A new 10-inch pipeline approximately 2,400 feet long will be constructed to convey Well 7 water (900 gpm) to an existing 0.5 MG tank. A new 8-inch pipeline approximately 400 feet long will be constructed to convey Well 24 water (300 gpm) to an existing 0.5 MG tank. The existing tank is located adjacent to the existing 3.5 MG tank used to maintain water pressure and provide storage for Zone 3. Well 7 has a flow rate of 900 gpm with a Cr6 level of 10 ppb. Well 24 has a flow rate of 300 gpm with a Cr6 level of 4.1 ppb. The blended flow level is 8.5 ppb for a flow of 1,200 gpm. System improvements needed to meet the maximum hour demand includes a new booster pump station located near Zone 1 tank, a small booster pump to satisfy low pressure at one model node located in Zone 2, control valves, blow offs, air/vacuum valves, relocate a few Zone 1 meters to Zone 2, relocate a few Zone 2 meters to Zone 3, new 8-inch, 10-inch and 12inch pipelines, electrical controls, SCADA, electric power facilities, and purchase of land and right of ways. The capital cost of the new pipelines, static mixer, control valves, tank modifications, and other system improvements are \$3,896,000 with an additional annual O&M cost of \$46,000 and an additional energy cost of \$35,000 per year. See Chapter 4 for comparison of cost with other alternatives. See Attachment A for an itemized list and details for cost estimate. See Attachment B for a map showing the system improvements needed to meet the maximum hour demand. See Attachment C for the flow from wells and pumps.

3.1.2 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site

A new 8-inch pipeline approximately 2,400 feet long will be constructed to convey Well 24 water (300 gpm) to the Well 7 site. The blended water will be pumped into the Zone 3 system at Well 7. Well 7 has a flow rate of 900 gpm with a Cr6 level of 10 ppb. Well 24 has a flow rate of 300 gpm with a Cr6 level of 4.1 ppb. The blended flow level is 8.5 ppb. System improvements needed to meet the maximum hour demand includes a new booster pump station located near Zone 1 tank, a small booster pump to satisfy low pressure at one model node located in Zone 2, control valves, blow offs, air/vacuum valves, relocate a few Zone 1 meters to Zone 2, relocate a few Zone 2 meter to Zone 3, new 8-inch, 10-inch and 12-inch pipelines, electrical controls, SCADA, electric power facilities, and purchase of land and right of ways. The capital cost of the new pipelines, static mixer, control valves, and other system improvements are \$3,817,000 with an additional annual O&M cost of \$45,000 and an additional energy cost of \$35,000 per year. See Chapter 4 for comparison of cost with other alternatives. See Attachment A for a map showing the system improvements needed to meet the maximum hour demand. See Attachment A for an itemized list and details for cost estimate. See Attachment B for a map showing the system improvements needed to meet the maximum hour demand. See Attachment C for the flow from wells and pumps.

3.1.3 Alternative 1-3 – Blend Well 27 with Zone 2 Water then Pumped into Zone 3

A new 75 horsepower booster pump station will be installed at the Well 27 site for pumping blended water from Zone 2 to Zone 3. Well 27 flow rate is 1,250 gpm when pumping into Zone 2 and 1,000 gpm when pumping into Zone 3 and has with a Cr6 level of 13 ppb. Blending with 1,000 gpm of Zone 1 water will reduce the Cr6 level to approximately 6.5 ppb. The existing 8inch pipeline in Zone 3 would need to be enlarged by installing a new parallel 12-inch pipe approximately 4,100 feet long. System improvements needed to meet the maximum hour demand includes a new booster pump station located near Zone 1 tank, a small booster pump to satisfy low pressure at one model node located in Zone 2, control valves, blow offs, air/vacuum valves, relocate a few Zone 1 meters to Zone 2, relocate a few Zone 2 meter to Zone 3, new 8inch, 10-inch and 12-inch pipelines, electrical controls, SCADA, electric power facilities, and purchase of land and right of ways. The capital cost of the new pipelines, static mixer, control valves, and other system improvements are \$4,505,000 with an additional annual O&M cost of \$56,000 and an additional energy cost of \$38,000 per year. See Chapter 4 for comparison of cost with other alternatives. See Attachment A for an itemized list and details for cost estimate. See Attachment B for a map showing the system improvements needed to meet the maximum hour demand. See Attachment C for the flow from wells and pumps.

3.1.4 Alternative 1-4 – Blend Well 28 with Zone 2 Water then Pumped into Zone 3

A new 150 horsepower booster pump station will be installed at the Well 28 site for pumping blended water from Zone 2 to Zone 3. Well 28 flow rate is 750 gpm with a Cr6 level of 8.9 ppb. Blending with 750 gpm of Zone 1 water will reduce the Cr6 level to approximately 4.5 ppb. An existing 12-inch pipeline downstream of Refugio-3 booster would need to be enlarged by installing a new parallel 8-inch pipe approximately 800 feet long along with a new 16-inch pipeline 1,800 feet long from Well 28 to Zone 3. System improvements needed to meet the maximum hour demand includes a new booster pump station located near Zone 1 tank, a small booster pump to satisfy low pressure at one model node located in Zone 2, control valves, blow offs, air/vacuum valves, relocate a few Zone 1 meters to Zone 2, relocate a few Zone 2 meter to Zone 3, new 8-inch, 10-inch and 12-inch pipelines, electrical controls, SCADA, electric power facilities, and purchase of land and right of ways. The capital cost of the new pipelines, static mixer, control valves, and other system improvements are \$4,501,000 with an additional annual O&M cost of \$60,000 and an additional energy cost of \$38,000 per year. See Chapter 4 for comparison of cost with other alternatives. See Attachment A for an itemized list and details for cost estimate. See Attachment B for a map showing the system improvements needed to meet the maximum hour demand. See Attachment C for the flow from wells and pumps.

3.1.5 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site

A new 8-inch pipeline approximately 3,500 feet long will be constructed to convey Well 5 water (250 gpm) to the Well 25 site. The blended water will be mixed in a static mixer at Well 25 site. Well 25 has a flow rate of 950 gpm with a Cr6 level of 9.8 ppb. Well 5 has a flow rate of 250 gpm with a Cr6 level of 0.9 ppb. The blended flow level is approximately 7.2 ppb. System improvements needed to meet the maximum hour demand includes a new booster pump station located near Zone 1 tank, a small booster pump to satisfy low pressure at one model node located in Zone 2, control valves, blow offs, air/vacuum valves, relocate a few Zone 1 meters to Zone 2, relocate a few Zone 2 meter to Zone 3, new 8-inch, 10-inch and 12-inch pipelines, electrical controls, SCADA, electric power facilities, and purchase of land and right of ways. The capital cost of the new pipelines, static mixer, control valves, and other system improvements are \$4,122,000 with an additional annual O&M cost of \$48,000 and an additional energy cost of \$13,000 per year. See Chapter 4 for comparison of cost with other alternatives. See Attachment A for an itemized list and details for cost estimate. See Attachment B for a map showing the system improvements needed to meet the maximum hour demand. See Attachment C for the flow from wells and pumps.

3.1.6 Alternative 1-6 - Blend Well 24 with Well 25 at Well 25 Site

A new 8-inch pipeline approximately 5,100 feet long will be constructed to convey Well 24 water (300 gpm) to Well 25 site. The blended water will be mixed in a static mixer at Well 25 site. Well 25 has a flow rate of 950 gpm with a Cr6 level of 9.8 ppb. Well 24 has a flow rate of 300 gpm with a Cr6 level of 4.1 ppb. The blended flow level is approximately 7.7 ppb. System improvements needed to meet the maximum hour demand includes a new booster pump station located near Zone 1 tank, a small booster pump to satisfy low pressure at one model node located in Zone 2, control valves, blow offs, air/vacuum valves, relocate a few Zone 1 meters to Zone 2, relocate a few Zone 2 meter to Zone 3, new 8-inch, 10-inch and 12-inch pipelines, electrical controls, SCADA, electric power facilities, and purchase of land and right of ways. The capital cost of the new pipelines, static mixer, control valves, and other system improvements are \$4,360,000 with an additional annual O&M cost of \$51,000 and an additional energy cost of \$13,000 per year. See Chapter 4 for comparison of cost with other alternatives. See Attachment A for an itemized list and details for cost estimate. See Attachment B for a map showing the system improvements needed to meet the maximum hour demand. See Attachment C for the flow from wells and pumps.

3.2 Alternative 2 – Separate Irrigation Water System

Stetson Engineers performed hydraulic modeling analysis to provide a separate irrigation water system for Zones 1, 2 and 3 that uses the five upland wells with the highest Cr6 levels, Wells 1, 2, 3, 15 and 28 located in Zone 2 and the Gallery Well located in Zone 1. The flow rate from Well 1 is 200 gpm, Well 2 is 500 gpm, Well 3 is 600 gpm (high nitrates) , Well 15 is 1,200 gpm, Well 28 is 750 gpm and the Gallery Well is 776 gpm for a total flow rate of 4,026 gpm or 534 acre-feet per month. The maximum month demand for the irrigated lands was estimated to determine if the five wells and gallery well will provide an adequate supply.

3.2.1 Irrigation Demand for Irrigated Lands for Separate Irrigation Water System

Stetson mapped the irrigation water uses in the ID1 service area which includes vineyards, cropland, orchards, pasture, and lawn watering for cemetery, school and parklands. The location of all agricultural service meters were provided by ID1 along with the monthly water use for 2013. A summary of the total monthly irrigation water use for 2013 are shown on Table 7. Not all the lands will be served by the proposed separate irrigated water system. Small water users that are located far from other users were not included because of the high cost to construct a pipeline to these small isolated parcels. A summary of the monthly irrigation water use for 2013 for the lands served by the proposed new irrigation water system are shown on Table 7. Shown on Table 8 is the estimated water use for each pressure zone for the separate irrigation system. Forty-eight percent (48%) of the irrigation water use is in Zone 1 as shown on Table 8.

		١	Nater Use		
					(Acre-
Month	(hcf)	(gal)	(gpd)	(gpm)	feet)
January	5,018	3,753,464	121,079	84.1	12
February	14,246	10,656,008	380,572	264.3	33
March	53,925	40,335,900	1,301,158	903.6	124
April	111,068	83,078,864	2,769,295	1,923.1	255
May	109,706	82,060,088	2,647,100	1,838.3	252
June	116,419	87,081,412	2,902,714	2,015.8	267
July	157,668	117,935,664	3,804,376	2,641.9	362
August	108,206	80,938,088	2,610,906	1,813.1	248
September	95,472	71,413,056	2,380,435	1,653.1	219
October	77,915	58,280,420	1,880,014	1,305.6	179
November	39,577	29,603,596	986,787	685.3	91
December	28,123	21,036,004	678,581	471.2	65
Total	917,343	686,172,564		1,299.9	2,106

 TABLE 7. 2013 AGRICULTURAL WATER USE

IRRIGATION WATER USE FOR PROPOSED SEPARATE IRRIGATION WATER SYSTEM

		١	Nater Use		
					(Acre-
Month	(hcf)	(gal)	(gpd)	(gpm)	feet)
January	5,015	3,751,220	121,007	84.0	12
February	14,242	10,653,016	380,465	264.2	33
March	53,574	40,073,352	1,292,689	897.7	123
April	107,988	80,775,024	2,692,501	1,869.8	248
May	108,155	80,899,940	2,609,675	1,812.3	248
June	116,368	87,043,264	2,901,442	2,014.9	267
July	155,979	116,672,292	3,763,622	2,613.6	358
August	107,619	80,499,012	2,596,742	1,803.3	247
September	94,443	70,643,364	2,354,779	1,635.3	217
October	77,270	57,797,960	1,864,450	1,294.8	177
November	39,543	29,578,164	985,939	684.7	91
December	28,102	21,020,296	678,074	470.9	65
Total	908,298	679,406,904		1,287.1	2,085

Zone	Acre-Feet	Percent
1	1,001	48%
2	709	34%
3	375	18%
TOTAL	2,085	100%

 TABLE 8.
 Separate Irrigation System Water Use by Pressure Zone

3.2.2 Pipelines for Separate Irrigation Water System

A proposed new pipeline system was laid out to connect most of the large irrigation water users with Wells 1, 2, 3, 15 and 28 and a regulation reservoir located near the existing Zone 2 tank and the Gallery Well located in Zone 1. The pipes were sized based on a maximum velocity of four feet per second during the maximum month demand and seven feet per second during a frost protection event. The locations of the proposed pipelines are adjacent to existing pipelines to minimize the cost of right-of-way acquisition.

3.2.3 Tank for Separate Irrigation Water System

The proposed new Zone 2 tank will have the same bottom and water surface elevation as the existing Zone 2 tank but will have a smaller capacity. The location of the proposed new tank is shown on Figure 2. The proposed new tank will have a capacity of 128,000 gallons. The size of the tank was based on matching the 25-foot water level in the existing Zone 2 tank and reasonable diameter to match the height. A 25-foot high by 35-foot diameter (128,000 gallon) tank was determined to be the most appropriate size of the proposed new tank. The minimum size tank needed for operation based on 20% of average day demand for Zone 2. The minimum storage requirement is 126,600 gallons.

3.2.4 Booster Pump for Separate Irrigation Water System

A booster pump is needed to provide flow and pressure to the irrigated lands located in the Zone 3 area. A booster pump with a 15,000 gallon hydropnuematic tank was determined to be the most cost effective to provide pressure compared to installing a new reservoir located near the existing Zone 3 tank because of the cost of the delivery pipelines and the cost of the new reservoir. The flow rate of the proposed new booster pump is 785 gpm with a 50 horsepower motor located at the existing Alamo Pintado booster pump site.

3.2.5 Wells for Separate Irrigation Water System

Wells 1, 2, 3, 15 and 28 were selected to provide water for the irrigated lands because they have the highest Cr6 concentrations. The Gallery Well was also selected to serve the agricultural lands because it is considered a surface water diversion and would need treatment to provide water to the municipal customers but will not need treatment to provide water to the irrigated lands. The flow rate from Well 1 is 200 gpm, Well 2 is 500 gpm, Well 3 is 600 gpm, Well 15 is 1,200 gpm, Well 28 is 750 gpm, and the Gallery Well is 776 gpm for a total flow rate of 4,026 gpm or 534 acre-feet per month. Existing pumps in Wells 1, 2, 15, and 28 will be utilized to provide pressure in the proposed pipeline system and new Zone 2 reservoir along with a new 75 horsepower submersible well pump in Well 3. The existing Gallery Well pump will be used to provide flow and pressure to a new 15,000-gallon hydropneumatic tank located at the gallery Well site in Zone 1.

3.2.6 Frost Protection for Separate Irrigation Water System

Stetson prepared a WaterCAD Hydraulic Model for the proposed new pipelines. The model was used to determine if there is adequate pressure and flow at the water meters in Zones 1, 2 and 3 when the 27 vineyard water meters are using water for sprinkler Frost Protection (FP).

FP sprinkler system for vineyards typically requires 45 to 55 gallons per minute (gpm) per acre and a pressure of 45 to 50 psi to provide adequate FP. The vineyards in all three zones have water meters that range from 1-inch to 6-inches. For this analysis, we assumed only vineyards with water meters 4-inches and greater are used for frost protection. There are 27 vineyard water meters that are 4-inches or greater. The vineyard locations for all three zones are shown on Figure 3.

The Sensus Omni T^2 4-inch and 6-inch water meters have a maximum continuous operation design flow rate of 1,000 gpm and 2,000 gpm, respectively. At the maximum continuous flow rate, the pressure loss through a 4-inch and 6-inch water meter is approximately 9 psi. If flow rates greater than the maximum continuous flow rate pass through the meter, the accuracy of measuring the flow may be reduced and the pressure loss through the meter increases significantly.

Estimation of the system water demand for frost protection is based on the maximum hour demand event that occurred during April 9, 2011 of 22,701 gpm, which includes the system demand plus frost protection demand. Estimated flow rates provided by vineyard owners or the number acres with sprinklers and 45 gpm per acre with a pressure of 45 psi. If the water demand for frost protection is greater than the meter capacity then the meter capacity was used. The only water demand limited by the meter capacity is the Kaufman Family Trust vineyard, 4-inch meter with 34 sprinkler irrigated acres and a water demand of 1,530 gpm (34 acres x 45 gpm/ac) so 1,000 gpm was used for the water demand as shown on Table 9. The required total flow rate for the vineyards frost protection and 27 meters is 20,748 gpm as shown on Table 9.

				No. of		Required	Required	Estimated
			Acreage	Meters for	Meter	Flow Per	Total	Total
			With	Frost	Size	Meter	Flow	Flow
Vineyard ¹		Acreage	sprinklers	Protection	(inches)	(gpm) ²	(gpm)	(gpm) ⁴
Zone 1			·					
Caldwell		35.1	35	2	6	788	1,575	1,590
Davidge		71.5	70	4	6	788	3,150	2,403
Kaufman Family Trust		43	34	1	4	1,000	1,000	1,000
L&L Vineyards, LLC		33.6	33	2	6	743	1,485	1,500
Monte Cristo Block II, LLC		12.3	12.3	1	4	554	554	559
Old College Ranch, Inc.		20	20	2	6	450	900	908
Roseville Properties, LLC ³		65.6	59	2	6	1,328	2,655	2,690
	Total	281.1	263.3	14			11,319	10,650
Zone 2								
Honea Vineyards LP			5.8	1	4	261	261	227
Foley Estates Vineyard & V	Ninery		11	1	6	495	495	500
Rideau, Iris Family Trust			13.3	1	4	599	599	605
Gainey Vineyard, LLC			47.6	2	6	1,071	2,142	2,150
Gainey Vineyard, LLC			15.7	1	6	707	707	714
Claxton Vineyards Limited			17.4	1	4	783	783	790
			17.4	1	6	783	783	790
Gainey Vineyard, LLC			21.3	1	6	959	959	968
		Total	149.5	9			6,729	6,744
Zone 3								
Blackjack		20	8	1	4	360	360	363
Beckmen		37	18	1	6	810	810	818
Young		24	14	1	4	630	630	636
Royal Oaks (Roblar)		36	20	1	4	900	900	908
	Total	117	60	4		3,300	2,700	2,725
Over	all Total			27			20,748	20,119

TABLE 9. REQUIRED FLOW RATE FOR FROST PROTECTION

Notes: ¹ See Figure 3 for vineyard locations. ² Required flow rate based on 45 gpm per acre and is limited by the maximum allowable flow rate for meters (4" meter: 1000 gpm, 6" meter: 2000 gpm). ³ One existing 6" meter and one proposed 6" meter.

⁴ Estimated flow rates based on model results.

The WaterCAD Hydraulic Model was then used to further estimate the frost protection demand for each vineyard based on the simulated pressures. The frost protection demand for each FP node was decreased or increased linearly based on simulated pressures. The total estimated frost protection is about 20,119 gpm as shown in Table 9.

The model was then run with the irrigation water use served by the proposed separate water system only and Frost Protection Demand (FPD) of 20,119 gpm, which gives a total demand of 21,989 gpm.

Estimation of the system water demand for frost protection is based on the maximum hour demand event that occurred during April 9, 2011 of 22,701 gpm, which includes the system demand plus frost protection demand. Estimated flow rates provided by vineyard owners or the number acres with sprinklers and 45 gpm per acre with a pressure of 45 psi. If the water demand for frost protection is greater than the meter capacity then the meter capacity was used. The only water demand limited by the meter capacity is the Kaufman Family Trust vineyard, 4-inch meter with 34 sprinkler irrigated acres and a water demand of 1,530 gpm (34 acres x 45 gpm/ac) so 1,000 gpm was used for the water demand as shown on Table 7. The required total flow rate for the vineyards frost protection and 27 meters is 20,748 gpm as shown on Table 7.

The WaterCAD Hydraulic Model was then used to further estimate the frost protection demand for each vineyard based on the simulated pressures. The frost protection demand for each FP node was decreased or increased linearly based on simulated pressures. The total estimated frost protection is about 20,119 gpm as shown in Table 7.

The model was then run with the irrigation water use served by the proposed separate water system only and Frost Protection Demand (FPD) of 20,119 gpm, which gives a total demand of 21,989 gpm.

3.2.7 System Operation for Separate Irrigation Water System

Water from the existing municipal system will flow into the separate irrigation system at 12 oneway valves located in all three pressure zones during frost protection events. The locations of the 12 one-way valves are shown on Figure 3.

Typical FP events begin at 3:00 am therefore the water levels in Zone 1, 2 and 3 existing tanks and new Zone 2 tank should be near full at 3:00 am. Water will flow out of the existing Zone 1 tank at a rate of 5,906 gpm, the tank's water level will decrease at a rate of 0.35 MG per hour, and the pressure will drop by approximately 3 psi after about 10 hours of operation. Water will flow out of the existing Zone 2 tank and new Zone 2 tank at a rate of 3,332 gpm, the tank's water level will decrease at a rate of 3,332 gpm, the tank's water level will decrease at a rate of 0.20 MG per hour, and the pressure will drop by approximately 3 psi after approximately 16 hours of operation. Water will flow out of the existing Zone 3 tank at a rate of 202 gpm, the tank's water level will decrease at a rate of 0.01 MG per hour, and the pressure will drop by approximately 1 psi after approximately 28 hours of operation.

A summary of the wells and booster pumps operating during the frost protection event are shown in Attachment C.

3.2.8 Costs for Separate Irrigation Water System

New pipelines for the separate irrigation system consist of 73,900 feet of 8-inch pipeline, 18,000 feet of 10-inch pipeline, 24,000 feet of 12-inch pipeline and 1,500 feet of 16-inch pipeline. The new system improvements needed to meet the maximum hour demand includes a new booster pump station with hydropneumatic tank located near Alamo Pintado booster pump, control valves, blow offs, air/vacuum valves, new tank near Zone 2 tank, electrical controls, SCADA,

electric power facilities, and purchase of land and right of ways. The capital cost of the new pipelines, tanks, control valves, and other system improvements are \$23,455,000 with an additional annual O&M cost of \$265,000 and an additional energy cost of \$57,000, which includes municipal pumping costs per year. See Chapter 4 for comparison of cost with other alternatives. See Attachment A for an itemized list and details for cost estimate. See Attachment B for a map showing the system improvements needed to meet the maximum hour demand. See Attachment C for the flow from wells and pumps.

3.3 Alternative 3 – Surface Water Treatment Gallery Well

Stetson Engineers prepared a feasibility design and cost estimate for bringing the Gallery Well into production including surface water treatment. Stetson performed hydraulic modeling analysis to provide system improvements need to deliver the treated surface water up to Zones 2 and 3 to replace a portion of the upland wells water supply. The Gallery Well will be used to replace the upland wells with highest Cr6 levels. The Gallery Well appropriation allows a peak diversion rate of 1.73 cfs (776 gpm) and a maximum annual volume of 515 acre-feet. Since the Gallery Well will only provide enough water to replace a portion of the upland wells yield, water from the 4 cfs and 6 cfs river well fields and Mesa Verde Pump Station (MVPS) will be considered in this alternative along with booster pump station modifications. System modifications that would be needed in order to render the water system capable of meeting required system pressures and flow demands utilizing a combination of the two upland wells (Wells 5, 6 and 24) that have Cr6 values less than 10 ppb, river wells, MVPS and Gallery Well water will be determined. Engineers cost estimate for Gallery Well system improvements were prepared along with additional energy cost to pump water from Zone 1 to Zones 2 and 3.

3.3.1 Gallery Well Water Treatment

Use of the existing Gallery Well, which extends approximately 300 feet into and 20 feet below the Santa Ynez River, is being considered for potable water use. Due to the relative shallow depth of the Gallery Well, the water collected by the Gallery Well is to be considered "Surface Water", and requires a more stringent treatment method than typical groundwater wells.

Drinking water standards provided by the California Department of Health Services (DHS) have set Maximum Contaminant Levels (MCLs) which are enforceable under the safe drinking water act. There are primary MCLs that are set for chemical and radioactive contaminants, as well as secondary MCLs that are set for taste, odor, or appearance. In addition to MCLs, there are Action Levels (ALs) that are health based advisory levels established by DHS for chemical in which an MCL has not been established. Surface water treatment requires treatment for turbidity, Total Dissolved Solids (TDS), salts, heavy metals, nitrates, pathogens, and organic compounds. Due the nature of surface water, and its exposure to the elements and human contamination, the water quality can fluctuate greatly. As a result, the surface water can be exposed to pathogens long before sampling shows any indication of a problem with the water supply. A water quality report by the Central Coast Assessment Monitoring Program (CCAMP) was found with the last water quality sampling was done in 2008. The results are shown below:

Contaminant	Range	Mean	Median	# Samples
Total Dissolved Solids (TDS) (mg/l)	200 - 900	729.5	790.0	29
Total Suspended Solids (TSS) (mg/l)	0.510 - 10,000	551	2,000	20
Turbidity (NTU)	0.0 – 3,000	202.6	1.4	29
Nitrate (mg/l)	0.002-1.950	0.219	.120	29
Salinity (ppt)	0.16-59.0	2.63	0.57	28
Coliform (MPN/100 mil)	170-90,000	11,794	2,400	19
Chloride (mg/l)	11.0 - 68.0	47.30	57.50	20

Santa Ynez River Water Quality Report for Gallery Well

Source: Central Coast Ambient Monitoring (CCAMP) – 314SYI – Santa Ynez River @HWY 101. www.ccamp.info/_2010/view_data.php

In addition to the typical constituents that need to be treated for surface water, there is a "Surface Water Treatment Rule" (SWTR) and the "Enhanced Surface Water Treatment Rule" regulated by the Environmental Protection Agency (EPA). These rules set forth guidelines on the pathogens *Giardia* and *Cryptosporidium*, with the latter known to be chlorine resistant. The removal of these constituents requires effective filtration methods and disinfection, with some cases requiring advanced disinfection methods.

The treatment for the surface water from the existing Gallery Well would need to undergo filtration and disinfection which complies with the EPA's SWTRs. Since the Gallery Well is located 20 feet below the bottom of the riverbed, the turbidity levels of the water to be treated should be relatively low. There are other water treatment plants in the area such as the William B. Carter Water Treatment Plan which treats surface water using a conventional treatment method. In addition to conventional treatment methods, there is granular activated carbon treatment and membrane filtration treatment.

3.3.2 Conventional Treatment

The "conventional treatment" method consists of pre-treatment, aeration, flash mix, coagulation/flocculation, sedimentation, filtration, and disinfection. The filtration method is generally either sand or other media filters. This type of methods is generally used for raw water with a higher turbidity, in which the water requires coagulation and flocculation to remove the suspended solids and other contaminants. The advantages of using the conventional method:

- Widely used with proven results
- Low initial cost

The disadvantages of using this method are:

- Large footprint required
- Higher maintenance cost due to replacing of filter media
- Backwash cycle requires disposal due to coagulation chemicals
- Process moves HGL to atmosphere, requires large booster pump to discharge into distribution pipeline
- Susceptible to SWTR violation. May require advanced disinfection methods such as ozonation or ultra-violet.

3.3.3 Granular Activated Carbon (GAC) Treatment Method

The GAC method is very similar to the conventional treatment method, but instead of using regular media, the method uses granular activated carbon and the media for filtration. In addition to the regular filtration that the media provides, the GAC is effective in removing organic compounds, disinfection by-products, pesticides, other synthetic organic compounds. Due to the minimal water quality data, it is not known if the use of GAC is required.

3.3.4 Membrane Filter Treatment

Membrane Filter treatment consists of using a membrane to separate the water from the contaminants under pressure. Membrane filtration is either Microfiltration (MF), Ultrafiltration (UF), Nanofiltration (NF), or Reverse Osmosis (RO), with the difference being the size of contaminant allowed to pass through the filtration. These types of filtration processes are being used due to the EPA's SWTR requirement to remove *Giardia* and *Cryptosporidium*. Also with the Gallery Well having some filtration due to the location 20 feet below the riverbed, the amount of turbidity would not affect the required backwash cycles of the system. The advantages of using the membrane filtration method:

- Removal of suspended solids with no coagulant
- Very high removal of *Giardia* and *Cryptosporidium*
- Much smaller footprint then conventional method
- Low maintenance costs
- Chemical free backwash which can be discharged to local water bodies
- Long-term compliance with drinking water regulations
- System under pressure, requiring smaller booster pump

The disadvantages of using this method are:

- High initial cost
- Complex controls

For the water treatment for the Santa Ynez River Gallery Well, we have selected a microfiltration treatment method. This type of method requires a smaller footprint and satisfies the EPA's stringent regulations. The following is a cost estimate of the MF water treatment plant for the Gallery Well.

3.3.5 Costs for Gallery Well Treatment and System Improvements

New pipelines for the Gallery Well treatment system improvements consist of 2,200 feet of 8inch pipeline and 25,000 feet of 12-inch pipeline. The new system improvements needed to meet the maximum hour demand includes a new booster pump station located at the treatment plant site (Figure 4), control valves, blow offs, air/vacuum valves, electrical controls, SCADA, electric power facilities, and purchase of land and right of ways. The capital cost of the new pipelines, water treatment facility, control valves, and other system improvements are \$5,905,000 with an additional annual O&M cost of \$181,000 and an additional energy cost of \$121,000 per year. See Chapter 4 for comparison of cost with other alternatives. See Attachment A for an itemized list and details for cost estimate. See Attachment B for a map showing the system improvements needed to meet the maximum hour demand. See Attachment C for the flow from wells and pumps.

FIGURE 4

F:\DATA\2492\CAD\Treatment Location Map.dwg

3.4 Alternative 4 – Minimize use of Upland Wells with High Cr6

Stetson Engineers performed hydraulic modeling analysis to determine system modifications that would be needed in order render the water system capable of meeting required system pressures and flow demands by minimizing the use of upland wells with high Cr6. Two options addressing the water system demand were evaluated including; 1) maximum hour demand, 2) frost protection demand. Engineers cost estimate for each option was prepared. Water demand options considered include the following options:

- Alt 4-1 Minimize use of upland wells with high Cr 6 during maximum hour demand.
- Alt 4-2 Minimize use of upland wells with high Cr 6 during frost protection demand.

Stetson performed hydraulic modeling analysis to determine the minimum use of upland wells with high Cr6. System improvements needed to deliver the SWP water from MVPS and the 6 cfs and 4 cfs well fields up to Zones 2 and 3 to replace the upland wells water supply. System modifications that are needed in order to render the water system capable of meeting required system pressures and flow demands utilizing a combination of the upland wells with Cr6 less than 10 ppb (Wells 5, 6 and 24), MVPS, 6-cfs and 4-cfs well fields were determined. Engineers cost estimate for system improvements were prepared along with additional energy cost to pump water from Zone 1 to Zones 2 and 3.

3.4.1 Model Demand Distribution

The water system average day demand (ADD) was based on the maximum annual water production during the last 10 years. During the last 10 years (2004 to 2013) the annual water production ranged from 4,850 to 6,274 acre-feet and averaged 5,582 acre-feet as previously shown on Table 2. The maximum annual water production occurred in 2007. The ADD was based on the 2007 water use of 6,274 acre-feet or 3,890 gpm. The water demand was distributed throughout the system for the hydraulic model based on 2005 water meter deliveries.

The ADD is 3,890 gallons per minute (gpm). The maximum day demand for the peak summer day occurred on July 12, 2006 with a flow rate of 9,527 gpm (2004 to 2013 period of record). The maximum hour demand for the maximum summer day occurred on June 21, 2008 with a flow rate of 14,175 gpm. The summer time ADD, maximum day demand and maximum hour demand for each of the three pressure zones are shown on Table 10. Frost protection for each pressure zone for the maximum hour demand (22,701 gpm) that occurred on April 9, 2011 are shown in Table 11.

Pressure Zone	Average Day Demand (gpm)	Maximum Day Demand (gpm)	Maximum Hour Demand (gpm)
Zone 1	513	1,258	1,871
Zone 2	2,171	5,316	7,910
Zone 3	1,206	2,953	4,394
Total	3,890	9,527	14,175

 TABLE 10.
 WATER DEMAND DISTRIBUTION BY PRESSURE ZONES (SUMMER)

Table 11.	WATER DEMAND	DISTRIBUTION BY	PRESSURE ZONES	(FROST PROTECTION)
-----------	--------------	------------------------	----------------	--------------------

Pressure Zone	Maximum Hour Demand (gpm)
Zone 1	10,995
Zone 2	8,177
Zone 3	3,529
Total	22,701

3.4.2 Water Demand and Water Supply

The water supply from wells and SWP is needed to satisfy the maximum day demand of 9,527 gpm. The maximum hour demand of 14,175 gpm is met by reservoir storage. The flow rate out of the three storage reservoirs are 4,627 gpm during the maximum hour demand based on the hydraulic model.

At a maximum flow rate of 4,627 gpm and total reservoir storage capacity of 16.7 million gallons (mg), there is adequate reservoir storage to satisfy the peak hour demand for about 30 hours assuming the three reservoirs are depleted to 50% of capacity.

Most of the 6-cfs and 4-cfs well field wells affected by Cr6need to be operating to provide water to meet the maximum day demand if the Upland Wells are not in operation. In addition, all five Mesa Verde Pumps (5,200 gpm) must operate to meet the maximum day demand. A summary of the flow rates from the wells and Mesa Verde Pump Station are shown in Attachment C. The total water supply flow is 9,106 gpm with the maximum day demand flow requirement of 9,527 gpm leaving a water supply surplus of 56 gpm.

Water also must be provided to each pressure zone to meet the maximum day demand (MDD) of each pressure zone as previously shown in Table 10. Because most of the water supply is located in pressure Zone 1, booster pumps convey the water from Zone 1 to Zones 2 and 3. Zone 3 MDD is 2,953 gpm. Wells 5, 6 and 24 provide 841 gpm and Alamo Pintado booster pump provide 1,737 gpm and Refugio-3 provides 1,014 gpm for a total inflow to Zone 3 of 3,592 gpm which is 639 gpm greater than the MDD. Stetson considered the operation of all the existing Zone 3 booster pumps and operating the large booster pump at Alamo Pintado along with Refugio-3 provided the best hydraulic condition for both Zones 2 and 3 even though the flow is 639 gpm greater than what is needed to satisfy the MDD. With all the usable Zone 2 booster pumps operating (5,600 gpm) and no upland wells there is net inflow to Zone 2 of 2,849 gpm (5,600 – 1,737 – 1,014 gpm) taking into consideration the water pumped to Zone 3 (1,737 + 1,014 gpm). Zone 2 has a MDD of 5,316 gpm and a net inflow of 2,840 resulting in a shortage of 2,467 gpm (5,316 – 2,849 gpm) to satisfy the MDD in Zone 2. Additional booster pumping capacity from Zone 1 to Zone 2 is needed to satisfy the MDD.

3.4.3 System Operational Settings

The number of water supply pumps operated is governed by the maximum day demand. The maximum hour demand is satisfied by a combination of the water supply pumps, booster pumps and water from the tanks. Zone 2 demands are satisfied with booster pumps. The flow rate of Refugio-2 with all three pumps operating is 1,301 gpm (695 + 303 + 303). Meadow Lark pump station flow with all four pumps operating is 5,227 gpm (1,397 + 1,131 + 1,331 + 1,368). Zone 3 booster pumps are Alamo Pintado (larger pump flow rate of 1,737 gpm) and Refugio-3 (flow rate of 1,014 gpm). The two small Alamo Pintado booster pumps are not required to satisfy the MDD in Zone 3. To determine the water supply pumps (i.e. groundwater well pumps from the 6-cfs and 4-cfs well fields and Mesa Verde pumps) to be operated in Zone 1 mostly depend on meeting the water demands instead of providing system pressure. Any supply pumps in Zone 1 can be operated as long as the water supply meets with Zone 1 demand and the flow rate of booster pumps delivering water to Zone 2.

Operating the upland groundwater wells is limited to the three wells with the lowest Cr6 values. Wells 5, 6, and 24 can pump into Zone 3 with a flow rate of approximately 250 gpm, 300 gpm, and 350 gpm, respectively depending on the system operating pressure. A summary of the normal flow and hydraulic model flow rate in gallons per minute (gpm) for Alternative 4-1 is shown in Attachment C.

Three options were considered to increase the booster pumping capacity by from Zone 1 to Zone 2 to satisfy the MDD.

- 1. Add pump to existing Refugio 2 pump station
- 2. Add pump to existing Meadow Lark pump station
- 3. Add new pump station at Zone 1 reservoir site.

After evaluating the above three options for increasing the booster pumping capacity, adding a new pump at the Zone 1 reservoir location and replacing Refugio 2-1 with a larger pump appears to be the most appropriate option considering the system hydraulics and cost for pipeline enlargements.

3.4.4 Evaluation Criteria and Hydraulic Modeling Results for Alternative 4-1

The Title 22 criteria for service pressure, is to provide a minimum 20 psi at all service connections. Since the Hydraulic Model was calibrated to plus or minus 3 psi, a minimum pressure of 25 psi was used to evaluate the system pressures. In distribution mains, ID1 requires velocities of no more than 4 feet per second (fps) without fire flows during the maximum hour demand.

The simulated hydraulic model results for the maximum hour demand with the booster pumps and well pumps flow rates shown in Attachment C. There are several model nodes that do not meet the minimum pressure of 25 psi. The low pressure critical node is located at Luma Yucca Road just north of Hidden Hills Road with pressure of 15.9 psi prior to the proposed solutions. After new pipe and pumps are installed the pressure increased to 17.1 psi as shown on the map for Alternative 4-1 in Attachment B.

There are 10 pipes that exceed the maximum velocity requirement of 4 fps in Zone 1 as shown in Attachment B. Parallel pipelines were installed to reduce the velocity.

3.4.5 Cost Summary and Conclusions for Alternative 4-1

The hydraulic analysis indicate that installing a new pump at the Refugio 2-1 pump station, new pump station at Zone 1 tank and new pipelines. Moving some delivery point from Zone 2 to Zone 3 and some from Zone 1 to Zone 2 and installing a small booster for an individual service solves the pressure and velocity problems.

3.4.6 Costs for Alternative 4-1 System Improvements Maximum Hour Demand

New pipelines for Alternative 4-1 system improvements consist of 1,600 feet of 8-inch pipeline, 4,300 feet of 10-inch pipeline, and 5,600 feet of 12-inch pipeline. The new system improvements needed to meet the maximum hour demand includes a new booster pump station located at the Zone 1 tank, new pump at Refugio 2-1, control valves, blow offs, air/vacuum valves, electrical controls, SCADA, electric power facilities, and purchase of land and right of ways. The capital cost of the new pipelines, booster pumps, control valves, and other system improvements are \$3,287,000 with an additional annual O&M cost of \$41,000 and an additional energy cost of \$64,000 per year. See Chapter 4 for comparison of cost with other alternatives. See Attachment A for an itemized list and details for cost estimate. See Attachment B for a map showing the system improvements needed to meet the maximum hour demand. See Attachment C for the flow from wells and pumps.

3.4.7 Costs for Alternative 4-2 System Improvements Frost Protection Demand

New pipelines for Alternative 4-2 system improvements consist of 1,600 feet of 8-inch pipeline, 4,300 feet of 10-inch pipeline, and 5,600 feet of 12-inch pipeline. The new system improvements needed to meet the maximum hour demand includes a new booster pump station located at the Zone 1 tank, new pump at Refugio 2-1, control valves, blow offs, air/vacuum valves, electrical controls, SCADA, electric power facilities, and purchase of land and right of ways. The capital cost of the new pipelines, booster pumps, control valves, and other system improvements are \$3,287,000 with an additional annual O&M cost of \$41,000 and an additional energy cost of \$64,000 per year. These costs are the same as Alternative 4-1, no additional system improvements beyond what is proposed for Alternative 4-1 are needed to satisfy the historic frost protection demand. See Chapter 4 for comparison of cost with other alternatives. See Attachment A for an itemized list and details for cost estimate. See Attachment B for a map showing the system improvements needed to meet the maximum hour demand. See Attachment C for the flow from wells and pumps.

3.5 Alternative 5 - Well Treatment Options

Stetson performed hydraulic modeling to support Hazen & Sawyer well treatment options for Alternative 5. This element of the hydraulic modeling for Hazen & Sawyer was to develop pipeline locations for connecting central treatment facilities or individual treatment facilities. Hazen & Sawyer well treatment options are as follows: 1) Treat Wells 1, 2, 3 and 15 at a centralized location at ID1's shop site, 2) Treatment of Wells 27 and 28 at Well 27 site, 3) Treat Well 7 at Well 7 site, and 4) Treat Well 25 at well 25 site. Stetson's hydraulic modeling will have an element of analyzing piping, system capacities, system pressure, booster pumps and storage facilities size and location. Engineers cost estimate for system improvements (pipes, pumps, pumps, etc) were prepared. Cost estimates for well treatment alternatives were prepared by Hazen & Sawyer and provided to Stetson for the cost summary tables.

Alternative 5 – Well Treatment Location Options, there are four well treatment options. Treatment location options considered include the following four options:

- Alt 5-1 Treat Wells 1, 2 and 15 at existing ID1 shop site, 1,900 gpm add Well 3 (600 gpm) as redundant source.
- Alt 5-2 Treat Wells 27 and 28 at Well 27 site
- Alt 5-3 Treat Well 7 at Well 7 site
- Alt 5-4 Treat Well 25 at Well 25 site

3.5.1 Alternative 5-1 Wells 1, 2, 3 and 15 Treatment at ID1 Shop Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at ID1's shop site for treatment and blending of Wells 1, 2, 3 and 15 with Well 3 as a redundant source. Stetson added new dedicated pipelines to the hydraulic model from Well 1, 2, 3 and 15 to the proposed treatment plant located at ID1's shop site. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand at 86 psi. The pressure needed at the treatment plant discharge during the average day demand was estimated at 84 psi. The dedicated pipelines includes a 8-inch diameter pipeline 5,400 feet long from Well 3 to Well 15, a 16-inch diameter pipeline 4,400 long from Well 15 to join pipe to treatment plant, a 6-inch pipeline 100 feet long from Well 1 to Well 2, a 10-inch diameter pipeline from Well 2 to join pipe to treatment plant, a 16-inch diameter pipeline 1,000 feet long from the combined Wells 1, 2, 3 and 15 to treatment plant. The discharge pipeline from the treatment plant is 16-inch diameter 700 feet long as shown on Figure 5. The capital cost of the new pipelines, booster pumps, control valves, other system improvements plus treatment plant costs from Hazen & Sawyer are \$12,299,000 with an additional annual O&M cost of \$1,212,000 and an additional energy cost of \$72,000 per year. See Chapter 4 for comparison of cost with other alternatives. See Attachment A for an itemized list and details for cost estimate. See Attachment B for a map showing the system improvements needed to meet the maximum hour demand. Maximum hour demand pumps and flow rates used in the hydraulic model are shown in Attachment C.

3.5.2 Alternative 5-2 Wells 27 and 28 Treatment at Well 27 Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at Well 27 site for treatment and blending of Wells 27 and 28. Stetson added new dedicated pipelines to the hydraulic model from Well 28 to the proposed treatment plant located at Well 27 site. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand for Zone 2 at 36 psi and Zone 3 at 108 psi. The dedicated pipeline is 10-inches in diameter and 4,000 feet long from Well 28 to Well 27. The discharge from the Zone 2 booster pump will connect to an existing 12-inch diameter pipeline and the discharge from the Zone 3 booster pump will connect to an existing 8-inch diameter pipeline as shown on Figure 6. The capital cost of the new pipelines, control valves, other system improvements plus treatment plant costs from Hazen & Sawyer (including booster pumps) are \$7,538,000 with an additional annual O&M cost of \$737,000 and an additional energy cost of \$49,000 per year. See Chapter 4 for comparison of cost with other alternatives. See Attachment A for an itemized list and details for cost estimate. See Attachment B for a map showing the system improvements needed to meet the maximum hour demand. Maximum hour demand pumps and flow rates used in the hydraulic model are shown in Attachment C.

F:\DATA\2492\CAD\Figure 5 Treatement Plant at ID1 Site.dwg

FIGURE 6

3.5.3 Alternative 5-3 Well 7 at Well 7 Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at Well 7 site for treatment and blending of Well 7. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand at 66 psi. Cost estimates were not prepared by Stetson for Alternative 5-3. Hazen & Sawyer provided a treatment cost of \$3,475,000 with an additional O&M cost of \$433,000 and an additional energy cost of \$24,000.

3.5.4 Alternative 5-4 Well 25 at Well 25 Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at Well 25 site for treatment and blending of Well 25. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand at 49 psi. Cost estimates were not prepared by Stetson for Alternative 5-4. Hazen & Sawyer provided a treatment cost of \$3,475,000 with an additional O&M cost of \$433,000 with an additional energy cost of \$26,000.

3.6 Alternative 6 – Install Packers as Well Treatment Options

Stetson performed hydraulic modeling to support Dudek's well treatment to block inflow from high Cr6 formations by installing packers in the wells for Alternative 6. Stetson's hydraulic modeling will have an element of analyzing piping, system capacities, system pressure, booster pumps and storage facilities size and location. Dudek assumed a reduction of 25% in well flow rate. Engineers cost estimate for system improvements (pipes, pumps, pumps, etc) were prepared. Cost estimates for well packer treatment alternatives were prepared by Dudek and provided to Stetson for the cost summary tables.

Alternative 6 – Install Packers as Well Treatment Options, there are four well packer treatment options. Install well packer options considered include the following four options:

- Alt 6-1 Well 7 block inflow from Cr6 intrusion zone (install packer).
- Alt 6-2 Well 25 block inflow from Cr6 intrusion zone (install packer).
- Alt 6-3 Well 28 block inflow from Cr6 intrusion zone (install packer).
- Alt 6-4 Well 27 block inflow from Cr6 intrusion zone (install packer).

3.6.1 Alternatives 6-1 to 6-4- Install Packers in Wells 7, 25, 28 and 27

New pipelines for Alternatives 6-1 to 6-4 system improvements are the same and consist of 3,400 feet of 8-inch pipeline and 8,300 feet of 12-inch pipeline. The new system improvements needed to meet the maximum hour demand includes a new booster pump station located at the Zone 1 tank, control valves, blow offs, air/vacuum valves, electrical controls, SCADA, electric power facilities, and purchase of land and right of ways. The capital cost of the new pipelines, booster pumps, control valves, and other system improvements are \$3,434,000 including \$100,000 for installation of the packer, with an additional annual O&M cost of \$50,000 and an additional energy cost of \$34,000, \$6,000, \$16,000, \$59,000 per year for Alternatives 6-1, 6-2, 6-3 and 6-4, respectively. See Chapter 4 for comparison of cost with other alternatives. See Attachment A for an itemized list and details for cost estimate. See Attachment B for a map showing the system improvements needed to meet the maximum hour demand. See Attachment C for the flow from wells and pumps.

4.0 ENGINEERING COST ESTIMATION FOR ALTERNATIVES

Stetson performed engineering cost estimation for Alternatives 1 through 6 based on pipelines, pump and other facilities needed to provide required system pressure and limit the maximum velocity in the pipelines to about 4 feet per second during the maximum hour demand. Hazen and Sawyer provided cost for water treatment of wells (Alternative 5) and Dudek provided cost for well packers (Alternative 6). System improvement capital costs were annualized using an interest rate of 5% and expected life of 20 years for each component as shown on Table 9. Additional costs for operation and maintenance (O&M) for the alternatives were estimated based on percentage of capital cost. O&M cost for water treatment were provided by Hazen & Sawyer. Energy costs were estimated based on the additional cost to pump water from Zone 1 instead of using the Upland wells. See Attachment A for an itemized list and details for cost estimate for each alternative. Table 12 shows a summary of the costs for each alternative. Following the table is a description of each cost component shown in Table 12.

4.1 Mobilization and Demobilization Cost

Mobilization cost includes all activities and associated costs for transportation of construction contractor's personnel, equipment, and operating supplies to the project site; establishment of offices, buildings, and other necessary general facilities for the construction contractor's operations at the construction site; premiums paid for performance and payment bonds, including coinsurance and reinsurance agreements as applicable are typically included in mobilization costs. Demobilization cost include all activities and costs for transportation of personnel, equipment, and supplies not required or included in the contract from the site; including the disassembly, removal and site cleanup, of offices, buildings and other facilities assembled on the site specifically for the construction project. Mobilization and demobilization cost was estimated as 5 percent of all capital costs excluding land and right of ways, contingencies, engineering and design, and construction management and bidding.

4.2 Pipelines

The pipelines consist of PVC pipelines. The pipeline costs were estimated for materials and installation of PVC pipeline sizes ranging from 6 to 16 inches in diameter. Unit costs of pipes are shown in Table 13.

Table 12 Capital Cost, Annualized Capital Cost and O&M Cost Summary for Each Alternative

									Alternati	ive Number:							
Capital	Cost Summary	1-1	1-2	1-3	1-4	1-5	1-6	2	3	4-1	4-2	5-1	5-2	6-1	6-2	6-3	6-4
		Blending Well						Separate		Minimum use	Frost Protection	Well Treatment	Well				
		7 & 24 at Zone	Blending	Blending	Blending	Blending	Blending	Irrigation	Gallery Well	of Upland	Min. use of	Wells 1, 2, 3 &	Treatment	Well 7 block	Well 25 block	Well 28 block	Well 27 block
Notes	Item	3 Tank	Well 24 & 7	Well 27 & 72	Well 28 & Z2	Well 5 & 25	Well 24 & 25	System	Treatment	Wells	Upland Wells	15	Wells 27 & 28	inflow	inflow	inflow	inflow
[1]	Mobilization and demobilization	\$122,000	\$119,000	\$142,000	\$142,000	\$129,000	\$137,000	\$768,000	\$181,000	\$102,000	\$102,000	\$409.000	\$250,000	\$107.000	\$107.000	\$107.000	\$107.000
[2]	Pipelines	\$1,990,000	\$1,986,000	\$2 249 000	\$2 100 000	\$2 123,000	\$2 283 000	\$13,645,000	\$1 664 000	\$1 590 000	\$1 590 000	\$3,288,000	\$1 597 000	\$1,634,000	\$1,634,000	\$1,634,000	\$1 634 000
[2]	Control Valves	\$221,000	\$198,000	\$234,000	\$254,000	\$213,000	\$212,000	\$1,037,000	\$100,000	\$1,550,000	\$1,550,000	\$207,000	\$120,000	\$154,000	\$154,000	\$154,000	\$1,054,000
[3]	Topla	\$221,000	\$198,000 \$0	\$234,000	\$254,000	\$215,000	\$212,000	\$1,037,000	\$199,000 ¢0	\$155,000	\$155,000	\$207,000	\$120,000	\$154,000	\$154,000 ¢0	\$154,000	\$154,000 ¢0
[4]		\$U ¢07.000	\$U \$07.000	\$U	\$U	\$U	\$U	\$420,000	\$U	\$U \$100.000	\$U #100.000	\$U	\$U	\$U	\$U	\$U	\$U
[5]	Pump Stations	\$95,000	\$95,000	\$215,000	\$320,000	\$110,000	\$110,000	\$98,000	\$255,000	\$180,000	\$180,000	\$63,000	\$15,000	\$135,000	\$135,000	\$135,000	\$135,000
[6]	Electrical Controls	\$55,000	\$55,000	\$95,000	\$115,000	\$60,000	\$60,000	\$45,000	\$95,000	\$55,000	\$55,000	\$15,000	\$5,000	\$55,000	\$55,000	\$55,000	\$55,000
[7]	SCADA System	\$50,000	\$25,000	\$25,000	\$25,000	\$25,000	\$25,000	\$75,000	\$50,000	\$25,000	\$25,000	\$25,000	\$25,000	\$25,000	\$25,000	\$25,000	\$25,000
[8]	Water Treatment Plant or well treatment	\$0	\$0	\$0	\$0	\$0	\$0	\$20,000	\$1,300,000	\$0	\$0	\$20,000	\$0	\$100,000	\$100,000	\$100,000	\$100,000
[8]	WTP Hazen & Sawyer	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$4,542,000	\$3,223,000	\$0	\$0	\$0	\$0
[9]	Electrical Power Facilities	\$30,000	\$30,000	\$30,000	\$30,000	\$40,000	\$40,000	\$15,000	\$50,000	\$30,000	\$30,000	\$10,000	\$10,000	\$30,000	\$30,000	\$30,000	\$30,000
[10]	Land and Right of Ways	\$231,000	\$230,000	\$230,000	\$230,000	\$260,000	\$260,000	\$400,000	\$480,000	\$230,000	\$230,000	\$30,000	\$36,000	\$230,000	\$230,000	\$230,000	\$230,000
[11]	Contingencies	\$256,000	\$251,000	\$299,000	\$299,000	\$270,000	\$287,000	\$1,612,000	\$379,000	\$214,000	\$214,000	\$858,000	\$525,000	\$224,000	\$224,000	\$224,000	\$224,000
[12]	Engineering and Design	\$423,000	\$414.000	\$493.000	\$493.000	\$446.000	\$473.000	\$2.660.000	\$626,000	\$353.000	\$353.000	\$1,416,000	\$866.000	\$370.000	\$370.000	\$370.000	\$370.000
[13]	Construction Management and Bidding	\$423.000	\$414.000	\$493.000	\$493.000	\$446.000	\$473.000	\$2.660.000	\$626.000	\$353.000	\$353.000	\$1,416,000	\$866.000	\$370.000	\$370.000	\$370.000	\$370.000
1.1	Total Canital Cost	\$3,896,000	\$3 817 000	\$4 505 000	\$4 501 000	\$4 122 000	\$4 360 000	\$23 455 000	\$5 905 000	\$3 287 000	\$3 287 000	\$12,299,000	\$7 538 000	\$3 434 000	\$3 434 000	\$3 434 000	\$3 434 000
	A createst (AE) pumped per year	\$ 5,070,000 5,582	φ 3,017,000 5 582	φ -1,505,000 5 582	φ -,	φ 	φ -1,500,000 5 582	¢20,400,000	φ 5,205,000 5 582	φ 3,207,000 5 582	φ 3,207,000 5 582	¢12,277,000 5 582	φ7 ,556,000 5 582	φ 3,434,000 5 582	φ 3,434,000 5 582	φ υ,τυτ,000 5 582	φ υ,τυτ,000 5 582
	¢/AE	5,582	5,582	907	906	5,582	5,582	4 202	1,059	590	580	2,582	1,362	5,562	5,562	5,562	5,582
	φ/ Α Γ	098	064	807	800	/38	/01	4,202	1,038	569	569	2,205	1,550	015	015	015	015
Annuali	zed Canital Cost	1-1	1-2	1-3	1-4	1-5	1-6	2	3	4-1	4-2	5-1	5-2	6-1	6-2	6-3	6-4
[20]	Mobilization and demobilization	\$9.800	\$9 500	\$11 400	\$11.400	\$10,400	\$11,000	\$61.600	\$14 500	\$8 200	\$8 200	\$32,800	\$20,100	\$8 600	\$8 600	\$8 600	\$8 600
[20]	Dipalinas	\$150.700	\$159,400	\$180,500	\$168 500	\$170,400	\$183,200	\$1,000	\$133 500	\$127,600	\$127.600	\$263,800	\$128,100	\$131,100	\$131,100	\$131,000	\$131,100
[20]	Control Values	\$137,700	\$15,400	\$18,500	\$20,400	\$170,400 \$17,100	\$17,000	\$22,00	\$150,000	\$127,000	\$127,000	\$16,600	\$0,600	\$131,100	\$12,400	\$131,100	\$131,100
[20]		\$17,700	\$13,900	\$10,000	\$20,400	\$17,100	\$17,000	\$65,200	\$10,000	\$12,400	\$12,400	\$10,000	\$9,000	\$12,400	\$12,400	\$12,400	\$12,400
[20]	Tanks	\$U	\$U	\$0	\$U	\$U	\$0	\$33,700	\$0	\$0	\$0	\$U	\$0	\$0	\$0	\$0	\$0
[20]	Pump Stations	\$7,600	\$7,600	\$17,300	\$25,700	\$8,800	\$8,800	\$7,900	\$20,500	\$14,400	\$14,400	\$5,100	\$1,200	\$10,800	\$10,800	\$10,800	\$10,800
[20]	Electrical Controls	\$4,400	\$4,400	\$7,600	\$9,200	\$4,800	\$4,800	\$3,600	\$7,600	\$4,400	\$4,400	\$1,200	\$400	\$4,400	\$4,400	\$4,400	\$4,400
[20]	SCADA System	\$4,000	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000	\$6,000	\$4,000	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000
[20]	Water Treatment Plant or well treatment	\$0	\$0	\$0	\$0	\$0	\$0	\$1,600	\$104,300	\$0	\$0	\$1,600	\$0	\$8,000	\$8,000	\$8,000	\$8,000
[20]	WTP Hazen & Sawyer	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$364,500	\$258,600	\$0	\$0	\$0	\$0
[20]	Electrical Power Facilities	\$2,400	\$2,400	\$2,400	\$2,400	\$3,200	\$3,200	\$1,200	\$4,000	\$2,400	\$2,400	\$800	\$800	\$2,400	\$2,400	\$2,400	\$2,400
[20]	Land and Right of Ways	\$18,500	\$18,500	\$18,500	\$18,500	\$20,900	\$20,900	\$32,100	\$38,500	\$18,500	\$18,500	\$2,400	\$2,900	\$18,500	\$18,500	\$18,500	\$18,500
[20]	Contingencies	\$20,500	\$20,100	\$24,000	\$24,000	\$21,700	\$23.000	\$129.400	\$30.400	\$17.200	\$17.200	\$68.800	\$42,100	\$18.000	\$18.000	\$18,000	\$18,000
[20]	Engineering and Design	\$33,900	\$33,200	\$39,600	\$39,600	\$35,800	\$38,000	\$213,400	\$50,200	\$28,300	\$28,300	\$113,600	\$69,500	\$29,700	\$29,700	\$29,700	\$29,700
[20]	Construction Management and Bidding	\$33,900	\$33,200	\$39,600	\$39,600	\$35,800	\$38,000	\$213,100	\$50,200	\$28,300	\$28,300	\$113,600	\$69,500	\$29,700	\$29,700	\$29,700	\$29,700
[20]	Total Annualized Capital Cost (rounded)	\$312,000	\$306,000	\$362,000	\$361,000	\$331,000	\$350,000	\$1 882 000	\$474,000	\$264,000	\$26,000	\$987,000	\$605,000	\$276,000	\$276,000	\$276,000	\$276,000
	A are feet (AE) summed per veer	\$512,000	\$ 300,000 5 592	\$302,000 5 592	\$301,000 5 592	\$331,000 5 592	\$ 330,000 5 590	\$ 1,002,000 5 592	\$ 474,000	\$ 204,000 5 590	\$ 204,000 5 590	\$ 707,000 5 590	φ υυ 5,000	\$270,000	\$270,000 5 590	\$270,000 5 592	\$270,000 5 590
	Acre leet (AF) pumped per year	5,582	5,582	5,582	5,582	5,582	5,582	5,582	5,582	5,582	5,582	5,582	3,382	5,582	5,582	5,582	5,582
	\$/yr/AF	56	55	65	65	59	63	337	85	47	47	1//	108	49	49	49	49
Annual	O&M Cost Summary	1-1	1-2	1-3	1-4	1-5	1-6	2	3	4-1	4-2	5-1	5-2	6-1	6-2	6-3	6-4
[25]	Mobilization and demobilization	\$1,200	\$1,200	\$1,400	\$1,400	\$1,300	\$1,400	\$7,700	\$1,800	\$1,000	\$1,000	\$4,100	\$2,500	\$1,100	\$1,100	\$1,100	\$1,100
[25]	Pipelines	\$29,900	\$29.800	\$33,700	\$31,500	\$31,800	\$34.200	\$204.700	\$25.000	\$23.900	\$23,900	\$49.300	\$24,000	\$24.500	\$24,500	\$24.500	\$24,500
[25]	Control Valves	\$4 400	\$4,000	\$4 700	\$5,100	\$4 300	\$4 200	\$20,700	\$4,000	\$3,100	\$3,100	\$4 100	\$2,400	\$3,100	\$3,100	\$3,100	\$3,100
[25]	Tanks	\$0	\$0	\$0	\$0	\$0 \$0	\$0	\$4 200	\$0	\$0	\$0,100	\$0	\$0	\$0	\$0	\$0	\$0
[25]	Dump Stations	\$4 800	00 \$4 800	\$10 800	\$16.000	\$5 500	\$5 500	\$4,000	φ0 \$12 800	00 000 02	00 000 02	\$2 200	00	Φ¢ \$6 800	Φ \$6 800	ΦΦ \$6 800	00 \$6 800
[25]	Fump Stations	\$4,000 \$600	\$4,800 \$600	\$10,800	\$10,000	\$5,500	\$3,300	\$4,900 \$500	\$12,800	\$9,000	\$9,000 \$600	\$3,200	\$000 \$100	\$0,800 \$600	\$0,800 \$600	\$0,800 \$600	\$0,800 \$600
[25]	Electrical Controls	\$000	\$000	\$1,000	\$1,200	\$000	\$000	\$500	\$1,000	\$000	\$000	\$200	\$100	\$000	\$600	\$000	\$000
[25]	SCADA System	\$2,500	\$1,300	\$1,300	\$1,300	\$1,300	\$1,300	\$3,800	\$2,500	\$1,300	\$1,300	\$1,300	\$1,300	\$1,300	\$1,300	\$1,300	\$1,300
[25]	Water Treatment Plant or well treatment	\$0	\$0	\$0	\$0	\$0	\$0	\$2,000	\$130,000	\$0	\$0	\$2,000	\$0	\$10,000	\$10,000	\$10,000	\$10,000
[25]	WTP Hazen & Sawyer	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$1,139,000	\$700,000	\$0	\$0	\$0	\$0
[25]	Electrical Power Facilities	\$300	\$300	\$300	\$300	\$400	\$400	\$200	\$500	\$300	\$300	\$100	\$100	\$300	\$300	\$300	\$300
[25]	Land and Right of Ways	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
[25]	Contingencies	\$2,600	\$2,500	\$3,000	\$3,000	\$2,700	\$2,900	\$16,100	\$3,800	\$2,100	\$2,100	\$8,600	\$5,300	\$2,200	\$2,200	\$2,200	\$2,200
[25]	Engineering and Design	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
[25]	Construction Management and Bidding	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	Total O&M (rounded)	\$46.000	\$45.000	\$56.000	\$60.000	\$48.000	\$51.000	\$265.000	\$181.000	\$41.000	\$41,000	\$1.212.000	\$737.000	\$50.000	\$50.000	\$50.000	\$50.000
		+ -0,000		<i>~~</i> 0,000	+00,000	+ .0,000	+	+=00,000	+ = = = = = = = = = = = = = = = = = = =		+ , 500	+-, ,000	+ ,		+= 0,000	+= 0,000	<i>~~</i> 0,000
[28]	Energy Cost (additional)	\$35,000	\$35,000	\$38,000	\$38,000	\$13,000	\$13,000	\$57,000	\$121,000	\$64,000	\$64,000	\$72,000	\$49,000	\$34,000	\$6,000	\$16,000	\$59,000
Pipe Size I.D. (inches)	Material	Design Pressure (psi)	Pipe Class	Total Cost (\$/ft)													
-------------------------------	----------	-----------------------------	------------	-----------------------													
6	PVC	165	C900	100													
8	PVC	165	C900	110													
10	PVC	165	C900	130													
12	PVC	165	C900	150													
16	PVC	165	C905	210													

 TABLE 13.
 UNIT PIPE COSTS

I.D. = Inside diameter

The pipe material proposed for all new pipelines is PVC. Water pressure, energy losses (head losses), and flow velocity was determined for each pipeline using the hydraulic model. Each pipeline segment was designed to satisfy the flow required by the area to be served and based on the maximum hour demand.

As with any system requiring closed pressurized pipes, typical of municipal and irrigation water delivery systems, the design of pipe networks is based on the maximum allowable velocity while meeting hydraulic requirements. The pipeline system was designed to satisfy the maximum hour demand. Pipeline design involves determining the maximum total dynamic head, which enables the engineer to select the proper pump size.

Pipe diameters were optimized to reduce the combined cost of pumps, energy, pipeline materials, and installation. Smaller diameter pipe is less expensive to purchase and install but increases pumping costs by increasing energy losses due to friction. Pipe diameters are selected to have a velocity of less than four feet per second and a maximum velocity of seven feet per second for frost protection events. The diameter of each new pipeline is calculated based on flow rate and velocity of the flow.

The friction losses each pipe was estimated using the Hazen-Williams equation which is expressed as follows:

$$hf = \frac{10.44 * Q^{1.852} * L}{C^{1.852} * D^{4.87}}$$

Where:

hf = Friction head loss [feet] O = Flow [gpm]

D = Pipe diameter [inches]

$$L$$
 = Length of pipe [feet]

C = Hazen-Williams coefficient

A Hazen-Williams coefficient "C" of 150 was used for design of the proposed new pipelines.

4.3 Control Valves

Control valves costs were estimated for gate valves, check valves, pressure reducing valves, blow-off valve assembly, air/vac and air release valves for the proposed new pipelines. Costs for control valves were based on two valves per pipeline. Costs for blow-offs and air/vac and air release valves were based on one per pipeline or one every 2,000 feet of pipe for long pipelines. Costs for inline static mixers were included for the blending alternatives. Costs for pressure reducing valves and flow control valves were also included for Alternatives 2 and 5.

4.4 Tanks

Hydropneumatic tanks (15,000 gallon) are used to control pressure at proposed new booster pumps for Alternatives 2 and 3. The cost for a proposed new 128,000-gallon storage tank was estimated for Alternative 2 (separate irrigation system) for pressure regulation in Zone 2.

4.5 Pump Stations

Pump stations are required to provide sufficient energy to move water from the source to one or more delivery points. Pump stations may be one or more individual pumps and refer to all works including structures, pumps, electrical controls, and accessories. Pump stations are sized based on the peak flow rate and the total dynamic head (TDH) required to deliver water to the model nodes with a minimum system pressure of 25 psi during the maximum hour demand. Total dynamic head is the sum of the change in elevation from the water source to the model node elevation, the pressure requirement and the head loss due to friction along the length of pipe, at bends and valves. The horsepower rating for each of the pumps is based on peak flows in the pipeline, the total dynamic head and the pump efficiency, according to the following equation.

 $Hp = \frac{Q * TDH}{3960 * \eta}$

Where:

Нр	= Pump horsepower
Q	= Flow rate, [gallons per minute]
TDH	= Total dynamic head, [feet]
η	= Pump and motor efficiency [75%]

4.6 Electrical Controls

Electrical controls for pump motors includes costs for control panels, control boxes, overload protection, low water shutoff, electrical wires, conduits, pressure sensors, starters, relays, capacitors and reduced voltage starters.

4.7 SCADA System

Supervisory control and data acquisition (SCADA) cost includes remote terminal unit panel, telemetry, programmable logic controller, associated conduits, and communication equipment. Cost for SCADA was added to all proposed new pump stations and storage tanks.

4.8 Water Treatment Plant or Well Treatment

Stetson estimated the cost for the surface water treatment of the Gallery Well for Alternative 3. Dudek estimated the cost for packers for Alternative 6 at \$100,000 for each well.

4.9 Water Treatment Plant Design by Hazen & Sawyer

Cost for water treatment of Cr6 were provided by Hazen & Sawyer for Alternatives 5 as shown on Table 14.

Alternative	Capital Cost ¹⁾	O&M	Pumping
5-1	6,820,000	1,139,000	54,000
5-2	4,839,000	700,000	54,000
5-3	3,475,000	433,000	24,000
5-4	3,475,000	433,000	26,000

TABLE 14. TREATMENT COST BY HAZEN & SAWYER

Note: ¹ Capital costs reduced to 66.6% to remove mobilization and demobilization, engineering, and contingencies and construction management.

4.10 Electrical Power Facilities

Electrical power facilities includes power line and transformer costs were calculated based on the electrical distribution lines needed to provide electric power to the proposed new booster pump stations from the closest existing power line. It was assumed that the existing power grid in the area has adequate capacity to satisfy the power needs of the water system well pumps and booster pumps.

Electricity to power the pumps is provided by an electrical distribution line leading to the booster pump stations. Construction of the electrical distribution line is estimated to cost \$10.00 per foot. This amount corresponds to the approximate cost of a 12.5-volt electrical distribution line. Cost also includes electrical service, meter, and electrical utility box.

4.11 Land and Right of Ways

Cost for purchase of land and right of ways for buried pipelines, Gallery Well treatment plant and booster pumps were estimated based on 20-foot wide right of ways for pipelines and a 20 foot by 20 foot lot for small booster pumps and 50 foot by 50 foot lot for large booster pumps and 100 foot by 100 foot lot for the Gallery Well treatment plant. The estimated cost for right of ways was based on \$4 per foot from recent right of way purchases by ID1. Buried pipeline right of ways typically cost 10 percent of the land cost. The estimated cost of the land purchase for booster pumps and Gallery Well treatment plant is \$30,000, \$200,000, and \$250,000, respectively.

4.12 Contingencies

Costs for contingencies were included in the total capital cost of the water system improvement project to cover differences between actual and estimated quantities of materials, unforeseeable difficulties at the site, minor changes in plans and other uncertainties in design plans. Contingencies cost is based on an assumption of 10% added to all cost components of the water system improvement project except land and right of ways, engineering and design, and construction management and bidding.

4.13 Engineering and Design

Engineering and design was estimated at 15% of the construction cost including contingencies but not including land and right of ways and construction management and bidding.

4.14 Construction Management and Bidding

Construction management and bidding was estimated at 15% of all the construction cost not including engineering and design and land and right of ways.

4.15 Annualized Capital Cost

The total capital cost was annualized using and annual interest rate of five (5) percent and a useful project life of 20 years for all capital costs.

4.16 Annual Operation and Maintenance Cost

The annual operation and maintenance (O&M) costs associated with the proposed new facilities include the additional costs to operate and maintain the proposed new pipelines, pumps and other water system facilities. These individual costs are estimated based on a percentage of the capital cost. O&M is estimated at one percent of capital costs for mobilization and demobilization, tanks, electrical controls, electrical power facilities and contingencies. O&M is estimated at 1.5 percent for pipelines and two percent for control valves. O&M is estimated at five percent for pump stations and SCADA systems and ten percent for water treatment plant and well treatment. Hazen & Sawyer estimated the O&M cost for the water treatment plants for Alternative 5.

4.17 Energy Cost

The annual energy cost to pump water is based on the additional cost for pumping water compared to the annual cost to pump water during an average year when 5,582 acre-feet of water is pumped. Table 15 shows the calculation of 2013 pumping cost of \$643,384 and an average year pumping cost of \$622,478. Table 16 shows the cost for pumping an acre-foot of water (325,851 gallons) for each of the wells, pumps, and booster pumps based on 2013 data provided by ID1. The energy cost for each alternative and each complete option are shown in Attachments A and D, respectively.

Water Supply	2013 AF	Percent	2013 \$/AF	2013 \$	Average AF	Average \$
Upland Wells	2,185	37.9%	123	\$268,755	2,116	\$260,268
MVPS, SWP	2,529	43.8%	37	\$93,573	2,444	\$90,428
River Wells	1,056	18.3%	81	\$85,536	1,022	\$82,782
	5,770	100.0%		\$447,864	5,582	\$433,478
Zone 1 to Zone 2	2,754	47.7%	40	\$110,160	2,663	\$106,520
Zone 2 to Zone 3	1,067	18.5%	80	\$85,360	1,031	\$82,480
			Total	\$643,384	Total	\$622,478
			\$/AF	112	\$/AF	112

TABLE 15. PUMPING COST FOR 2013

Water	Loodier	Well	Cost ¹⁾	Pressure
Source	Location	INO.	(\$/AF)	Lone
Wells				
	Upland	1	123	2
	Upland	2	123	2
	Upland	3	86	2
	Upland	5	140	3
	Upland	6	225	3
	Upland	7	153	3
	Upland	15	86	2
	Upland	24	210	3
	Upland	25	107	3
	Upland	27	124	2
	Upland	28	90	2
	6 cfs well field	All	80	1
	4 cfs well field	All	110	1
	Gallery Well		80	1
State Wa	ter Project (SWP) and Booster	Pumps		
	Mesa Verde Pump Station		37	1
	Zone 1 to Zone 2		40	1
	Zone 2 to Zone 3		80	2

TABLE 16. ENERGY COST FOR PUMPING WATER

Note: ¹ 2013 estimated pumping cost per acre-foot. Weighted average cost for 4 cfs and 6 cfs well field cost was used for river wells based on pumping rates of wells for each alternative.

5.0 COMPLETE OPTIONS

After the analysis was performed on each alternative, complete options were developed by the project team by combining appropriate alternatives. In addition, engineering cost analysis was preformed to compare complete options which combine the alternatives and options. Engineering cost analysis includes project costs, capitalized project cost along with annual costs for energy, operation, and maintenance. Cost summary tables for each complete option are shown in Attachment D. Maps of proposed solutions for each complete option are shown in Attachment E. Flow from wells and pumps for each complete option are shown in Attachment F. Below is a list of twelve (12) complete options (A to H) that were evaluated to address the high Cr6 in the upland wells.

A Complete Option A – includes the following five alternatives:

- Alt 3-1 Surface water treatment of Gallery Well.
- Alt 5-1 Treat Wells 1, 2, 3 and 15 at existing ID1 shop site.
- Alt 5-2 Treat Wells 27 and 28 at Well 27 site
- Alt 5-3 Treat Well 7 at Well 7 site
- Alt 5-4 Treat Well 25 at Well 25 site

B Complete Option B – includes the following four alternatives:

- Alt 5-1 Treat Wells 1, 2, 3 and 15 at existing ID1 shop site.
- Alt 5-2 Treat Wells 27 and 28 at Well 27 site
- Alt 5-3 Treat Well 7 at Well 7 site
- Alt 5-4 Treat Well 25 at Well 25 site

C Complete Option C – includes the following five alternatives:

- Alt 1-4 Blend Well 28 with Zone 2 water then pumped into Zone 3.
- Alt 5-1 Treat Wells 1, 2, 3 and 15 at existing ID1 shop site.
- Alt 5-3 Treat Well 7 at Well 7 site
- Alt 5-4 Treat Well 25 at Well 25 site
- Alt 6-4 Well 27 install packer

D Complete Option **D** – includes the following four alternatives:

- Alt 1-2 Blend Well 7 with Well 24 at Well 7 site.
- Alt 1-5 Blend Well 5 with Well 25 at Well 25 site.
- Alt 5-1 Treat Wells 1, 2, 3 and 15 at existing ID1 shop site.
- Alt 5-2 Treat Wells 27 and 28 at Well 27 site

D-P Complete Option **D-P** – includes the following four alternatives:

- Alt 5-1 Treat Wells 1, 2, 3 and 15 at existing ID1 shop site.
- Alt 5-2 Treat Wells 27 and Well 28 at Well 27 site
- Alt 6-1 Well 7 install packer
- Alt 6-2 Well 25 install packer

D-C Complete Option **D-C** – includes the following six alternatives:

- Alt 1-2 Blend Well 7 with Well 24 at Well 7 site.
- Alt 1-5 Blend Well 5 with Well 25 at Well 25 site.
- Alt 5-1 Treat Wells 1, 2, 3 and 15 at existing ID1 shop site.
- Alt 5-2 Treat Wells 27 and 28 at Well 27 site
- Alt 6-1 Well 7 install packer
- Alt 6-2 Well 25 install packer

E Complete Option **E** – includes the following five alternatives:

- Alt 1-2 Blend Well 7 with Well 24 at Well 7 site.
- Alt 1-4 Blend Well 28 with Zone 2 water then pumped into Zone 3.
- Alt 1-5 Blend Well 5 with Well 25 at Well 25 site.
- Alt 5-1 Treat Wells 1, 2, 3 and 15 at existing ID1 shop site.
- Alt 6-4 Well 27 install packer

E-P Complete Option **E-P** – includes the following five alternatives:

- Alt 1-4 Blend Well 28 with Zone 2 water then pumped into Zone 3.
- Alt 5-1 Treat Wells 1, 2, 3 and 15 at existing ID#1 shop site.
- Alt 6-1 Well 7 install packer
- Alt 6-2 Well 25 install packer
- Alt 6-4 Well 27 install packer

E-C Complete Option E-C – includes the following seven alternatives:

- Alt 1-2 Blend Well 7 with Well 24 at Well 7 site.
- Alt 1-4 Blend Well 28 with Zone 2 water then pumped into Zone 3.
- Alt 1-5 Blend Well 5 with Well 25 at Well 25 site.
- Alt 5-1 Treat Wells 1, 2, 3 and 15 at existing ID1 shop site.
- Alt 6-1 Well 7 install packer
- Alt 6-2 Well 25 install packer
- Alt 6-4 Well 27 install packer

F Complete Option **F** – includes the following alternative:

• Alt 4-1 – Minimize Use of Upland Wells with High Cr6 Maximum hour demand (June), *use Wells 5, 6 and 24*.

G Complete Option **G** – includes the following four alternatives:

- Alt 1-2 Blend Well 7 with Well 24 at Well 7 site.
- Alt 1-5 Blend Well 5 with Well 25 at Well 25 site.
- Alt 2 Separate Irrigation System
- Alt 6-4 Well 27 install packer

H Complete Option H – includes the following four alternatives:

- Alt 1-2 Blend Well 7 with Well 24 at Well 7 site.
- Alt 1-5 Blend Well 5 with Well 25 at Well 25 site.
- Alt 6-3 Well 28 install packer
- Alt 6-4 Well 27 install packer

A summary of the well and pump flows for each complete option is shown on Table 17.

ary	
w Summa	
ump Flo	
ell and P	
tions We	
Complete Op	
Table 17 (

			Normal														
Water	•	Well or Pump	Flow		1	ł	1		1	Complete	Options	1	1	ł			
Source	Name	No.	(mdg)	Α	в	С	D	D-P	D-C	Е	E-P	E-C	F	G	Η	Nothing 1	Existing
Wells																	
Up	land	1	200	200	200	200	200	200	200	200	200	200	0	200	0	0	200
Up	land	2	500	500	500	500	500	500	500	500	500	500	0	500	0	0	500
Up	land	ю	600	0	0	0	0	0	0	0	0	0	0	600	0	0	0
Up	land	S	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250
Up	land	9	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300
Up	land	7	006	900	900	006	006	650	650	006	650	650	0	900	006	0	900
Up	land	15	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	0	1,200	0	0	1,200
Up	land	24	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300
Up	land	25	950	950	950	950	950	700	700	950	700	700	0	950	950	0	950
Up	land	27	1,250	1,250	1,250	950	1,250	1,250	1,250	950	950	950	0	950	950	0	1,250
Up	land	28	750	750	750	500	750	750	750	500	500	500	0	750	500	0	750
		Subtotal	7,200	6,600	6,600	6,050	6,600	6,100	6,100	6,050	5,550	5,550	850	6,900	4,150	850	6,600
6 ci	fs field	8	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150
6 c	fs field	6	375	375	375	375	375	375	375	375	375	375	375	375	375	375	375
6 c	fs field	10	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600
6 c	fs field	19	260	260	260	260	260	260	260	260	260	260	260	260	260	260	260
6 c	fs field	21	275	275	275	275	275	275	275	275	275	275	275	275	275	275	275
6 c	fs field	22	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
6 c.	fs field	23	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400
		Subtotal	2,260	2,260	2,260	2,260	2,260	2,260	2,260	2,260	2,260	2,260	2,260	2,260	2,260	2,260	2,260
4 c	fs field	12	600	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4 c:	fs field	14	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600
4 c	fs field	17	375	375	375	375	375	375	375	375	375	375	375	375	375	375	375
4 c	fs field	18	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
		Subtotal	1,775	1,175	1,175	1,175	1,175	1,175	1,175	1,175	1,175	1,175	1,175	1,175	1,175	1,175	1,175
Gai	llery well		776	776	0	0	0	0	0	0	0	0	0	776	0	0	0
		Wells Total	12,011	10,811	10,035	9,485	10,035	9,535	9,535	9,485	8,985	8,985	4,285	11,111	7,585	4,285	10,035
State Water	· Project/ I	Exchange															
Me	sa Verde P	^o ump Station															
		MV-1	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200
		MV-2	1,145	1,145	1,145	1,145	1,145	1,145	1,145	1,145	1,145	1,145	1,145	1,145	1,145	1,145	1,145
		MV-3	885	885	885	885	885	885	885	885	885	885	885	885	885	885	885
		MV-4	865	865	865	865	865	865	865	865	865	865	865	865	865	865	865
		MV-5	1,105	1,105	1,105	1,105	1,105	1,105	1,105	1,105	1,105	1,105	1,105	1,105	1,105	1,105	1,105
		Subtotal	5,200	5,200	5,200	5,200	5,200	5,200	5,200	5,200	5,200	5,200	5,200	5,200	5,200	5,200	5,200
		Total System	17,211	16,011	15,235	14,685	15,235	14,735	14,735	14,685	14,185	14,185	9,485	16,311	12,785	9,485	15,235
		MDD	9,527	9,527	9,527	9,527	9,527	9,527	9,527	9,527	9,527	9,527	9,527	9,527	9,527	9,527	9,527
		% of MDD	181%	168%	160%	154%	160%	155%	155%	154%	149%	149%	100%	171%	134%	100%	160%
MDD based	on July 12,	, 2006 maximum	day for 20	04 to 2013	period of r	ecord								4,026 I1	rrigation we	ells	

MDD based on July 12, 2006 maximum day for 2004 to 2013 period of record

5.1 Complete Option A

Complete Option A – includes the following five alternatives:

- Alt 3-1 Surface water treatment of Gallery Well.
- Alt 5-1 Treat Wells 1, 2, 3 and 15 at existing ID1 shop site.
- Alt 5-2 Treat Wells 27 and 28 at Well 27 site
- Alt 5-3 Treat Well 7 at Well 7 site
- Alt 5-4 Treat Well 25 at Well 25 site

Stetson performed hydraulic modeling to determine the cost water system improvements when all the alternatives listed in Complete Option A are implemented.

5.1.1 Alternative 3-1 Surface Water Treatment of Gallery Well

Stetson Engineers prepared a feasibility design and cost estimate for bringing the Gallery Well into production including surface water treatment. Stetson performed hydraulic modeling analysis to provide system improvements need to deliver the treated surface water up to Zones 2 and 3. The Gallery Well appropriation allows a peak diversion rate of 1.73 cfs (776 gpm) and a maximum annual volume of 515 acre-feet. The system improvements needed to bring the Gallery Well into production includes the cost for the treatment plant and booster pump station located at the treatment plant site as previously shown on Figure 4.

5.1.2 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at ID1's shop site for treatment and blending of Wells 1, 2, 3 and 15 with Well 3 as a redundant source. Stetson added new dedicated pipelines to the hydraulic model from Well 1, 2, 3 and15 to the proposed treatment plant located at ID1's shop site. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand at 84 psi. The pressure needed at the treatment plant discharge during the average day demand was estimated at 82 psi. The dedicated pipelines includes a 8-inch diameter pipeline 5,400 feet long from Well 3 to Well 15, a 16-inch diameter pipeline 4,400 long from Well 15 to join pipe to treatment plant, a 6-inch pipeline 100 feet long from Well 1 to Well 2, a 10-inch diameter pipeline from Well 2 to join pipe to treatment plant, a 16-inch diameter pipeline 1,000 feet long from the combined Wells 1, 2, 3 and 15 to treatment plant. The discharge pipeline from the treatment plant is 16-inch diameter 700 feet long as previously shown on Figure 5.

5.1.3 Alternative 5-2 Wells 27 and 28 Treatment at Well 27 Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at Well 27 site for treatment and blending of Wells 27 and 28. Stetson added new dedicated pipelines to the hydraulic model from Well 28 to the proposed treatment plant located at Well 27 site. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand for Zone 2 at 38 psi and Zone 3 at 100 psi. The dedicated pipeline is 10-inches in diameter and 4,000 feet long from Well 28 to Well 27. The discharge from the Zone 2 booster pump will connect to an existing 12-inch diameter pipeline and the discharge from the Zone 3 booster pump will connect to an existing 8-inch diameter pipeline as previously shown on Figure 6.

5.1.4 Alternative 5-3 Well 7 at Well 7 Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at Well 7 site for treatment and blending of Well 7. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand at 66 psi.

5.1.5 Alternative 5-4 Well 25 at Well 25 Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at Well 25 site for treatment and blending of Well 25. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand at 49 psi.

5.1.6 Complete Option A Cost Summary

The capital cost of the new pipelines, control valves, other system improvements plus treatment plant costs from Hazen & Sawyer (including booster pumps and inline blending static mixer) are \$25,773,000 with an additional annual O&M cost of \$2,918,000 and an additional energy cost of \$112,000 per year. See Chapter 6 for comparison of cost with other complete options. See Attachment D for an itemized list and details for cost estimate. See Attachment E for a map showing the system improvements needed to meet the maximum hour demand. Maximum hour demand pumps and flow rates used in the hydraulic model are shown in Attachment F.

5.2 Complete Option B

Complete Option B – includes the following four alternatives:

- Alt 5-1 Treat Wells 1, 2, 3, and 15 at existing ID#1 shop site.
- Alt 5-2 Treat Wells 27 and 28 at Well 27 site
- Alt 5-3 Treat Well 7 at Well 7 site
- Alt 5-4 Treat Well 25 at Well 25 site

Stetson performed hydraulic modeling to determine the cost water system improvements when all the alternatives listed in Complete Option B are implemented.

5.2.1 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at ID1's shop site for treatment and blending of Wells 1, 2, 3 and 15 with Well 3 as a redundant source. Stetson added new dedicated pipelines to the hydraulic model from Well 1, 2, 3 and15 to the proposed treatment plant located at ID1's shop site. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand at 84 psi. The pressure needed at the treatment plant discharge during the average day demand was estimated at 82 psi. The dedicated pipelines includes a 8-inch diameter pipeline 5,400 feet long from Well 3 to Well 15, a 16-inch diameter pipeline 4,400 long from Well 15 to join pipe to treatment plant, a 6-inch pipeline 100 feet long from Well 1 to Well 2, a 10-inch diameter pipeline from Well 2 to join pipe to treatment plant, a 16-inch diameter pipeline 1,000 feet long from the combined Wells 1, 2, 3 and 15 to treatment plant. The discharge pipeline from the treatment plant is 16-inch diameter 700 feet long as previously shown on Figure 5.

5.2.2 Alternative 5-2 Wells 27 and 28 Treatment at Well 27 Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at Well 27 site for treatment and blending of Wells 27 and 28. Stetson added new dedicated pipelines to the hydraulic model from Well 28 to the proposed treatment plant located at Well 27 site. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand for Zone 2 at 38 psi and Zone 3 at 100 psi. The dedicated pipeline is 10-inches in diameter and 4,000 feet long from Well 28 to Well 27. The discharge from the Zone 2 booster pump will connect to an existing 12-inch diameter pipeline and the discharge from the Zone 3 booster pump will connect to an existing 8-inch diameter pipeline as previously shown on Figure 6.

5.2.3 Alternative 5-3 Well 7 at Well 7 Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at Well 7 site for treatment and blending of Well 7. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand at 66 psi.

5.2.4 Alternative 5-4 Well 25 at Well 25 Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at Well 25 site for treatment and blending of Well 25. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand at 49 psi.

5.2.5 Complete Option B Cost Summary

The capital cost of the new pipelines, control valves, other system improvements plus treatment plant costs from Hazen & Sawyer (including booster pumps and inline blending static mixer) are \$23,182000 with an additional annual O&M cost of \$2,779,000 and an additional energy cost of \$112,000 per year. See Chapter 6 for comparison of cost with other complete options. See Attachment D for an itemized list and details for cost estimate. See Attachment E for a map showing the system improvements needed to meet the maximum hour demand. Maximum hour demand pumps and flow rates used in the hydraulic model are shown in Attachment F.

5.3 Complete Option C

Complete Option C – includes the following five alternatives:

- Alt 1-4 Blend Well 28 with Zone 2 water then pumped into Zone 3.
- Alt 5-1 Treat Wells 1, 2, 3, and 15 at existing ID#1 shop site.
- Alt 5-3 Treat Well 7 at Well 7 site
- Alt 5-4 Treat Well 25 at Well 25 site
- Alt 6-4 Well 27 install packer

Stetson performed hydraulic modeling to determine the cost water system improvements when all the alternatives listed in Complete Option C are implemented.

5.3.1 Alternative 1-4 – Blend Well 28 with Zone 2 Water then Pumped into Zone 3

A new 150 horsepower booster pump station will be installed at the Well 28 site for pumping blended water from Zone 2 to Zone 3. Well 28 flow rate is 750 gpm with a Cr6 level of 8.9 ppb. Blending with 750 gpm of Zone 2 water (5 ppb) will reduce the Cr6 level to approximately 7.0 ppb. An existing 12-inch pipeline downstream of Refugio-3 booster would need to be enlarged by installing a new parallel 8-inch pipe approximately 800 feet long along with a new 16-inch pipeline 1,800 feet long from Well 28 to Zone 3.

5.3.2 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at ID1's shop site for treatment and blending of Wells 1, 2, 3 and 15 with Well 3 as a redundant source. Stetson added new dedicated pipelines to the hydraulic model from Well 1, 2, 3 and15 to the proposed treatment plant located at ID1's shop site. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand at 84 psi. The pressure needed at the treatment plant discharge during the average day demand was estimated at 82 psi. The dedicated pipelines includes a 8-inch diameter pipeline 5,400 feet long from Well 3 to Well 15, a 16-inch diameter pipeline 4,400 long from Well 15 to join pipe to

treatment plant, a 6-inch pipeline 100 feet long from Well 1 to Well 2, a 10-inch diameter pipeline from Well 2 to join pipe to treatment plant, a 16-inch diameter pipeline 1,000 feet long from the combined Wells 1, 2, 3 and 15 to treatment plant. The discharge pipeline from the treatment plant is 16-inch diameter 700 feet long as previously shown on Figure 5.

5.3.3 Alternative 5-3 Well 7 at Well 7 Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at Well 7 site for treatment and blending of Well 7. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand at 66 psi.

5.3.4 Alternative 5-4 Well 25 at Well 25 Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at Well 25 site for treatment and blending of Well 25. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand at 49 psi.

5.3.5 Alternative 6-4 Install Packer in Well 27

Stetson performed hydraulic modeling to support Dudek's well treatment to block inflow from high Cr6 formations by installing a packer in the Well 27 located in Zone 2. Stetson's hydraulic modeling will have an element of analyzing piping, system capacities, system pressure, booster pumps and storage facilities size and location. Dudek assumed a reduction of 25% in well flow rate. Cost estimates for well packer treatment alternatives were prepared by Dudek and estimated at \$100,000 per well we provided to Stetson for the cost summary tables

5.3.6 Complete Option C Cost Summary

The capital cost of the new pipelines, control valves, other system improvements plus packer costs from Dudek plus treatment plant costs from Hazen & Sawyer (including booster pumps and inline blending static mixer) are \$19,009,000 with an additional annual O&M cost of \$2,098,000 and an additional energy cost of \$55,000 per year. See Chapter 6 for comparison of cost with other complete options. See Attachment D for an itemized list and details for cost estimate. See Attachment E for a map showing the system improvements needed to meet the maximum hour demand. Maximum hour demand pumps and flow rates used in the hydraulic model are shown in Attachment F.

5.4 Complete Option D

Complete Option D – includes the following four alternatives:

• Alt 1-2 – Blend Well 7 with Well 24 at Well 7 site.

- Alt 1-5 Blend Well 5 with Well 25 at Well 25 site.
- Alt 5-1 Treat Wells 1, 2, 3, and 15 at existing ID#1 shop site.
- Alt 5-2 Treat Wells 27 and 28 at Well 27 site

Stetson performed hydraulic modeling to determine the cost water system improvements when all the alternatives listed in Complete Option D are implemented.

5.4.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site

A new 8-inch pipeline approximately 2,400 feet long will be constructed to convey Well 24 water (300 gpm) to the Well 7 site. The blended water will be pumped into the Zone 3 system at Well 7. Well 7 has a flow rate of 900 gpm with a Cr6 level of 10 ppb. Well 24 has a flow rate of 300 gpm with a Cr6 level of 4.1 ppb. The blended flow water quality is 8.5 ppb.

5.4.2 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site

A new 8-inch pipeline approximately 3,500 feet long will be constructed to convey Well 5 water (250 gpm) to the Well 25 site. The blended water will be mixed in a static mixer at Well 25 site. Well 25 has a flow rate of 950 gpm with a Cr6 level of 9.8 ppb. Well 5 has a flow rate of 250 gpm with a Cr6 level of 9.9 ppb. The blended flow level is approximately 7.2 ppb.

5.4.3 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at ID1's shop site for treatment and blending of Wells 1, 2, 3 and 15 with Well 3 as a redundant source. Stetson added new dedicated pipelines to the hydraulic model from Well 1, 2, 3 and15 to the proposed treatment plant located at ID1's shop site. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand at 84 psi. The pressure needed at the treatment plant discharge during the average day demand was estimated at 82 psi. The dedicated pipelines includes a 8-inch diameter pipeline 5,400 feet long from Well 3 to Well 15, a 16-inch diameter pipeline 4,400 long from Well 15 to join pipe to treatment plant, a 6-inch pipeline 100 feet long from Well 1 to Well 2, a 10-inch diameter pipeline from Well 2 to join pipe to treatment plant, a 16-inch diameter pipeline 1,000 feet long from the combined Wells 1, 2, 3 and 15 to treatment plant. The discharge pipeline from the treatment plant is 16-inch diameter 700 feet long as previously shown on Figure 5.

5.4.4 Alternative 5-2 Wells 27 and 28 Treatment at Well 27 Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at Well 27 site for treatment and blending of Wells 27 and 28. Stetson added new dedicated pipelines to the hydraulic model from Well 28 to the proposed treatment plant located at Well 27 site. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand for Zone 2 at 38 psi and Zone 3 at 100 psi. The dedicated pipeline is 10-inches in diameter and 4,000 feet long from Well 28 to Well 27. The

discharge from the Zone 2 booster pump will connect to an existing 12-inch diameter pipeline and the discharge from the Zone 3 booster pump will connect to an existing 8-inch diameter pipeline as previously shown on Figure 6.

5.4.5 Complete Option D Cost Summary

The capital cost of the new pipelines, control valves, other system improvements plus treatment plant costs from Hazen & Sawyer (including booster pumps and inline blending static mixer) are \$17,507,000 with an additional annual O&M cost of \$1,920,000 and an additional energy cost of \$94,000 per year. See Chapter 6 for comparison of cost with other complete options. See Attachment D for an itemized list and details for cost estimate. See Attachment E for a map showing the system improvements needed to meet the maximum hour demand. Maximum hour demand pumps and flow rates used in the hydraulic model are shown in Attachment F.

5.5 Complete Option D-P

Complete Option D-P – includes the following four alternatives:

- Alt 5-1 Treat Wells 1, 2, 3, and 15 at existing ID#1 shop site.
- Alt 5-2 Treat Wells 27 and 28 at Well 27 site
- Alt 6-1 Well 7 install packer
- Alt 6-2 Well 25 install packer

Stetson performed hydraulic modeling to determine the cost water system improvements when all the alternatives listed in Complete Option D-P are implemented.

5.5.1 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at ID1's shop site for treatment and blending of Wells 1, 2, 3 and 15 with Well 3 as a redundant source. Stetson added new dedicated pipelines to the hydraulic model from Well 1, 2, 3 and15 to the proposed treatment plant located at ID1's shop site. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand at 84 psi. The pressure needed at the treatment plant discharge during the average day demand was estimated at 82 psi. The dedicated pipelines includes a 8-inch diameter pipeline 5,400 feet long from Well 3 to Well 15, a 16-inch diameter pipeline 4,400 long from Well 15 to join pipe to treatment plant, a 6-inch pipeline 100 feet long from Well 1 to Well 2, a 10-inch diameter pipeline from Well 2 to join pipe to treatment plant, a 16-inch diameter pipeline 1,000 feet long from the combined Wells 1, 2, 3 and 15 to treatment plant. The discharge pipeline from the treatment plant is 16-inch diameter 700 feet long as previously shown on Figure 5.

5.5.2 Alternative 5-2 Wells 27 and 28 Treatment at Well 27 Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at Well 27 site for treatment and blending of Wells 27 and 28. Stetson added new dedicated pipelines to the hydraulic model from Well 28 to the proposed treatment plant located at Well 27 site. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand for Zone 2 at 38 psi and Zone 3 at 100 psi. The dedicated pipeline is 10-inches in diameter and 4,000 feet long from Well 28 to Well 27. The discharge from the Zone 2 booster pump will connect to an existing 12-inch diameter pipeline and the discharge from the Zone 3 booster pump will connect to an existing 8-inch diameter pipeline as previously shown on Figure 6.

5.5.3 Alternative 6-1 and 6-2 Install Packers in Wells 7 and 25

Stetson performed hydraulic modeling to support Dudek's well treatment to block inflow from high Cr6 formations by installing packers in the Wells 7 and 25 located in Zone 3. Stetson's hydraulic modeling will have an element of analyzing piping, system capacities, system pressure, booster pumps and storage facilities size and location. Dudek assumed a reduction of 25% in well flow rate. Cost estimates for well packer treatment alternatives were prepared by Dudek and estimated at \$100,000 per well were provided to Stetson for the cost summary tables.

5.5.4 Complete Option D-P Cost Summary

The capital cost of the new pipelines, control valves, other system improvements plus treatment plant costs from Hazen & Sawyer (including booster pumps and inline blending static mixer) and packer costs from Dudek are \$16,529,000 with an additional annual O&M cost of \$1,926,000 and an additional energy cost of \$100,000 per year. See Chapter 6 for comparison of cost with other complete options. See Attachment D for an itemized list and details for cost estimate. See Attachment E for a map showing the system improvements needed to meet the maximum hour demand. Maximum hour demand pumps and flow rates used in the hydraulic model are shown in Attachment F.

5.6 Complete Option D-C

Complete Option D-C – includes the following six alternatives:

- Alt 1-2 Blend Well 7 with Well 24 at Well 7 site.
- Alt 1-5 Blend Well 5 with Well 25 at Well 25 site.
- Alt 5-1 Treat Wells 1, 2, 3, and 15 at existing ID#1 shop site.
- Alt 5-2 Treat Wells 27 and 28 at Well 27 site
- Alt 6-1 Well 7 install packer
- Alt 6-2 Well 25 install packer

Stetson performed hydraulic modeling to determine the cost water system improvements when all the alternatives listed in Complete Option D-C are implemented.

5.6.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site

A new 8-inch pipeline approximately 2,400 feet long will be constructed to convey Well 24 water (300 gpm) to the Well 7 site. The blended water will be pumped into the Zone 3 system at Well 7. Well 7 has a flow rate of 900 gpm with a Cr6 level of 10 ppb. Well 24 has a flow rate of 300 gpm with a Cr6 level of 4.1 ppb. The blended flow level is 8.5 ppb.

5.6.2 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site

A new 8-inch pipeline approximately 3,500 feet long will be constructed to convey Well 5 water (250 gpm) to the Well 25 site. The blended water will be mixed in a static mixer at Well 25 site. Well 25 has a flow rate of 950 gpm with a Cr6 level of 9.8 ppb. Well 5 has a flow rate of 250 gpm with a Cr6 level of 9.8 ppb. Well 5 has a flow rate of 250 gpm with a Cr6 level of 0.9 ppb. The blended flow level is approximately 7.2 ppb.

5.6.3 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at ID1's shop site for treatment and blending of Wells 1, 2, 3 and 15 with Well 3 as a redundant source. Stetson added new dedicated pipelines to the hydraulic model from Well 1, 2, 3 and15 to the proposed treatment plant located at ID1's shop site. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand at 84 psi. The pressure needed at the treatment plant discharge during the average day demand was estimated at 82 psi. The dedicated pipelines includes a 8-inch diameter pipeline 5,400 feet long from Well 3 to Well 15, a 16-inch diameter pipeline 4,400 long from Well 15 to join pipe to treatment plant, a 6-inch pipeline 100 feet long from Well 1 to Well 2, a 10-inch diameter pipeline from Well 2 to join pipe to treatment plant, a 16-inch diameter pipeline 1,000 feet long from the combined Wells 1, 2, 3 and 15 to treatment plant. The discharge pipeline from the treatment plant is 16-inch diameter 700 feet long as previously shown on Figure 5.

5.6.4 Alternative 5-2 Wells 27 and 28 Treatment at Well 27 Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at Well 27 site for treatment and blending of Wells 27 and 28. Stetson added new dedicated pipelines to the hydraulic model from Well 28 to the proposed treatment plant located at Well 27 site. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand for Zone 2 at 38 psi and Zone 3 at 100 psi. The dedicated pipeline is 10-inches in diameter and 4,000 feet long from Well 28 to Well 27. The discharge from the Zone 2 booster pump will connect to an existing 12-inch diameter pipeline and the discharge from the Zone 3 booster pump will connect to an existing 8-inch diameter pipeline as previously shown on Figure 6.

5.6.5 Alternative 6-1 and 6-2 Install Packers in Wells 7 and 25

Stetson performed hydraulic modeling to support Dudek's well treatment to block inflow from high Cr6 formations by installing packers in the Wells 7 and 25 located in Zone 3. Stetson's hydraulic modeling will have an element of analyzing piping, system capacities, system pressure, booster pumps and storage facilities size and location. Dudek assumed a reduction of 25% in well flow rate. Cost estimates for well packer treatment alternatives were prepared by Dudek and estimated at \$100,000 per well we provided to Stetson for the cost summary tables.

5.6.6 Complete Option D-C Cost Summary

The capital cost of the new pipelines, control valves, other system improvements plus treatment plant costs from Hazen & Sawyer (including booster pumps and inline blending static mixer) and packer costs from Dudek are \$17,801,000 with an additional annual O&M cost of \$1,940,000 and an additional energy cost of \$100,000 per year. See Chapter 6 for comparison of cost with other complete options. See Attachment D for an itemized list and details for cost estimate. See Attachment E for a map showing the system improvements needed to meet the maximum hour demand. Maximum hour demand pumps and flow rates used in the hydraulic model are shown in Attachment F.

5.7 Complete Option E

Complete Option E – includes the following five alternatives:

- Alt 1-2 Blend Well 7 with Well 24 at Well 7 site.
- Alt 1-4 Blend Well 28 with Zone 2 water then pump to Zone 3.
- Alt 1-5 Blend Well 5 with Well 25 at Well 25 site.
- Alt 5-1 Treat Wells 1, 2, 3, and 15 at existing ID#1 shop site.
- Alt 6-4 Well 27 install packer

Stetson performed hydraulic modeling to determine the cost water system improvements when all the alternatives listed in Complete Option E are implemented.

5.7.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site

A new 8-inch pipeline approximately 2,400 feet long will be constructed to convey Well 24 water (300 gpm) to the Well 7 site. The blended water will be pumped into the Zone 3 system at Well 7. Well 7 has a flow rate of 900 gpm with a Cr6 level of 10 ppb. Well 24 has a flow rate of 300 gpm with a Cr6 level of 1.3 ppb. The blended flow level is 7.8 ppb.

5.7.2 Alternative 1-4 – Blend Well 28 with Zone 2 Water then Pumped into Zone 3

A new 150 horsepower booster pump station will be installed at the Well 28 site for pumping blended water from Zone 2 to Zone 3. Well 28 flow rate is 750 gpm with a Cr6 level of 9.2 ppb. Blending with 750 gpm of Zone 2 water (5 ppb) will reduce the Cr6 level to approximately 7.1 ppb. An existing 12-inch pipeline downstream of Refugio-3 booster would need to be enlarged by installing a new parallel 8-inch pipe approximately 800 feet long along with a new 16-inch pipeline 1,800 feet long from Well 28 to Zone 3.

5.7.3 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site

A new 8-inch pipeline approximately 3,500 feet long will be constructed to convey Well 5 water (250 gpm) to the Well 25 site. The blended water will be mixed in a static mixer at Well 25 site. Well 25 has a flow rate of 950 gpm with a Cr6 level of 9.8 ppb. Well 5 has a flow rate of 250 gpm with a Cr6 level of 9.9 ppb. The blended flow level is approximately 7.2 ppb.

5.7.4 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at ID1's shop site for treatment and blending of Wells 1, 2, 3 and 15 with Well 3 as a redundant source. Stetson added new dedicated pipelines to the hydraulic model from Well 1, 2, 3 and15 to the proposed treatment plant located at ID1's shop site. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand at 84 psi. The pressure needed at the treatment plant discharge during the average day demand was estimated at 82 psi. The dedicated pipelines includes a 8-inch diameter pipeline 5,400 feet long from Well 3 to Well 15, a 16-inch diameter pipeline 4,400 long from Well 15 to join pipe to treatment plant, a 6-inch pipeline 100 feet long from Well 1 to Well 2, a 10-inch diameter pipeline from Well 2 to join pipe to treatment plant, a 16-inch diameter pipeline 1,000 feet long from the combined Wells 1, 2, 3 and 15 to treatment plant. The discharge pipeline from the treatment plant is 16-inch diameter 700 feet long as previously shown on Figure 5.

5.7.5 Alternative 6-4 Install Packer in Well 27

Stetson performed hydraulic modeling to support Dudek's well treatment to block inflow from high Cr6 formations by installing a packer in the Well 27 located in Zone 2. Stetson's hydraulic modeling will have an element of analyzing piping, system capacities, system pressure, booster pumps and storage facilities size and location. Dudek assumed a reduction of 25% in well flow rate. Cost estimates for well packer treatment alternative was prepared by Dudek and estimated at \$100,000 per well were provided to Stetson for the cost summary tables.

5.7.6 Complete Option E Cost Summary

The capital cost of the new pipelines, control valves, other system improvements plus treatment plant costs from Hazen & Sawyer (including booster pumps and inline blending static mixer) and

packer costs from Dudek are \$13,388,000 with an additional annual O&M cost of \$1,240,000 and an additional energy cost of \$23,000 per year. See Chapter 6 for comparison of cost with other complete options. See Attachment D for an itemized list and details for cost estimate. See Attachment E for a map showing the system improvements needed to meet the maximum hour demand. Maximum hour demand pumps and flow rates used in the hydraulic model are shown in Attachment F.

5.8 Complete Option E-P

Complete Option E-P – includes the following five alternatives:

- Alt 1-4 Blend Well 28 with Zone 2 water then pumped into Zone 3.
- Alt 5-1 Treat Wells 1, 2, 3, and 15 at existing ID#1 shop site.
- Alt 6-1 Well 7 install packer
- Alt 6-2 Well 25 install packer
- Alt 6-4 Well 27 install packer

Stetson performed hydraulic modeling to determine the cost water system improvements when all the alternatives listed in Complete Option E-P are implemented.

5.8.1 Alternative 1-4 – Blend Well 28 with Zone 2 Water then Pumped into Zone 3

A new 150 horsepower booster pump station will be installed at the Well 28 site for pumping blended water from Zone 2 to Zone 3. Well 28 flow rate is 750 gpm with a Cr6 level of 8.9 ppb. Blending with 750 gpm of Zone 2 water (5 ppb) will reduce the Cr6 level to approximately 7.0 ppb. An existing 12-inch pipeline downstream of Refugio-3 booster would need to be enlarged by installing a new parallel 8-inch pipe approximately 800 feet long along with a new 16-inch pipeline 1,800 feet long from Well 28 to Zone 3.

5.8.2 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at ID1's shop site for treatment and blending of Wells 1, 2, 3 and 15 with Well 3 as a redundant source. Stetson added new dedicated pipelines to the hydraulic model from Well 1, 2, 3 and15 to the proposed treatment plant located at ID1's shop site. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand at 84 psi. The pressure needed at the treatment plant discharge during the average day demand was estimated at 82 psi. The dedicated pipelines includes a 8-inch diameter pipeline 5,400 feet long from Well 3 to Well 15, a 16-inch diameter pipeline 4,400 long from Well 15 to join pipe to treatment plant, a 6-inch pipeline 100 feet long from Well 1 to Well 2, a 10-inch diameter pipeline from Well 2 to join pipe to treatment plant, a 16-inch diameter pipeline 1,000 feet long

from the combined Wells 1, 2, 3 and 15 to treatment plant. The discharge pipeline from the treatment plant is 16-inch diameter 700 feet long as previously shown on Figure 5.

5.8.3 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7, 25, and 27

Stetson performed hydraulic modeling to support Dudek's well treatment to block inflow from high Cr6 formations by installing packers in the Wells 7, 25 and 27 located in Zones 2 and 3. Stetson's hydraulic modeling will have an element of analyzing piping, system capacities, system pressure, booster pumps and storage facilities size and location. Dudek assumed a reduction of 25% in well flow rate. Cost estimates for well packer treatment alternatives were prepared by Dudek and estimated at \$100,000 per well were provided to Stetson for the cost summary tables

5.8.4 Complete Option E-P Cost Summary

The capital cost of the new pipelines, control valves, other system improvements plus packer costs from Dudek plus treatment plant costs from Hazen & Sawyer (including booster pumps and inline blending static mixer) are \$12,360,000 with an additional annual O&M cost of \$1,246,000 and an additional energy cost of \$29,000 per year. See Chapter 6 for comparison of cost with other complete options. See Attachment D for an itemized list and details for cost estimate. See Attachment E for a map showing the system improvements needed to meet the maximum hour demand. Maximum hour demand pumps and flow rates used in the hydraulic model are shown in Attachment F.

5.9 Complete Option E-C

Complete Option E-C – includes the following seven alternatives:

- Alt 1-2 Blend Well 7 with Well 24 at Well 7 site.
- Alt 1-4 Blend Well 28 with Zone 2 water then pump to Zone 3.
- Alt 1-5 Blend Well 5 with Well 25 at Well 25 site.
- Alt 5-1 Treat Wells 1, 2, 3, and 15 at existing ID#1 shop site.
- Alt 6-1 Well 7 install packer
- Alt 6-2 Well 25 install packer
- Alt 6-4 Well 27 install packer

Stetson performed hydraulic modeling to determine the cost water system improvements when all the alternatives listed in Complete Option E-C are implemented.

5.9.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site

A new 8-inch pipeline approximately 2,400 feet long will be constructed to convey Well 24 water (300 gpm) to the Well 7 site. The blended water will be pumped into the Zone 3 system at

Well 7. Well 7 has a flow rate of 900 gpm with a Cr6 level of 10 ppb. Well 24 has a flow rate of 300 gpm with a Cr6 level of 1.3 ppb. The blended flow level is 7.8 ppb.

5.9.2 Alternative 1-4 – Blend Well 28 with Zone 2 Water then Pumped into Zone 3

A new 150 horsepower booster pump station will be installed at the Well 28 site for pumping blended water from Zone 2 to Zone 3. Well 28 flow rate is 750 gpm with a Cr6 level of 9.2 ppb. Blending with 750 gpm of Zone 2 water (5 ppb) will reduce the Cr6 level to approximately 7.1 ppb. An existing 12-inch pipeline downstream of Refugio-3 booster would need to be enlarged by installing a new parallel 8-inch pipe approximately 800 feet long along with a new 16-inch pipeline 1,800 feet long from Well 28 to Zone 3.

5.9.3 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site

A new 8-inch pipeline approximately 3,500 feet long will be constructed to convey Well 5 water (250 gpm) to the Well 25 site. The blended water will be mixed in a static mixer at Well 25 site. Well 25 has a flow rate of 950 gpm with a Cr6 level of 9.8 ppb. Well 5 has a flow rate of 250 gpm with a Cr6 level of 9.9 ppb. The blended flow level is approximately 7.2 ppb.

5.9.4 Alternative 5-1 Wells 1, 2, 3, and 15 Treatment at ID1 Shop Site

Stetson performed hydraulic modeling to determine pressures at the proposed treatment plant at ID1's shop site for treatment and blending of Wells 1, 2, 3 and 15 with Well 3 as a redundant source. Stetson added new dedicated pipelines to the hydraulic model from Well 1, 2, 3 and15 to the proposed treatment plant located at ID1's shop site. The hydraulic model was also used to determine pressure needed at the treatment plant discharge during the maximum hour demand at 84 psi. The pressure needed at the treatment plant discharge during the average day demand was estimated at 82 psi. The dedicated pipelines includes a 8-inch diameter pipeline 5,400 feet long from Well 3 to Well 15, a 16-inch diameter pipeline 4,400 long from Well 15 to join pipe to treatment plant, a 6-inch pipeline 100 feet long from Well 1 to Well 2, a 10-inch diameter pipeline from Well 2 to join pipe to treatment plant, a 16-inch diameter pipeline 1,000 feet long from the combined Wells 1, 2, 3 and 15 to treatment plant. The discharge pipeline from the treatment plant is 16-inch diameter 700 feet long as previously shown on Figure 5.

5.9.5 Alternative 6-1, 6-2, 6-4 Install Packers in Wells 7,25, and 27

Stetson performed hydraulic modeling to support Dudek's well treatment to block inflow from high Cr6 formations by installing packers in the Wells 7, 25 and 27 located in Zones 2 and 3. Stetson's hydraulic modeling will have an element of analyzing piping, system capacities, system pressure, booster pumps and storage facilities size and location. Dudek assumed a reduction of 25% in well flow rate. Cost estimates for well packer treatment alternative was prepared by Dudek and estimated at \$100,000 per well were provided to Stetson for the cost summary tables.

5.9.6 Complete Option E-C Cost Summary

The capital cost of the new pipelines, control valves, other system improvements plus treatment plant costs from Hazen & Sawyer (including booster pumps and inline blending static mixer) and packer costs from Dudek are \$13,495,000 with an additional annual O&M cost of \$1,258,000 and an additional energy cost of \$29,000 per year. See Chapter 6 for comparison of cost with other complete options. See Attachment D for an itemized list and details for cost estimate. See Attachment E for a map showing the system improvements needed to meet the maximum hour demand. Maximum hour demand pumps and flow rates used in the hydraulic model are shown in Attachment F.

5.10 Complete Option F

Complete Option F – includes the following alternative:

• Alt 4-1 – Minimize use of upland wells with Cr6 levels that exceed the new MCL.

New pipelines for Alternative 4-1 system improvements consist of 1,600 feet of 8-inch pipeline, 4,300 feet of 10-inch pipeline, and 5,600 feet of 12-inch pipeline. The new system improvements needed to meet the maximum hour demand includes a new booster pump station located at the Zone 1 tank, new pump at Refugio 2-1, control valves, blow offs, air/vacuum valves, electrical controls, SCADA, electric power facilities, and purchase of land and right of ways. The capital cost of the new pipelines, booster pumps, control valves, and other system improvements are \$3,287,000 with an additional annual O&M cost of \$41,000 and an additional energy cost of \$64,000 per year. See Chapter 6 for comparison of cost with other complete options. See Attachment D for an itemized list and details for cost estimate. See Attachment E for a map showing the system improvements needed to meet the maximum hour demand. Maximum hour demand pumps and flow rates used in the hydraulic model are shown in Attachment F.

5.11 Complete Option G

Complete Option G – includes the following four alternatives:

- Alt 1-2 Blend Well 7 with Well 24 at Well 7 site.
- Alt 1-5 Blend Well 5 with Well 25 at Well 25 site.
- Alt 2-1 Separate Irrigation Water System
- Alt 6-4 Well 27 install packer

Stetson performed hydraulic modeling to determine the cost water system improvements when all the alternatives listed in Complete Option G are implemented.

5.11.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site

A new 8-inch pipeline approximately 2,400 feet long will be constructed to convey Well 24 water (300 gpm) to the Well 7 site. The blended water will be pumped into the Zone 3 system at Well 7. Well 7 has a flow rate of 900 gpm with a Cr6 level of 10 ppb. Well 24 has a flow rate of 300 gpm with a Cr6 level of 1.3 ppb. The blended flow level is 7.8 ppb.

5.11.2 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site

A new 8-inch pipeline approximately 3,500 feet long will be constructed to convey Well 5 water (250 gpm) to the Well 25 site. The blended water will be mixed in a static mixer at Well 25 site. Well 25 has a flow rate of 950 gpm with a Cr6 level of 9.8 ppb. Well 5 has a flow rate of 250 gpm with a Cr6 level of 9.8 ppb. Well 5 has a flow rate of 250 gpm with a Cr6 level of 0.9 ppb.

5.11.3 Alternative 2-1 – Separate Irrigation Water System

Stetson Engineers performed hydraulic modeling analysis to provide a separate irrigation water system for Zones 1, 2 and 3 that uses the five upland wells with the highest Cr6 levels, Wells 1, 2, 3, 15 and 28 located in Zone 2 and the Gallery Well located in Zone 1. The flow rate from Well 1 is 200 gpm, Well 2 is 500 gpm, Well 3 is 600 gpm (high nitrates), Well 15 is 1,200 gpm, Well 28 is 750 gpm and the Gallery Well is 776 gpm for a total flow rate of 4,026 gpm or 534 acre-feet per month. The maximum month demand for the irrigated lands was estimated to determine if the five wells will provide an adequate supply. See Chapter 3.2 for complete description of Alternative 2-1.

5.11.4 Alternative 6-4 Install Packer in Well 27

Stetson performed hydraulic modeling to support Dudek's well treatment to block inflow from high Cr6 formations by installing a packer in the Well 27 located in Zone 2. Stetson's hydraulic modeling will have an element of analyzing piping, system capacities, system pressure, booster pumps and storage facilities size and location. Dudek assumed a reduction of 25% in well flow rate. Cost estimates for well packer treatment alternative was prepared by Dudek and estimated at \$100,000 per well were provided to Stetson for the cost summary tables.

5.11.5 Complete Option G Cost Summary

The capital cost of the new pipelines, control valves, other system improvements, inline blending static mixer, and packer costs from Dudek are \$24,652,000 with an additional annual O&M cost of \$286,000 and an additional energy cost of \$5,000 per year. See Chapter 6 for comparison of cost with other complete options. See Attachment D for an itemized list and details for cost estimate. See Attachment E for a map showing the system improvements needed to meet the maximum hour demand. Maximum hour demand pumps and flow rates used in the hydraulic model are shown in Attachment F.

5.12 Complete Option H

Complete Option H – includes the following four alternatives:

- Alt 1-2 Blend Well 7 with Well 24 at Well 7 site.
- Alt 1-5 Blend Well 5 with Well 25 at Well 25 site.
- Alt 6-3 Well 28 install packer
- Alt 6-4 Well 27 install packer

Stetson performed hydraulic modeling to determine the cost water system improvements when all the alternatives listed in Complete Option H are implemented.

5.12.1 Alternative 1-2 – Blend Well 7 and 24 at Well 7 Site

A new 8-inch pipeline approximately 2,400 feet long will be constructed to convey Well 24 water (300 gpm) to the Well 7 site. The blended water will be pumped into the Zone 3 system at Well 7. Well 7 has a flow rate of 900 gpm with a Cr6 level of 10 ppb. Well 24 has a flow rate of 300 gpm with a Cr6 level of 1.3 ppb. The blended flow level is 7.8 ppb.

5.12.2 Alternative 1-5 – Blend Well 5 and 25 at Well 25 Site

A new 8-inch pipeline approximately 3,500 feet long will be constructed to convey Well 5 water (250 gpm) to the Well 25 site. The blended water will be mixed in a static mixer at Well 25 site. Well 25 has a flow rate of 950 gpm with a Cr6 level of 9.8 ppb. Well 5 has a flow rate of 250 gpm with a Cr6 level of 0.9 ppb. The blended flow level is approximately 7.2 ppb.

5.12.3 Alternatives 6-3 and 6-4 Install Packers in Wells 28 and 27

Stetson performed hydraulic modeling to support Dudek's well treatment to block inflow from high Cr6 formations by installing packers in the Wells 28 and 27 located in Zone 2. Stetson's hydraulic modeling will have an element of analyzing piping, system capacities, system pressure, booster pumps and storage facilities size and location. Dudek assumed a reduction of 25% in well flow rate. Cost estimates for well packer treatment alternative was prepared by Dudek and estimated at \$100,000 per well were provided to Stetson for the cost summary tables.

5.12.4 Complete Option H Cost Summary

The capital cost of the new pipelines, control valves, other system improvements, inline blending static mixer, and packer costs from Dudek are \$2,810,000 with an additional annual O&M cost of \$49,000 and an additional energy cost of \$32,000 per year. See Chapter 6 for comparison of cost with other complete options. See Attachment D for an itemized list and details for cost estimate. See Attachment E for a map showing the system improvements needed to meet the maximum hour demand. Maximum hour demand pumps and flow rates used in the hydraulic model are shown in Attachment F.

6.0 ENGINEERING COST ESTIMATION FOR COMPLETE OPTIONS

Stetson performed engineering cost estimation for Complete Options A through H based on pipelines, pump and other facilities needed to provide required system pressure and limit the maximum velocity in the pipelines to about 4 feet per second during the maximum hour demand. Hazen and Sawyer provided cost for water treatment of wells and Dudek provided cost for packers. System improvement capital costs were annualized using an interest rate of 5% and expected life of 20 years for each component as shown on Table 18. Additional costs for operation and maintenance (O&M) for the complete options were estimated based on percentage of capital cost for system improvements plus costs for operating the treatment plans from Hazen Sawyer. O&M cost for water treatment were provided by Hazen & Sawyer. Energy costs were estimated based on the additional cost to pump water from Zone 1 instead of using the upland wells plus the cost to operate the booster pumps from the treatment plants and blending pumps. See Attachment D for an itemized list and details for cost estimate for each complete option. Table 18 shows a summary of the costs for each complete option. Capital costs range from \$2.8 million to \$24.7 million. The O&M costs range from \$49,000 to \$2.9 million per year. Additional energy costs range from \$5,000 to \$112,000 per year.

 Table 18 Separate 11x17 excel table

TABLE 18. CAPITAL COST, ANNUALIZED CAPITAL COST AND O&M COST SUMMARY FOR EACH COMPLETE OPTION

Capital	Cost Summary	Α	В	С	D	D-P	D-C	Ε	E-P	E-C	F	G	Н
				Alt 1-4,			Alt 1-2,5	Alt 1-2,4,5	Alt 1-4	Alt 1-2,4,5		Alt 1-2,5	
		Alt 3-1,		Alt 5-1,3,4,	Alt 1-2,5	Alt 5-1,2	Alt 5-1,2	Alt 5-1	Alt 5-1	Alt 5-1		Alt 2-1	Alt 1-2,5
Notes	Item	Alt 5-1,2,3,4	Alt 5-1,2,3,4	Alt 6-4	Alt 5-1,2	Alt 6-1,2	Alt 6-1,2	Alt 6-4	Alt 6-1,2,4	Alt 6-1,2,4	Alt 4-1	Alt 6-4	Alt 6-3,4
[1]	Mobilization and demobilization	\$849,000	\$771,000	\$632,000	\$582,000	\$549,000	\$592,000	\$445,000	\$411,000	\$448,000	\$102,000	\$803,000	\$93,000
[2]	Pipelines	2,765,000	\$2,735,000	\$2,723,000	\$3,476,000	\$2,735,000	\$3,472,000	\$3,460,000	\$2,723,000	\$3,383,000	\$1,590,000	\$14,343,000	\$1,466,000
[3]	Control Valves	212,000	\$187,000	\$238,000	\$296,000	\$187,000	\$296,000	\$387,000	\$238,000	\$334,000	\$155,000	\$1,000,000	\$155,000
[4]	Tanks	0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$340,000	\$0
[5]	Pump Stations	183,000	\$63,000	\$288,000	\$63,000	\$63,000	\$63,000	\$288,000	\$288,000	\$288,000	\$180,000	\$113,000	\$15,000
[6]	Electrical Controls	45,000	\$5,000	\$65,000	\$5,000	\$5,000	\$5,000	\$65,000	\$65,000	\$65,000	\$55,000	\$50,000	\$5,000
[7]	SCADA System	25,000	\$0	\$25,000	\$0	\$0	\$0	\$25,000	\$25,000	\$25,000	\$25,000	\$75,000	\$0
[8]	Water Treatment Plant or well treatment	1,320,000	\$20,000	\$120,000	\$20,000	\$220,000	\$220,000	\$120,000	\$320,000	\$320,000	\$0	\$120,000	\$200,000
[8]	WTP Hazen & Sawyer	\$12,394,000	\$12,394,000	\$9,171,000	\$7,765,000	\$7,765,000	\$7,765,000	\$4,542,000	\$4,542,000	\$4,542,000	\$0	\$0	\$0
[9]	Electrical Power Facilities	30,000	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000	\$30,000	\$25,000	\$10,000
[10]	Land and Right of Ways	286,000	\$36,000	\$30,000	\$36,000	\$36,000	\$36,000	\$30,000	\$30,000	\$30,000	\$230,000	\$530,000	\$30,000
[11]	Contingencies	\$1,782,000	\$1,619,000	\$1,327,000	\$1,222,000	\$1,153,000	\$1,242,000	\$934,000	\$862,000	\$942,000	\$214,000	\$1,687,000	\$194,000
[12]	Engineering and Design	\$2,941,000	\$2,671,000	\$2,190,000	\$2,016,000	\$1,903,000	\$2,050,000	\$1,541,000	\$1,423,000	\$1,554,000	\$353,000	\$2,783,000	\$321,000
[13]	Construction Management and Bidding	\$2,941,000	\$2,671,000	\$2,190,000	\$2,016,000	\$1,903,000	\$2,050,000	\$1,541,000	\$1,423,000	\$1,554,000	\$353,000	\$2,783,000	\$321,000
	Total Capital Cost	25,773,000	23,182,000	19,009,000	17,507,000	16,529,000	17,801,000	13,388,000	12,360,000	13,495,000	3,287,000	24,652,000	2,810,000
	Acre feet (AF) pumped per year	5,582	5,582	5,582	5,582	5,582	5,582	5,582	5,582	5,582	5,582	5,582	5,582
	\$/AF	4,617	4,153	3,405	3,136	2,961	3,189	2,398	2,214	2,418	589	4,416	503
Annuali	zed Capital Cost	Α	В	С	D	D-P	D-C	Е	E-P	E-C	F	G	Н
[20]	Mobilization and demobilization	68,000	62,000	51,000	47,000	44,000	48,000	36,000	33,000	36,000	8,000	64,000	7,000
[20]	Pipelines	222,000	219,000	219,000	279,000	219,000	279,000	278,000	219,000	271,000	128,000	1,151,000	118,000
[20]	Control Valves	17,000	15,000	19,000	24,000	15,000	24,000	31,000	19,000	27,000	12,000	80,000	12,000
[20]	Tanks	0	0	0	0	0	0	0	0	0	0	27,000	0
[20]	Pump Stations	15,000	5,000	23,000	5,000	5,000	5,000	23,000	23,000	23,000	14,000	9,000	1,000
[20]	Electrical Controls	4,000	0	5,000	0	0	0	5,000	5,000	5,000	4,000	4,000	0
[20]	SCADA System	2,000	0	2,000	0	0	0	2,000	2,000	2,000	2,000	6,000	0
[20]	Water Treatment Plant or well treatment	106,000	2,000	10,000	2,000	18,000	18,000	10,000	26,000	26,000	0	10,000	16,000
[20]	WTP Hazen & Sawyer	995,000	995,000	736,000	623,000	623,000	623,000	364,000	364,000	364,000	0	0	0
[20]	Electrical Power Facilities	2,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	2,000	2,000	1,000
[20]	Land and Right of Ways	23,000	3,000	2,000	3,000	3,000	3,000	2,000	2,000	2,000	18,000	43,000	2,000
[20]	Contingencies	143,000	130,000	106,000	98,000	93,000	100,000	75,000	69,000	76,000	17,000	135,000	16,000
[20]	Engineering and Design	236,000	214,000	176,000	162,000	153,000	164,000	124,000	114,000	125,000	28,000	223,000	26,000
[20]	Construction Management and Bidding	236,000	214,000	176,000	162,000	153,000	164,000	124,000	114,000	125,000	28,000	223,000	26,000
	Total Annualized Capital Cost (rounded)	2,069,000	1,860,000	1,526,000	1,406,000	1,327,000	1,429,000	1,075,000	991,000	1,083,000	261,000	1,977,000	225,000
	Acre feet (AF) pumped per year	5,582	5,582	5,582	5,582	5,582	5,582	5,582	5,582	5,582	5,582	5,582	5,582
	\$/yr/AF	371	333	273	252	238	256	193	178	194	47	354	40
Annual	O&M Cost Summary	Α	В	С	D	D-P	D-C	Е	E-P	E-C	F	G	Н
[25]	Mobilization and demobilization	8,000	8,000	6,000	6,000	5,000	6,000	4,000	4,000	4,000	1,000	8,000	1,000
[25]	Pipelines	41,000	41,000	41,000	52,000	41,000	52,000	52,000	41,000	51,000	24,000	215,000	22,000
[25]	Control Valves	4,000	4,000	5,000	6,000	4,000	6,000	8,000	5,000	7,000	3,000	20,000	3,000
[25]	Tanks	0	0	0	0	0	0	0	0	0	0	3,000	0
[25]	Pump Stations	9,000	3,000	14,000	3,000	3,000	3,000	14,000	14,000	14,000	9,000	6,000	1,000
[25]	Electrical Controls	0	0	1,000	0	0	0	1,000	1,000	1,000	1,000	1,000	0
[25]	SCADA System	1,000	0	1,000	0	0	0	1,000	1,000	1,000	1,000	4,000	0
[25]	Water Treatment Plant or well treatment	132,000	2,000	12,000	2,000	22,000	22,000	12,000	32,000	32,000	0	12,000	20,000
[25]	WTP Hazen & Sawyer	2,705,000	2,705,000	2,005,000	1,839,000	1,839,000	1,839,000	1,139,000	1,139,000	1,139,000	0	0	0
[25]	Electrical Power Facilities	0	0	0	0	0	0	0	0	0	0	0	0
[25]	Land and Right of Ways	0	0	0	0	0	0	0	0	0	0	0	0
[25]	Contingencies	18,000	16,000	13,000	12,000	12,000	12,000	9,000	9,000	9,000	2,000	17,000	2,000
[25]	Engineering and Design	0	0	0	0	0	0	0	0	0	0	0	0
[25]	Construction Management and Bidding	0	0	0	0	0	0	0	0	0	0	0	0
	Total O&M (rounded)	2,918,000	2,779,000	2,098,000	1,920,000	1,926,000	1,940,000	1,240,000	1,246,000	1,258,000	41,000	286,000	49,000
[28]	Energy Cost (additional)	112,000	112,000	55,000	94,000	100,000	100,000	23,000	29,000	29,000	64,000	5,000	32,000

Table 18 Capital Cost, Annualized Capital Cost and O&M Cost Summary for Each Complete Option

7.0 ABBREVIATIONS AND ACRONYMS USED IN THE REPORT

-	Degrees Fahrenheit
ACP	Asbestos Cement Pipe
Acre-feet	325,851 gallons
ADD	Average day demand
AF	Acre-feet
AFY	Acre-feet per Year
Alt	Alternative
AP	Alamo Pintado Pump Station
Avg	Average
AWWA	American Water Works Association
BG	Below Ground
С	Pipe Friction (roughness) Coefficient Value
CAD	Computer Aided Design
ССР	Concrete Pipe
cfs	Cubic feet per second
CIMIS	California Irrigation Management Information System
CIP	Cast Iron Pipe
CMLCSP	Cement Lined and Coated Steel Pipe
Сгб	Hexavalent Chromium
DIP	Ductile Iron Pipe
DHS	California Department of Health Services
EPA	Environmental Protection Agency
ft	feet
ft/s	Feet per Second
fps	Feet per second
GAC	Granular Activated Carbon
UAC	
GIP	Galvanized Iron Pipe
GIP GIS	Galvanized Iron Pipe Geographic Information Systems
GIP GIS gpd	Galvanized Iron Pipe Geographic Information Systems gallons per day

h	height
hcf	Hundred cubic feet
HGL	Hydraulic Grade Line
Нр	Horsepower
ID	Inside Diameter
ID1	Santa Ynez River Water Conservation District Improvement District #1
in	inch(es)
ISO	Insurance Service Office
LF	Linear feet
LS	Lump Sum
MCL	Maximum Containment Level
MDD	Maximum Day Demand
MF	Microfiltration
Mg or MG	million gallons
Min	Minimum
mgd	million gallons per day
MHD	Maximum Hour Demand
ML	Meadowlark Pump Station
MSL	Mean Sea Level
MVPS or MV	Mesa Verde Pump Station
No.	Number
O&M	Operations and Maintenance
Obs	Observed
pi	pi = 3.14
Ppb	Parts per billion
psi	pounds per square inch
PVC	Poly Vinyl Chloride Pipe
Ref	Refugio Pump Station
RO	Reverse Osmosis
SCADA	Supervisory Control and Data Acquisition
SCP	Somastic Coated Pipe
sf	square feet

Sim	Simulated
STL	Steel pipe
SWP	State Water Project
TDH	Total Dynamic Head
TDS	Total Disolved Solids
WC	WaterCAD
WS	Water Surface
WTP	Water Treatment Plant
yr	Year
<	Less than
>	Greater than
\leq	Less than or equal to
\geq	Greater than or equal to

Attachment A

	Description	Quantity	Unit	Ur	nit Cost		tem Cost
[2]	Pipelines8inch pipeline from well 24 to tank10pipeline from well 7 to tank8Immediately downstream of 6 cfs well field8Immediately downstream of 6 cfs well field12Immediately downstream of Mesa Verde12Immediately downstream of Mesa Verde12Zone 1 main line from Mesa Verde to Refugio Booster Pumps12Zone 1 main line from Mesa Verde to Refugio Booster Pumps12Zone 1 main line from Mesa Verde to Refugio Booster Pumps12Zone 1 main line from Mesa Verde to Refugio Booster Pumps12Zone 1 main line from Mesa Verde to Refugio Booster Pumps12Zone 1 main line from Mesa Verde to Refugio Booster Pumps12Relocation Zone 1 meters to Zone 2Relocation Zone 1 meters to Zone 2Relocation Zone 2 meter to Zone 38Immediately downsteram of new booster at Zone 1 Tank	400 2,400 500 1,000 700 1,700 800 1,600 1,600 1,400 2,100 1,200 1,200 1,200	LF LF LF LF LF LF LS LS LF	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	110 130 110 150 150 150 150 150 150 110 10,000 5,000 110	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1,990,000 44,000 312,000 55,000 105,000 255,000 120,000 240,000 210,000 315,000 132,000 10,000 5,000 77,000
[3]	Control Valves Valves at Well 24 Valves at Well 7 Valves at 0.5 MG Tank 12-inch inline blending static mixer for wells 7 and 24 Booster Pump (1,000 gpm) at Zone 1 Tank Booster Pump (12 gpm) 8-inch valves 10-inch valves 12-inch valves Blowoff valve assembly with valve box Air/vacuum and air relaease valve with valve box	1 1 1 1 1 10 2 12 12 12	LS LS LS LS Each Each Each Each	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	10,000 10,000 10,000 10,000 2,000 1,500 2,000 2,500 5,000 5,000	\$\$\$\$\$\$\$\$\$\$\$	221,000 10,000 10,000 10,000 2,000 15,000 4,000 30,000 60,000
[5]	<u>Pump Stations</u> Booster Pump (1,000 gpm, 50 hp) at Zone 1 Tank Booster Pump (12 gpm) 16.3 to 60 psi	50 1.0	Нр Нр	\$ \$	1,600 15,000	\$ \$ \$	95,000 80,000 15,000
[6]	<u>Electrical Controls</u> Refugio-2 upgrade to operate all 3 pumps Booster Pump (50 hp) at Zone 1 Tank Booster Pump (12 gpm)	1 1 1	LS LS LS	\$ \$ \$	10,000 40,000 5,000	\$ \$ \$ \$	55,000 10,000 40,000 5,000
[7]	<u>SCADA System</u> SCADA Connection, components, operations for new booster SCADA Connection, components, operations for 0.5 MG tank	1 1	LS LS	\$ \$	25,000 25,000	\$ \$	50,000 25,000 25,000
[9]	<u>Electrical Power Facilities</u> Booster Pump (1,000 gpm, 50 hp) at Zone 1 Tank Booster Pump (12 gpm)	1 1	LS LS	\$ \$	20,000 10,000	\$ \$ \$	30,000 20,000 10,000
[10]	Land and Right of Ways Acquire 20' right of way for well 7 pipeline Acquire 50' by 50' of Land and permitting Acquire 20' by 20' of Land and permitting	150 1 1	LF LS LS	\$ \$ \$ To	4 200,000 <u>30,000</u> tal	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	231,000 1,000 200,000 30,000 2,672,000

	Average		2013	Average	Average							
Water Supply	AF	Percent	\$/AF	AF	\$	Notes						
Upland Wells	1,577	28.3%										
Upland Wells in operation for Alternative 1-1 and 1-2												
Well 5	324		140	324	\$45,360	[a]						
Well 6	388		225	388	\$87,300	[a]						
Well 7	477		153	477	\$72,981	[b]						
Well 24	388		210	388	\$81,480	[a]						
MVPS, SWP	2,500	44.8%	37	2,500	\$92,500	[c]						
River Wells	1,505	27.0%	92	1,505	\$138,460							
-	5,582	100.0%		5,582	\$518,081							
Zone 1 to Zone	2											
	3,292	59.0%	40	3,292	\$131,680							
Zone 2 to Zone	3											
~_	100	1.8%	80	100	\$8,000							
				Total	\$657,761							
	118											
	\$622,478											
\$/AF 112												
	\$35,283											
\$/AF 6												
[a] Based on 80% operation per year												

Future Energy Cost Alternative 1-1 and 1-2

[b] Based on 33% operation per year

[c] Based on approximate 2013 water use (rounded)

Alternative 1-2 Blending Well 7 with Well 24 at Well 7 Site Cost Estimate

	Description		Unit	Unit Cost Ite		em Cost			
[2]	Pipelines					\$	1,986,000		
[]	8 inch pipeline from well 24 to well 7	2,500	LF	\$	110	\$	275,000		
	8 inch parallel pipeline from well 7 to system	700	LF	\$	110	\$	77,000		
	8 Immediately downstream of 6 cfs well field	500	LF	\$	110	\$	55,000		
	8 Immediately downstream of 6 cfs well field	1,000	LF	\$	110	\$	110,000		
	12 Immediately downstream of Mesa Verde	700	LF	\$	150	\$	105,000		
	12 Immediately downstream of Mesa Verde	1,700	LF	\$	150	\$	255,000		
	12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps	800	LF	\$	150	\$	120,000		
	12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps	1,600	LF	\$	150	\$	240,000		
	12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps	1,400	LF	\$	150	\$	210,000		
	12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps	2,100	LF	\$	150	\$	315,000		
	8. Relocation Zone 1 meters to Zone 2	1,200	LF	\$	110	\$	132,000		
	Polocation Zone 1 meters to Zone 2	. 1	LS	\$	10,000	\$	10,000		
	Relocation Zone 2 meter to Zone 3	1	LS	\$	5,000	\$	5,000		
	8 Immediately downsteram of new booster @ Zone 1 Tank	700	LF	\$	110	\$	77,000		
101	Control Velveo					\$	198,000		
រេ	Volves et Woll 24	1	LS	\$	10,000	\$	10,000		
	Valves at Well 7	1	LS	\$	10,000	\$	10,000		
	12 inch inling blonding static mixer for wells 7 and 24	1	LS	\$	10,000	\$	10,000		
	Presider Duran (1 000 gpm, 50 bp) at Zope 1 Tank	1	LS	\$	10.000	\$	10,000		
	Booster Pump (1,000 gpm, 50 mp) at zone Trank	1	is	ŝ	2,000	\$	2,000		
	Booster Pump (10 gpm)	12	Each	ŝ	1,500	\$	18,000		
	8-inch valves	11	Each	ŝ	2 500	Ś	28,000		
	12-inch valves	11	Each	ŝ	5,000	ŝ	55,000		
	Blowoff valve assembly with valve box Air/vacuum and air relacase valve with valve box	11	Each	\$	5,000	\$	55,000		
						\$	95.000		
[5]	Pump Stations	50	Hn	\$	1 600	ŝ	80,000		
	Booster Pump (1,000 gpm, 50 np) at 20ne 1 Tank Booster Pump (10 gpm) 16.4 to 60 psi	1.0	Hp	\$	15,000	\$	15,000		
						\$	55,000		
[6]	Electrical Controls	1	1.5	\$	10 000	Ŝ	10,000		
	Refugio-2 upgrade to operate all 3 pumps	4	LS	ŝ	40,000	Ŝ	40.000		
	Booster Pump (1,000 gpm, 50 np) at 20ne i Frank Booster Pump (10 gpm)	1	LS	\$	5,000	\$	5,000		
						\$	25,000		
[7]	SCADA System SCADA Connection, components, operations for new booster	1	LS	\$	25,000	\$	25,000		
						\$	30.000		
[9]	Electrical Power Facilities	1	15	\$	20.000	ŝ	20.000		
	Booster Pump (1,000 gpm, 50 np) at Zone 1 Tank Booster Pump (10 gpm)	1	LS	\$	10,000	\$	10,000		
						s	230.000		
[10] Land and Right of Ways	4	10	¢	200.000	Ψ \$	200,000		
	Acquire 50' by 50' of Land and permitting		LO	4	200,000	ŝ	30,000		
	Acquire 20' by 20' of Land and permitting	<u> </u>	15	- -	30,000	è	2 619 000		
				10	Mai	4	2,010,000		
	Average		2013	Average	Average				
------------------	-----------	-------------	------------	-----------------	-----------	---------------------------------------	--	--	--
Water Supply	AF	Percent	\$/AF	AF	\$	Notes			
Upland Wells	1,577	28.3%							
Upland Wells in	operation	for Alterna	tive 1-1 a	nd 1 - 2					
Well 5	324		140	324	\$45,360	[a]			
Well 6	388		225	388	\$87,300	[a]			
Well 7	477		153	477	\$72,981	[b]			
Well 24	388		210	388	\$81,480	[a]			
MVPS, SWP	2,500	44.8%	37	2,500	\$92,500	[c]			
River Wells	1,505	27.0%	92	1,505	\$138,460				
_	5,582	100.0%		5,582	\$518,081				
Zone 1 to Zone 2	2								
	3,292	59.0%	40	3,292	\$131,680				
Zone 2 to Zone 3	3								
	100	1.8%	80	100	\$8,000				
				Total	\$657,761	e e e e e e e e e e e e e e e e e e e			
				\$/AF	118				
		Ave	rage Pum	ping Cost	\$622,478				
\$/AF 112									
		I	Extra Pum	ping Cost	\$35,283				
\$/AF 6									
[a] B	ased on 8	0% operatio	on ner vea	r					

Future Energy Cost Alternative 1-1 and 1-2

[a] Based on 80% operation per year[b] Based on 33% operation per year

Alternative 1-3 Blending Well 27 with Zone 2 Water then pumped into Zone 3 Cost Estimate

	Description	Quantity	Unit	Ur	Unit Cost		em Cost
701						¢	2 249 000
[2]	Pipelines	4 100	IF	\$	150	\$	615 000
	12 pipeline from well 27 to 20he 5	500	L.	ŝ	110	ŝ	55.000
	8 Immediately downstream of 6 cfs well field	1.000	LF	Ś	110	Š	110,000
	12 Immediately downstream of Mesa Verde	700	LF	Ś	150	\$	105,000
	12 Immediately downstream of Mesa Verde	1.700	LF	\$	150	\$	255,000
	12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps	800	LF	\$	150	\$	120,000
	12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps	1,600	LF	\$	150	\$	240,000
	12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps	1,400	LF	\$	150	\$	210,000
	12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps	2,100	LF	\$	150	\$	315,000
	8 Relocation Zone 1 meters to Zone 2	1,200	LF	\$	110	\$	132,000
	Relocation Zone 1 meters to Zone 2	1	LS	\$	10,000	\$	10,000
	Relocation Zone 2 meter to Zone 3	1	LS	\$	5,000	\$	5,000
	8 Immediately downsteram of new booster @ Zone 1 Tank	700	LF	\$	110	\$	77,000
[3]	Control Valves					\$	234,000
[0]	Valves at Well 27	1	LS	\$	20,000	\$	20,000
	Valves at Well 27 new booster pump	1	LS	\$	20,000	\$	20,000
	Flow control valves at well 27 and new booster at well 27	2	Each	\$	5,000	\$	10,000
	12-inch inline blending static mixer	1	LS	\$	15,000	\$	15,000
	Booster Pump (1,000 gpm, 50 hp) at Zone 1 Tank	1	LS	\$	10,000	\$	10,000
	Booster Pump (10 gpm)	1	LS	\$	2,000	\$	2,000
	8-inch valves	8	Each	\$	1,500	\$	12,000
	10-inch valves	0	Each	\$	2,000	\$	
	12-inch valves	14	Each	\$	2,500	\$	35,000
	Blowoff valve assembly with valve box	11	Each	\$	5,000	\$	55,000
	Air/vacuum and air relaease valve with valve box	11	Each	\$	5,000	\$	55,000
151	Duma Stationa					\$	215,000
[5]	Pump Stations Reaster Rump (1,000 gpm, 50 hp) at Zone 1 Tank	50	dН	\$	1,600	\$	80,000
	Booster Pump (1,000 gpm, 206 TDH, 75 hp) at Well 27	75	Hp	\$	1,600	\$	120,000
	Booster Pump (10 gpm) 16.4 to 60 psi	1.0	Нp	\$	15,000	\$	15,000
161	Electrical Controls					\$	95,000
101	Refugio-2 upgrade to operate all 3 pumps	1	LS	\$	10,000	\$	10,000
	Booster Pump (1,000 gpm, 50 hp) at Zone 1 Tank	1	LS	\$	40,000	\$	40,000
	Booster Pump (1,000 gpm, 206 TDH, 75 hp) at Well 27	1	LS	\$	40,000	\$	40,000
	Booster Pump (10 gpm)	1	LS	\$	5,000	\$	5,000
[7]	SCADA System					\$	25,000
	SCADA Connection, components, operations for new booster	1	LS	\$	25,000	\$	25,000
101	Electrical Dower Eacilities					\$	30,000
[9]	Booster Pump (1 000 gpm 50 hp) at Zone 1 Tank	1	LS	\$	20,000	\$	20,000
	Booster Pump (10 gpm)	1	LS	\$	10,000	\$	10,000
[10	I and and Right of Ways					\$	230,000
110	Acquire 50' by 50' of Land and permitting	1	LS	\$	200,000	\$	200,000
	Acquire 20' by 20' of Land and permitting	1	LS	\$	30,000	\$	30,000
				To	tal	\$	3,078,000

A	verage		2013	Average	Average			
Water Supply	AF	Percent	\$/AF	AF	\$	Notes		
Upland Wells	1,389	24.9%						
Upland Wells in	operation	n for Altern	ative 1-3					
Well 5	324		140	324	\$45,360	[a]		
Well 6	388		225	388	\$87,300	[a]		
Well 27	289		124	289	\$35,836	[b]		
Well 24	388		210	388	\$81,480	[a]		
MVPS, SWP	2,500	44.8%	37	2,500	\$92,500	[c]		
River Wells	1,693	30.3%	92	1,693	\$155,756			
1	5,582	100.0%		5,582	\$498,232			
Zone 1 to Zone 2								
	3,480	62.3%	40	3,480	\$139,200			
Zone 2 to Zone 3								
	289	5.2%	80	289	\$23,120			
1)				Total	\$660,552	•		
				\$/AF	118			
		Ave	rage Pum	ping Cost	\$622,478			
	112							
		F	Extra Pum	ping Cost	\$38,074			
\$/AF 6								
[a] B	ased on 8	30% operati	ion per ye	ar				

Future Energy Cost Alternative 1-3

[b] Based on 14.3% operation per year[c] Based on approximate 2013 water use (rounded)

Alternative 1-4 Blending Well 28 with Zone 2 Water then pumped into Zone 3 Cost Estimate

	Description	Quantity	Unit	Ur	Unit Cost		tem Cost
(0)						¢	2 100 000
[2]	Pipelines	1 800	1 E	\$	210	ŝ	378 000
	B Pipeline from well 28 to zone 3	800	IF	ŝ	110	ŝ	88,000
	8 Pipeline from well 20 to 2016 5	500	I.F.	ŝ	110	ŝ	55,000
	6 Immediately downstream of 6 ofs well field	1 000	IF	ŝ	110	ŝ	110.000
	12 Immediately downstream of Mess Verde	700	IF	ŝ	150	ŝ	105,000
	12 Immediately downstream of Mesa Verde	1 700	IF	ŝ	150	ŝ	255,000
	12 Tone 1 main line from Mesa Verde to Refugio Booster Pumps	800	LF	Ś	150	Ŝ	120,000
	12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps	1.600	LF	Ś	150	\$	240,000
	12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps	1,400	LF	Ś	150	\$	210,000
	12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps	2,100	LF	\$	150	\$	315,000
	8 Relocation Zone 1 meters to Zone 2	1,200	LF	\$	110	\$	132,000
	Relocation Zone 1 meters to Zone 2	1	LS	\$	10,000	\$	10,000
	Relocation Zone 2 meter to Zone 3	1	LS	\$	5,000	\$	5,000
	8 Immediately downsteram of new booster @ Zone 1 Tank	700	LF	\$	110	\$	77,000
(2)	Central Valvas					\$	254.000
ျ	Valves at Well 28	1	LS	\$	20.000	Ś	20,000
	Valves at Well 28 new booster nump	1	LS	\$	20,000	\$	20,000
	Flow control valves at well 28 and new booster at well 28	2	Each	\$	5,000	\$	10,000
	12-inch inline blending static mixer	1	LS	\$	15,000	\$	15,000
	Booster Pump (1 000 gpm, 50 hp) at Zone 1 Tank	1	LS	\$	10,000	\$	10,000
	Booster Pump (1) gpm)	1	LS	\$	2,000	\$	2,000
	B-inch valves	10	Each	\$	1,500	\$	15,000
	10-inch valves	0	Each	\$	2,000	\$: :
	12-inch valves	14	Each	\$	2,500	\$	35,000
	16-inch valves	2	Each	\$	3,500	\$	7,000
	Blowoff valve assembly with valve box	12	Each	\$	5,000	\$	60,000
	Air/vacuum and air relaease valve with valve box	12	Each	\$	5,000	\$	60,000
[5]	Dump Stations					\$	320,000
[]]	Booster Pump (1,000 gpm, 50 hp) at Zope 1 Tank	50	Hp	\$	1,600	\$	80,000
	Booster Pump (1,500 gpm, 300 TDH, 150 hp) at Well 28	150	н́р	\$	1,500	\$	225,000
	Booster Pump (10 gpm) 16.5 to 60 psi	1.0	Hp	\$	15,000	\$	15,000
101						S	115.000
[o]	Electrical Controls	1	18	\$	10.000	\$	10,000
	Refugio-2 upgrade to operate all 5 pumps Reporter Rump (1 000 gpm 50 hp) at Zope 1 Tank	1	IS	ŝ	40,000	\$	40,000
	Booster Pump (1,500 gpm, 300 TDH, 150 hp) at Well 28	1	15	ŝ	60,000	ŝ	60,000
	Booster Pump (1,000 gpm) Booster Pump (10 gpm)	i	LS	\$	5,000	\$	5,000
[-7]						\$	25.000
[/]	SCADA System SCADA Connection components operations for new booster	1	LS	\$	25.000	\$	25,000
				•			
[9]	Electrical Power Facilities					\$	30,000
•••	Booster Pump (1,000 gpm, 50 hp) at Zone 1 Tank	1	LS	\$	20,000	\$	20,000
	Booster Pump (10 gpm)	1	LS	\$	10,000	\$	10,000
[10) Land and Right of Ways					\$	230,000
	Acquire 50' by 50' of Land and permitting	1	LS	\$	200,000	\$	200,000
	Acquire 20' by 20' of Land and permitting	11	LS	\$	30,000	\$	30,000
				To	tal	\$	3,074,000

I:\DATA\2492\Analyses\Cost Estimates\Alternative 1 Blending Option 4 Well 28 with Zone 2 water then pumped into Zone 3 06 10-2014

I	Average		2013	Average	Average	
Water Supply	AF	Percent	\$/AF	AF	\$	Notes
Upland Wells	1,293	23.2%				
Upland Wells in	operation	n for Altern	ative 1-4			
Well 5	324		140	324	\$45,360	[a]
Well 6	388		225	388	\$87,300	[a]
Well 28	193		90	193	\$17,370	[b]
Well 24	388		210	388	\$81,480	[a]
MVPS, SWP	2,500	44.8%	37	2,500	\$92,500	[c]
River Wells	1,789	32.0%	91	1,789	\$162,799	
	5,582	100.0%		5,582	\$486,809	
Zone 1 to Zone 2	2					
	3,576	64.1%	40	3,576	\$143,040	
Zone 2 to Zone 3	3					
_	386	6.9%	80	386	\$30,880	•
				Total	\$660,729	
				\$/AF	118	
		Ave	rage Pum	ping Cost	\$622,478	
	\$/AF	112				
	\$38,251					
				\$/AF	6	
[a] B	ased on 8	80% operati	ion per ye	ar		

Future Energy Cost Alternative 1-4

[b] Based on 14.3% operation per year

Alternative 1-5 Blending Well 5 with Well 25 at Well 25 Site Cost Estimate

	Description	Quantity	Unit	Unit Cost		lt	em Cost
						*	1 4 2 2 0 0 0
[2]	Pipelines	0.500		¢	110	ф Ф	2,123,000
	8 pipeline from well 5 to well 25	3,500		¢ ¢	120	¢ ¢	104 000
	10 Immediately downstream of 12" connection VV25 & 23 tank	500		¢ ¢	130	¢ D	55,000
	8 Immediately downstream of 6 cfs well field	500		ф ф	110	¢ Q	110,000
	8 Immediately downstream of 6 cfs well field	1,000		¢ ¢	150	ф Ф	105,000
	12 Immediately downstream of Mesa Verde	1 700		¢ P	150	¢	255,000
	12 Immediately downstream or Mesa Verde	1,700		φ e	150	φ ¢	120,000
	12 Zone 1 main line from Mesa Verde to Refugio Booster Pullips	1 600		4	150	¢ ¢	240,000
	12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps	1,000		¢ ¢	150	φ ¢	210,000
	12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps	1,400		φ ¢	150	φ	315,000
	12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps	2,100		φ	110	φ Φ	132 000
	8 Relocation Zone 1 meters to Zone 2	1,200		¢ ¢	10 000	φ	10,000
	Relocation Zone 1 meters to Zone 2	1		ф ф	5,000	φ	5,000
	Relocation Zone 2 meter to Zone 3	700		¢ ¢	5,000	¢ P	77,000
	8 Immediately downsteram of new booster @ Zone 1 Tank	700	LF	Φ	110	φ	77,000
[3]	Control Valves					\$	213,000
[-]	Valves at Well 25	1	LS	\$	10,000	\$	10,000
	Valves at Well 5	1	LS	\$	10,000	\$	10,000
	12-inch inline blending static mixer for wells 5 and 25	1	LS	\$	10,000	\$	10,000
	Booster Pump (1 000 opm, 50 hp) at Zone 1 Tank	1	ŁS	\$	10,000	\$	10,000
	Booster Pump (10 gpm) Zone 2	1	LS	\$	2,000	\$	2,000
	Booster Pump (<25 gpm) 21 7 to 60 psi Zone 3	1	LS	\$	2,000	\$	2,000
	Blocker Fully (120 gpm) 2 m to co por 2010 c	10	Each	\$	1,500	\$	15,000
	10-inch valves	2	Each	\$	2,000	\$	4,000
	12-inch valves	12	Each	Ś	2,500	\$	30,000
	Ployoff valve assembly with valve box	12	Fach	ŝ	5.000	Ś	60,000
	Air/vacuum and air relaease valve with valve box	12	Each	\$	5,000	\$	60,000
						*	440.000
[5]	Pump Stations			~	4 000	ð.	110,000
	Booster Pump (1,000 gpm, 50 hp) at Zone 1 Tank	50	Нр	\$	1,600	\$	80,000
	Booster Pump (<25 gpm) 21.7 to 60 psi Zone 3	1.0	Нр	\$	15,000	\$	15,000
	Booster Pump (10 gpm) 16.6 to 60 psi Zone 2	1.0	Нр	\$	15,000	\$	15,000
[6]	Electrical Controls					\$	60,000
[v]	Refusio-2 upgrade to operate all 3 numps	1	LS	\$	10.000	\$	10,000
	Booster Pump (1 000 gpm 50 hp) at Zone 1 Tank	1	15	\$	40.000	Ś	40.000
	Booster Pump (<25 npm) 21.7 to 60 psi Zone 3	1	LS	Ŝ	5.000	ŝ	5.000
	Booster Pump (10 gpm)	1	LS	\$	5,000	\$	5,000
						ė	25.000
[7]	SCADA System		1.0	¢	05 000	49 10	25,000
	SCADA Connection, components, operations for new booster	1	LS	Ф	25,000	ф	25,000
[9]	Electrical Power Facilities					\$	40,000
r-1	Booster Pump (1,000 gpm, 50 hp) at Zone 1 Tank	1	LS	\$	20,000	\$	20,000
	Booster Pump (<25 gpm) 21.7 to 60 psi Zone 3	1	LS	\$	10,000	\$	10,000
	Booster Pump (10 gpm) 16.6 to 60 psi Zone 2	1	LS	\$	10,000	\$	10,000
140	A to a second mode last a fillence					¢	260 000
[10	Land and Right of Ways	4	19	¢	200 000	\$	200,000
	Acquire 50' by 50' of Land and permitting	1		φ	200,000	÷ S	60.000
-			<u>L3</u>	TO	0	Ŝ	2,831.000
				••		•	_,,

	Average		2013	Average	Average		
Water Supply	AF	Percent	\$/AF	AF	\$	Notes	
Upland Wells	1,580	28.3%					
Upland Wells in	operation	n for Altern	ative 1-5	and 1-6			
Well 5	324		140	324	\$45,360	[a]	
Well 6	388		225	388	\$87,300	[a]	
Well 25	480		107	480	\$51,360	[b]	
Well 24	388		210	388	\$81,480	[a]	
MVPS, SWP	2,500	44.8%	37	2,500	\$92,500	[c]	
River Wells	1,502	26.9%	92	1,502	\$138,184		
-	5,582	100.0%		5,582	\$496,184		
Zone 1 to Zone	2						
	3,289	58.9%	40	3,289	\$131,560		
Zone 2 to Zone	3						
	100	1.8%	80	100	\$8,000		
=				Total	\$635,744	k :	
				\$/AF	114		
		Ave	rage Pum	ping Cost	\$622,478		
\$/AF 112							
Extra Pumping Cost \$13,266							
				\$/AF	2		
[a] H	Based on 8	30% operati	ion per ye	ar			

Future Energy Cost Alternative 1-5 and 1-6

[b] Based on 31% operation per year

Alternative 1-6 Blending Well 24 with Well 25 at Well 25 Site Cost Estimate

	Description	Quantity	Unit	Ur	nit Cost	lt	em Cost
						¢	2 283 000
[2]	Pipelines	5 100	IE	\$	110	₽ \$	561 000
	8 Inch pipeline from well 24 to well 25	0,100	IF	ŝ	110	ŝ	88,000
	8 Immediately downstream of 6 of woll field	500		ŝ	110	ŝ	55,000
	8 Immediately downstream of 6 ofs well field	1 000	IF	ŝ	110	ŝ	110.000
	Commediately downstream of Mass Vorde	700	LE	ŝ	150	ŝ	105.000
	12 Immediately downstream of Mesa Verde	1 700	IF	ŝ	150	ŝ	255,000
	12 Timmediately downstream of Mesa Verde to Refugio Booster Pumps	800	LF	ŝ	150	ŝ	120.000
	12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps	1,600	LE	Š	150	Ś	240,000
	12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps	1,400	LF	Ŝ	150	\$	210,000
	12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps	2,100	LF	\$	150	\$	315,000
	8 Relocation Zone 1 meters to Zone 2	1,200	LF	\$	110	\$	132,000
	Relocation Zone 1 meters to Zone 2	1	LS	\$	10,000	\$	10,000
	Relocation Zone 2 meter to Zone 3	1	LS	\$	5,000	\$	5,000
	8 Immediately downsteram of new booster @ Zone 1 Tank	700	LF	\$	110	\$	77,000
101	On start Malazza					\$	212.000
្រ្យ	Control Valves	1	LS	\$	10.000	\$	10,000
	Valves at Well 23	1	LS	\$	10,000	\$	10,000
	12-inch inline blending static mixer for wells 24 and 25	1	LS	\$	10,000	\$	10,000
	Booster Pump (1,000 gpm, 50 hp) at Zone 1 Tank	1	LS	\$	10,000	\$	10,000
	Booster Pump (25 apm), 23.4 to 60 psi Zone 3	1	LS	\$	2,000	\$	2,000
	Booster Rump (10 gpm) 16.6 to 60 psi Zone 2	1	LS	\$	2,000	\$	2,000
	8-inch valves	12	Each	\$	1,500	\$	18,000
	12-inch valves	12	Each	\$	2,500	\$	30,000
	Blowoff valve assembly with valve box	12	Each	\$	5,000	\$	60,000
	Air/vacuum and air relaease valve with valve box	12	Each	\$	5,000	\$	60,000
(51	Duma Stations					\$	110,000
[0]	Booster Pump (1 000 gpm 50 hp) at Zone 1 Tank	50	Hp	\$	1,600	\$	80,000
	Booster Pump (25 gpm), 23 4 to 60 psi Zone 3	1.0	Нp	\$	15,000	\$	15,000
	Booster Pump (10 gpm) 16.6 to 60 psi Zone 2	1.0	Hp	\$	15,000	\$	15,000
101	Electrical Ocertaria					\$	60,000
lol	Electrical Controls	1	LS	\$	10,000	\$	10,000
	Relugio-2 upgrade to operate all o pumps Booster Rump (1.000 gpm, 50 hp) at Zone 1 Tank	1	LS	\$	40,000	\$	40,000
	Booster Pump (25 gpm), 23.4 to 60 psi Zone 3	1	LS	\$	5,000	\$	5,000
	Booster Pump (10 gpm) 16.6 to 60 psi Zone 2	1	LS	\$	5,000	\$	5,000
r-71						\$	25,000
U)	SCADA System	1	15	\$	25,000	\$	25,000
	SCADA Connection, components, operations for new because	1.	20	*	20,000	*	
[9]	Electrical Power Facilities	4	10	¢	20,000	\$ ¢	40,000 20,000
	Booster Pump (1,000 gpm, 50 hp) at Zone 1 1 ank	1		ф ф	10 000	φ φ	10,000
	Booster Pump (25 gpm) 23.4 to 60 psi Zone 3 Booster Pump (10 gpm) 16 6 to 60 psi Zone 2	1	LS	\$	10,000	\$	10,000
	Booster Lamp (To gpiny Toto to bo por Eono E				-	•	000.000
[10) Land and Right of Ways	5. 1 .		*	000 000	\$	200,000
·	Acquire 50' by 50' of Land and permitting	1	LS	\$	200,000	ф Ф	200,000
_	Acquire 20' by 20' of Land and permitting	2	LS	\$	30,000	\$	2 000 000
				10	Idi	\$	2,000,000

I	Average 2013 Average				Average		
Water Supply	AF	Percent	\$/AF	AF	\$	Notes	
Upland Wells	1,580	28.3%					
Upland Wells in	operation	n for Altern	ative 1-5	and 1-6			
Well 5	324		140	324	\$45,360	[a]	
Well 6	388		225	388	\$87,300	[a]	
Well 25	480		107	480	\$51,360	[b]	
Well 24	388		210	388	\$81,480	[a]	
MVPS, SWP	2,500	44.8%	37	2,500	\$92,500	[c]	
River Wells	1,502	26.9%	92	1,502	\$138,184		
	5,582	100.0%		5,582	\$496,184		
Zone 1 to Zone 2	2						
	3,289	58.9%	40	3,289	\$131,560		
Zone 2 to Zone 3	3						
	100	1.8%	80	100	\$8,000		
				Total	\$635,744		
				\$/AF	114		
		Ave	rage Pum	ping Cost	\$622,478		
\$/AF 112							
		ł	Extra Pum	ping Cost	\$13,266		
\$/AF 2							
[a] B	ased on 8	30% operati	ion per ye	ar			

Future Energy Cost Alternative 1-5 and 1-6

[b] Based on 31% operation per year

2

Alternative 2 Separate Irrigation Water System Cost Estimate

	Description	Quantity	Unit	U	Unit Cost		tem Cost
[2]	Pipelines 8- inch pipelines	73,900	LF	\$	100	\$ \$	13,645,000 7,390,000
	10- inch pipelines	18,000	LF	\$	130	\$	2,340,000
	12- inch pipelines	24,000	LF	\$	150	\$	3,600,000
	16- inch pipelines	1,500	LF	\$	210	\$	315,000
[3]	Control Valves				- 000	\$	1,037,000
	Gallery well hydropneumatic tank valves	1	LS	\$	5,000	\$	5,000
	128,000 gallon tank valves	1	LS	\$	10,000	\$	10,000
	Zone 2 to Zone 3 Booster Pump @ Alamo Pintado (785 gpm)	1	LS	\$	10,000	\$	10,000
	4-inch pressure reducing valves connection to existing system	5	Each	¢	10,000	ф Ф	45,000
	6-inch pressure reducing valves connection to existing system	3	Each	Ð	15,000	¢ ¢	45,000
	8-inch pressure reducing valves connection to existing system	2	Each	\$	20,000	¢	40,000
	Zone 2 to Zone 1 pressuer reducing valve	1	Each	\$	20,000	ф Ф	20,000
	New water meter connections	30	Each	\$	5,000	ф ф	150,000
	8-inch valves	37	Each	*	1,500	¢	10,000
	10-inch valves	9	Each	*	2,000	\$	10,000
	12-inch valves	12	Each	\$	2,500	\$	30,000
	16-inch valves	1	Each	\$	3,500	2	3,500
	Blowoff valve assembly with valve box	59	Each	\$	5,000	\$	295,000
	Air/vacuum and air relaease valve with valve box	59	Each	\$	5,000	\$	295,000
	Well #3 connection to separate irrigation system	1	LS	\$	10,000	\$	10,000
[4]	Tanke					\$	420,000
1.1	15 000 hydropneumatic tank at Gallery Well	1	LS	\$	110,000	\$	110,000
	15 000 hydropneumatic tank at Alamo Pintado booster pump	1	LS	\$	110,000	\$	110,000
	128,000 gallon tank at Zone 2 existing tank site	1	LS	\$	200,000	\$	200,000
[5]	Pumn Stations					\$	98,000
r-1	Zone 2 to Zone 3 Booster Pump @ Alamo Pintado (785 gpm, 50 hp)	1	LS	\$	50,000	\$	50,000
	Well #3 pump and motor (600 gpm, 75 hp)	1	LS	\$	48,000	\$	48,000
[6]	Electrical Controls					\$	45,000
[0]	Gallery Well presure tank	1	LS	\$	5,000	\$	5,000
	Zone 2 to Zone 3 Booster Pump @ Alamo Pintado (50 hp)	1	LS	\$	40,000	\$	40,000
[7]	SCADA System					\$	75,000
r. 1	SCADA Connection, components, operations at new Zone 2 tank	1	LS	\$	25,000	\$	25,000
	SCADA Connection, components, operations at new Zone 3 booster	1	LS	\$	25,000	\$	25,000
	SCADA Connection, components, operations at Gallery well	1	LS	\$	25,000	\$	25,000
[8]	Water Treatment					\$	20,000
• •	Well #3 cleaning and development	1	LS	\$	20,000	\$	20,000
[0]	Electrical Power Facilities					\$	15,000
[9]	Zone 2 to Zone 3 Booster Pump @ Alamo Pintado (50 hp)	1	LS	\$	15,000	\$	15,000
[10	[10] Land and Right of Ways						400,000
	Acquire 50' by 50' of and and permitting for Zone 3 booster	1	LS	\$	200,000	\$	200,000
	Acquire 50' by 50' of and and permitting for Gallery well tank	11	LS	\$	200,000	\$	200,000
-				Т	otal	\$	15,755,000

Future Energy Cost Alternative 2

	2013		2013	2013	2013	
Water Supply	AF	Percent	\$/AF	AF	\$	Notes
Upland Wells in	operation	for Alterna	ative 2			
Well 1	59	1.1%	123	59	\$7,275	[a]
Well 2	146	2.6%	123	146	\$17,976	[a]
Well 3	177	3.2%	86	177	\$15,198	[a]
Well 15	968	17.3%	86	968	\$83,248	[b]
Well 28	220	3.9%	90	220	\$19,787	[a]
Well 5	324	5.8%	140	324	\$45,360	[c]
Well 6	388	7.0%	225	388	\$87,300	[c]
Well 24	388	7.0%	210	388	\$81,480	[c]
MVPS, SWP	1,397	25.0%	37	1,397	\$51,689	[d]
River Wells	1,000	17.9%	95	1,000	\$95,000	[e]
Gallery Well	515	9.2%	80	515	\$41,200	[f]
Irrigation	2,085			5,582	\$545,514	
Municipal	3,497					
Total	5,582	100.0%				
Zone 1 to Zone 2	2					
	2,199	38.1%	40	2,127	\$85,080	
Zone 2 to Zone 3	3					
	633	11.0%	80	612	\$48,960	
=				Total	\$679,554	
				\$/AF	122	
		Ave	rage Pumr	oing Cost	\$622,478	
			0r	\$/AF	112	
]	Extra Pum	oing Cost	\$57,076	
		-	1	\$/AF	10	
			5 ²	ψ/ I M	10	

[a] Based on 18.2% operation per year

[b] Based on 50% operation per year

[c] Based on 80% operation per year

[d] Based on water needs not supplied by wells

[e] Assumed 2013 water pumping rate

[f] Limited to 515 acre-feet per year by water rights

Alternative 3 Surface Water Treatment Gallery Well Cost Estimate

	Description	Quantity	Unit	Un	it Cost	11	tem Cost
[2]	Pipelines 12 inch immediately downstream of treatment plant booster pump 8 Immediately downstream of 6 cfs well field 8 Immediately downstream of 6 cfs well field 12 Immediately downstream of Mesa Verde 12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps 12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps 12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps 12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps 12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps 12 Relocation Zone 1 meters to Zone 2 Relocation Zone 1 meters to Zone 2 Relocation Zone 2 meter to Zone 3 8 Immediately downsteram of new booster @ Zone 1 Tank	200 500 1,000 700 1,700 800 1,600 1,400 2,100 1,200 1,200 1 1 700	LF LF LF LF LF LS LS LF	****	150 110 150 150 150 150 150 150 110 10,000 5,000 110	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1,664,000 30,000 55,000 110,000 255,000 120,000 240,000 210,000 315,000 132,000 132,000 5,000 77,000
[3]	Control Valves Booster Pump (1,200 gpm) at Zone 1 Tank Booster Pump (776 gpm, 195' TDH, 75 hp) at treatment plant Booster Pump (10 gpm) 16.5 to 40 psi 8-inch valves 10-inch valves 12-inch valves 12-inch valves 12-inch valves at two new booster pumps 12-inch check valves at two new booster pumps Blowoff valve assembly with valve box Air/vacuum and air relaease valve with valve box	1 1 8 0 14 4 2 11	LS LS Each Each Each Each Each Each	***	10,000 10,000 2,000 1,500 2,500 2,500 2,500 5,000 5,000 5,000	\$ \$} \$} \$} \$} \$	199,000 10,000 2,000 12,000 35,000 10,000 55,000 55,000
[5]	<u>Pump Stations</u> Booster Pump (1,200 gpm) at Zone 1 Tank Booster Pump (776 gpm, 195' TDH, 75 hp) at treatment plant Booster Pump (10 gpm) 16.5 to 40 psi	75 75 1.0	Hp Hp Hp	\$ \$ \$	1,600 1,600 15,000	\$ \$ \$ \$ \$	255,000 120,000 120,000 15,000
[6]	<u>Electrical Controls</u> Booster Pump (1,200 gpm) at Zone 1 Tank Booster Pump (776 gpm, 195' TDH, 75 hp) at treatment plant Refugio-2 upgrade to operate 2 pumps Booster Pump (10 gpm) 16.5 to 40 psi	1 1 1 1	LS LS LS LS	\$ \$ \$ \$	40,000 40,000 10,000 5,000	\$ \$ \$ \$ \$	95,000 40,000 40,000 10,000 5,000
[7]	SCADA System SCADA Connection, components, operations for new Z1 booster SCADA Connection, components, operations for new treat booster	1 1	LS LS	\$ \$	25,000 25,000	\$ \$ \$	50,000 25,000 25,000
[8]	<u>Water Treatment Plant</u> Membrane Equipment, Pall System (800 gpm) Backwash Tank System Treatment Plant Building and Appurtenances	1 1 1	LS LS LS	\$1 :	,000,000 \$50,000 \$250,000		\$1,300,000 \$1,000,000 \$50,000 \$250,000
[9]	<u>Electrical Power Facilities</u> Booster Pump (1,200 gpm) at Zone 1 Tank Booster Pump (776 gpm, 195' TDH, 75 hp) at treatment plant Booster Pump (10 gpm) 16.5 to 40 psi	1 1 1	LS LS LS	\$ \$ \$	20,000 20,000 10,000	\$ \$ \$ \$	50,000 20,000 20,000 10,000
[10	Land and Right of Ways Acquire 50' by 50' of Land and permitting Acquire 100' by 100' of Land and permitting for treatment plant Acquire 20' by 20' of Land and permitting	1 1 1	LS LS LS	\$ \$ \$ Tota	200,000 250,000 <u>30,000</u>	\$ \$ \$ \$ \$ \$	480,000 200,000 250,000 <u>30,000</u> 4,093,000

	Average		2013	Average	Average				
Water Supply	AF	Percent	\$/AF	AF	\$	Notes			
Upland Wells	1,100	19.7%							
Upland Wells in	n operation	for Alterna	tive 3						
Well 5	324		140	324	\$45,360	[a]			
Well 6	388		225	388	\$87,300	[a]			
Well 24	388		210	388	\$81,480	[a]			
MVPS, SWP	2,500	44.8%	37	2,500	\$92,500	[b]			
Gallery Well	515	9.2%	80	515	\$41,200	[c]			
River Wells	1,467	26.3%	90	1,467	\$132,030	3			
	5,582	100.0%		5,582	\$479,870	5.			
Gallery Well B	ooster Pum	p at Treatm	ent Plant						
	515		40	515	\$20,600				
Zone 1 to Zone	2								
	3,769	67.5%	40	3,769	\$150,760				
Zone 2 to Zone	3								
	633	11.3%	80	633	\$50,640				
-				Total	\$701,870				
				\$/AF	126				
		Ave	rage Pum	ping Cost	\$622,478				
				\$/AF	112				
		Gallery	well boo	ster pump	\$41,200				
		H	Extra Pum	ping Cost	\$120,592				
				\$/AF	14				
[0]	[a] Deced on 200/ emeration new year								

Future Energy Cost Alternative 3

[a] Based on 80% operation per year

[b] Based on approximate 2013 water use (rounded)

[c] Limited to 515 acre-feet per year by water rights

Alternative 4-1 Cost Estimate for Minimum Use of Upland Wells

	Description	Quantity	Unit	U	Unit Cost		Item Cost	
[2]	Pinelines					\$	1.590.000	
()	10 inch immediately downstream of 6 cfs well field	500	LF	\$	130	\$	65,000	
	10 Immediately downstream of 6 cfs well field	2,000	LF	\$	130	\$	260,000	
	12 Immediately downstream of Mesa Verde	400	LF	\$	150	\$	60,000	
	10 Immediately downstream of Mesa Verde	1,800	LF	\$	130	\$	234,000	
	12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps	800	LF	\$	150	\$	120,000	
	12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps	1,600	LF	\$	150	\$	240,000	
	12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps	1,500	LF	\$	150	\$	225,000	
	12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps	1,300	LF	\$	150	\$	195,000	
	8 Relocation Zone 1 meters to Zone 2	1,000	LF	\$	110	\$	110,000	
	Relocation Zone 1 meters to Zone 2	1	LS	\$	10,000	\$	10,000	
	Relocation Zone 2 meter to Zone 3	1	LS	\$	5,000	\$	5,000	
	8 Immediately downsteram of new booster @ Zone 1 Tank	600	LF	\$	110	\$	66,000	
[3]	Control Valves					\$	155,000	
	Booster Pump (1,250 gpm, 60 hp) at Zone 1 Tank	1	LS	\$	10,000	\$	10,000	
	Booster Pump (10 gpm) Luma Yucca Rd	1	LS	\$	2,000	\$	2,000	
	8-inch valves	4	Each	\$	1,500	\$	6,000	
	10-inch valves	6	Each	\$	2,000	\$	12,000	
	12-inch valves	10	Each	\$	2,500	\$	25,000	
	Blowoff valve assembly with valve box	10	Each	\$	5,000	\$	50,000	
	Air/vacuum and air relaease valve with valve box	10	Each	\$	5,000	\$	50,000	
[5]	Pump Stations					\$	180,000	
	Booster Pump (1,250 gpm, 60 hp) at Zone 1 Tank	75	Hp	\$	1,600	\$	120,000	
	Install new pump at Refugio-2 (1,500 gpm, 100 hp)	75	Hp	\$	600	\$	45,000	
	Booster Pump (10 gpm) 17.1 to 60 psi	1	Нр	\$	15,000	\$	15,000	
[6]	Electrical Controls					\$	55,000	
	Booster Pump (1,250 gpm, 60 hp) at Zone 1 Tank	1	LS	\$	40,000	\$	40,000	
	Refugio-2 upgrade to larger 100 hp pump	1	LS	\$	10,000	\$	10,000	
	Booster Pump (10 gpm)	1	LS	\$	5,000	\$	5,000	
[7]	SCADA System					\$	25,000	
	SCADA Connection, components, operations for new booster, Z1	1	LS	\$	25,000	\$	25,000	
[9]	Electrical Power Facilities					\$	30,000	
r.,	Booster Pump (1.250 gpm, 60 hp) at Zone 1 Tank	1	LS	\$	20,000	\$	20,000	
	Booster Pump (10 gpm)	1	LS	\$	10,000	\$	10,000	
[10]	I and and Right of Ways					\$	230,000	
1.01	Acquire 50' by 50' of Land and permitting	1	LS	\$	200,000	\$	200.000	
	Acquire 20' by 20' of Land and permitting	1	LS	\$	30,000	\$	30,000	
_		•		To	tal	\$	2,265,000	

	Average		2013	Average	Average			
Water Supply	AF	Percent	\$/AF	AF	\$	Notes		
Upland Wells	1,100	19.7%						
Upland Wells in	operation	for Alterna	ative 4					
Well 5	324		140	324	\$45,360	[a]		
Well 6	388		225	388	\$87,300	[a]		
Well 24	388		210	388	\$81,480	[a]		
MVPS, SWP	2,500	44.8%	37	2,500	\$92,500	[b]		
River Wells	1,982	35.5%	90	1,982	\$178,380			
-	5,582	100.0%		5,582	\$485,020			
Zone 1 to Zone	2							
	3,769	67.5%	40	3,769	\$150,760			
Zone 2 to Zone	3							
~	633	11.3%	80	633	\$50,640			
) <u>-</u>				Total	\$686,420			
				\$/AF	123			
Average Pumping Cost \$622,478								
\$/AF 112								
]	Extra Pum	ping Cost	\$63,942			
				\$/AF	11			

Future Energy Cost Alternative 4-1

[a] Based on 80% operation per year

	Description	Quantity	Unit	Ur	nit Cost	Item Cost	
[2]	Pipelines8inch pipe from well 3 to joint pipe to treatment plant16Wells 3 and 15 to joint pipe to treatment plant10Wells 1 and 2 to joint pipe to treatment plant10Wells 1 and 2 to joint pipe to treatment plant16Joint pipe from wells 1, 2, 3 and 15 to treatment plant16Treatment plant discharge pipe8Immediately downstream of 6 cfs well field12Zone 1 main line from Mesa Verde to Refugio Booster Pumps12Zone 1 main line from Mesa Verde to Refugio Booster Pumps12Zone 1 main line from Mesa Verde to Refugio Booster Pumps12Zone 1 main line from Mesa Verde to Refugio Booster Pumps12Zone 1 main line from Mesa Verde to Refugio Booster Pumps12Relocation Zone 1 meters to Zone 2Relocation Zone 1 meters to Zone 2Relocation Zone 2 meter to Zone 3	5,400 4,400 2,500 100 1,000 700 500 1,000 1,600 1,400 2,100 1,200 1	ĿĿĿĿĿĿĿĿĿĿ	***	110 210 130 210 210 110 150 150 150 150 110 10,000 5,000	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3,288,000 594,000 924,000 325,000 11,000 210,000 147,000 55,000 110,000 240,000 210,000 315,000 132,000 10,000 5,000
[3]	Control Valves Well 15 flow control valve Well 3 flow control valve Well 2 flow control valve Well 1 flow control valve Booster Pump (10 gpm) 6 and 8-inch valves 10-inch valves 12-inch valves 16-inch valves Blowoff valve assembly with valve box Air/vacuum and air relaease valve with valve box	1 1 1 10 2 6 6 12 12	LS LS LS LS Each Each Each Each Each	****	10,000 10,000 5,000 2,000 1,500 2,000 2,500 3,500 5,000 5,000	*******	$\begin{array}{c} \textbf{207,000} \\ 10,000 \\ 5,000 \\ 5,000 \\ 2,000 \\ 15,000 \\ 4,000 \\ 15,000 \\ 21,000 \\ 60,000 \\ 60,000 \end{array}$
[5]	Pump Stations Booster Pump (10 gpm) 16.8 to 60 psi Well #3 pump and motor (600 gpm, 75 hp)	1.0 1	Hp LS	\$ \$	15,000 48,000	\$ \$	63,000 15,000 48,000
[6]	Electrical Controls Refugio-2 upgrade to operate 2 pumps Booster Pump (10 gpm)	1 1	LS LS	\$ \$	10,000 5,000	\$ \$ \$	15,000 10,000 5,000
[7]	SCADA System SCADA Connection, components, operations for treatment plant	1	LS	\$	25,000	\$ \$	25,000 25,000
[8]	Water Treatment Well #3 cleaning and development	1	LS	\$	20,000	\$ \$	20,000 20,000
[9]	Electrical Power Facilities Booster Pump (10 gpm)	1	LS	\$	10,000	\$ \$	10,000 10,000
[10]	Land and Right of Ways Acquire 20' by 20' of Land and permitting	1	LS	\$ To	<u>30,000</u> tal	\$ \$	30,000 30,000 3,658,000

Alternative 5-1 Treat Wells 1, 2, 3 and Well 15 at Existing ID1 Shop Site Cost Estimate

	Average		2013	Average	Average	
Water Supply	AF	Percent	\$/AF	AF	\$	Notes
Upland Wells	2,631	47.1%				Z2 & 3
	1,100					Z3
	1,531					Z2
Upland Wells in	operation	for Alterna	tive 5-1			
Well 5	324		140	324	\$45,360	[a]
Well 6	388		225	388	\$87,300	[a]
Well 24	388		210	388	\$81,480	[a]
Well 1	163		123	163	\$20,049	[b]
Well 2	402		123	402	\$49,446	[b]
Well 3	0		86	0	\$0	[b]
Well 15	966		86	966	\$83,076	[b]
MVPS, SWP	2,500	44.8%	37	2,500	\$92,500	[c]
River Wells	451	8.1%	91	451	\$41,041	~
-	5,582	100.0%		5,582	\$500,252	
Zone 1 to Zone	2					
	2,238	40.1%	40	2,238	\$89,520	
Zone 2 to Zone	3					
	633	11.3%	80	633	\$50,640	
=				Total	\$640,412	ŧ.
				\$/AF	115	
	Average Pumping Cost					
	112					
WTP B	ooster Pum	np Cost from	m Hazen &	& Sawyer	\$54,000	
	10					
	\$71,934					
	13					

Future Energy Cost Alternative 5-1

[a] Based on 80% operation per year

[b] Based on 50% operation per year

Alternative 5-2 Treat Well 27 and Well 28 at Well 27 Site Cost Estimate

	Description	Quantity	Unit	U	nit Cost	<u> </u>	tem Cost
[2]	Pipelines10 inch pipe from well 28 to well 27 treatment plant8 Immediately downstream of 6 cfs well field8 Immediately downstream of 6 cfs well field12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps12 Relocation Zone 1 meters to Zone 2Relocation Zone 1 meters to Zone 2Relocation Zone 2 meter to Zone 3	4,000 500 1,000 1,600 1,400 2,100 1,200 1,200 1	LF LF LF LF LF LS LS	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	130 110 150 150 150 110 10,000 5,000	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1,597,000 520,000 55,000 110,000 240,000 210,000 315,000 132,000 10,000 5,000
[3]	Control Valves Well 27 flow control valve Well 28 flow control valve Booster Pump (10 gpm) 16.6 to 60 psi 8-inch valves 10-inch valves 12-inch valves 16-inch valves Blowoff valve assembly with valve box Air/vacuum and air relaease valve with valve box	1 1 6 2 6 0 7 7	LS LS Each Each Each Each Each Each	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	10,000 10,000 2,000 1,500 2,000 2,500 3,500 5,000 5,000	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	120,000 10,000 2,000 9,000 4,000 15,000 35,000
[5]	Pump Stations Booster Pump (10 gpm) 16.6 to 60 psi	1.0	Нр	\$	15,000	\$ \$	15,000 15,000
[6]	Electrical Controls Booster Pump (10 gpm) 16.6 to 60 psi	1	LS	\$	5,000	\$ \$	5,000 5,000
[7]	SCADA System SCADA Connection, components, operations for treatment plant	1	LS	\$	25,000	\$ \$	25,000 25,000
[9]	<u>Electrical Power Facilities</u> Booster Pump (10 gpm) 16.6 to 60 psi	1	LS	\$	10,000	\$ \$	10,000 10,000
[10]	Land and Right of Ways Acquire 20' by 1,500' ROW for pipe from well 28 and permitting Acquire 20' by 20' of Land and permitting	1,500 1	LF LS	\$ To	\$4 	\$ \$ \$	36,000 6,000 <u>30,000</u> 1,808,000

.

	Average		2013	Average	Average	
Water Supply	AF	Percent	\$/AF	AF	\$	Notes
Upland Wells	2,713	48.6%				Z2 & 3
	1,583					Z3
	1,130					Z2
Upland Wells in	1 operation	n for Altern	ative 5-2			
Well 5	324		140	324	\$45,360	[a]
Well 6	388		225	388	\$87,300	[a]
Well 24	388		210	388	\$81,480	[a]
Well 27	1,009		124	1,009	\$125,116	[b]
Well 28	604		90	604	\$54,360	[b]
MVPS, SWP	2,500	44.8%	37	2,500	\$92,500	[c]
River Wells	369	6.6%	91	369	\$33,579	
-	5,582	100.0%		5,582	\$519,695	•
Zone 1 to Zone	2					
	2,156	38.6%	40	2,156	\$86,240	
Zone 2 to Zone	3					
22	150	2.7%	80	150	\$11,984	
-				Total	\$617,919	
				\$/AF	111	
		Ave	rage Pum	ping Cost	\$622,478	
			0	\$/AF	112	
WTP Bo	WTP Booster Pump Cost from Hazen & Sawver					
	\$/AF					
]	Extra Pum	ping Cost	\$49,441	
				\$/AF	9	

Future Energy Cost Alternative 5-2

[a] Based on 80% operation per year

[b] Based on 50% operation per year

Alternative 6 Cost Estimate for Well Treatment (packers) of Wells 7, 25, 27, and 28 All costs are the same for each of the alternatives using 25% reduction in well flow

	Description	Quantity	Unit Unit Cost		Item Cost		
[2]	Pipelines 8 inch pipe immediately downstream of 6 cfs well field 8 Immediately downstream of 6 cfs well field 12 Immediately downstream of Mesa Verde 12 Immediately downstream of Mesa Verde 12 Immediately downstream of Mesa Verde 12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps 12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps 12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps 12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps 12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps 12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps 12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps 12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps 12 Relocation Zone 1 meters to Zone 2 Relocation Zone 1 meters to Zone 2 Relocation Zone 2 meter to Zone 3 8 Immediately downsteram of new booster @ Zone 1 Tank	500 1,000 700 1,700 800 1,600 1,400 2,100 1,200 1,200 1,200 1,200	LF LF LF LF LF LS LS LF	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	110 110 150 150 150 150 150 150 110 10,000 5,000 110	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	1,634,000 55,000 110,000 255,000 120,000 240,000 210,000 315,000 132,000 10,000 5,000 77,000
[3]	Control Valves Booster Pump (1,200 gpm) at Zone 1 Tank Booster Pump (10 gpm) 8-inch valves 10-inch valves 12-inch valves Blowoff valve assembly with valve box Air/vacuum and air relaease valve with valve box	1 1 8 0 12 10 10	LS LS Each Each Each Each Each	***	10,000 2,000 1,500 2,000 2,500 5,000 5,000	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$	154,000 10,000 2,000 12,000 30,000 50,000 50,000
[5]	Pump Stations Booster Pump (1,200 gpm) at Zone 1 Tank Booster Pump (10 gpm) 16.5 to 60 psi	75 1.0	Нр Нр	\$ \$	1,600 15,000	\$ \$	135,000 120,000 15,000
[6]	<u>Electrical Controls</u> Booster Pump (1,200 gpm) at Zone 1 Tank Refugio-2 upgrade to operate all 3 pumps Booster Pump (10 gpm)	1 1 1	LS LS LS	\$ \$ \$	40,000 10,000 5,000	\$ \$ \$ \$	55,000 40,000 10,000 5,000
[7]	SCADA System SCADA Connection, components, operations for new booster	1	LS	\$	25,000	\$ \$	25,000 25,000
[9]	<u>Electrical Power Facilities</u> Booster Pump (1,200 gpm) at Zone 1 Tank Booster Pump (10 gpm)	1 1	LS LS	\$ \$	20,000 10,000	\$ \$	30,000 20,000 10,000
[10	Land and Right of Ways Acquire 50' by 50' of Land and permitting Acquire 20' by 20' of Land and permitting	1	LS LS	\$ \$ To	200,000 30,000	\$ \$ \$ \$ \$ \$	230,000 200,000 30,000 2,263,000

	Average		2013	Average	Average		
Water Supply	AF	Percent	\$/AF	AF	\$	Notes	
Upland Wells	1,626	29.1%					
Upland Wells in	n operation	for Alterna	tive 6-1				
Well 5	324		140	324	\$45,360	[a]	
Well 6	388		225	388	\$87,300	[a]	
Well 7	526		153	526	\$80,478	[b]	
Well 24	388		210	388	\$81,480	[a]	
MVPS, SWP	2,500	44.8%	37	2,500	\$92,500	[c]	
River Wells	1,456	26.1%	90	1,456	\$131,040		
-	5,582	100.0%		5,582	\$518,158	e.	
Zone 1 to Zone	2						
	3,243	58.1%	40	3,243	\$129,720		
Zone 2 to Zone	3						
	107	1.9%	80	107	\$8,560		
-				Total	\$656,438		
				\$/AF	118		
	ping Cost	\$622,478					
\$/AF 112							
]	Extra Pum	ping Cost	\$33,960		
				\$/AF	6		

Future Energy Cost Alternative 6-1 Well 7 Packer

[a] Based on 80% operation per year

[b] Based on 50% operation per year and 25% reduction in flow

	Average		2013	Average	Average	
Water Supply	AF	Percent	\$/AF	AF	\$	Notes
Upland Wells	1,664	29.8%				
Upland Wells in	n operation	n for Altern	ative 6-2			
Well 5	324		140	324	\$45,360	[a]
Well 6	388		225	388	\$87,300	[a]
Well 25	564		107	564	\$60,348	[b]
Well 24	388		210	388	\$81,480	[a]
MVPS, SWP	2,500	44.8%	37	2,500	\$92,500	[c]
River Wells	1,418	25.4%	90	1,418	\$127,620	
-	5,582	100.0%		5,582	\$494,608	
Zone 1 to Zone	2					
	3,205	57.4%	40	3,205	\$128,200	
Zone 2 to Zone	3					
	69	1.2%	80	69	\$5,520	
-				Total	\$628,328	5
				\$/AF	113	
Average Pumping Cost \$622,478						
				\$/AF	112	
]	Extra Pum	ping Cost	\$5,850	
				\$/AF	1	
				$\psi/2 \Omega$	1	

Future Energy Cost Alternative 6-2 Well 25 Packer

[a] Based on 80% operation per year

[b] Based on 50% operation per year and 25% reduction in flow

1	Average		2013	Average	Average	
Water Supply	AF	Percent	\$/AF	AF	\$	Notes
Upland Wells	1,502	26.9%				
Upland Wells in	operation	n for Altern	ative 6-3			
Well 5	324		140	324	\$45,360	[a]
Well 6	388		225	388	\$87,300	[a]
Well 28	402		90	402	\$36,180	[b]
Well 24	388		210	388	\$81,480	[a]
MVPS, SWP	2,500	44.8%	37	2,500	\$92,500	[c]
River Wells	1,580	28.3%	90	1,580	\$142,200	2
_	5,582	100.0%		5,582	\$485,020	E.
Zone 1 to Zone	2					
	3,367	60.3%	40	3,367	\$134,680	
Zone 2 to Zone	3				ŕ	
	231	4.1%	80	231	\$18,480	1 2
-				Total	\$638,180	ų.
				\$/AF	114	
	\$622,478					
	112					
		1	Extra Pun	ping Cost	\$15,702	
				\$/AF	2	

Future Energy Cost Alternative 6-3 Well 28 Packer

[a] Based on 80% operation per year

[b] Based on 50% operation per year and 25% reduction in flow

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Average		2013	Average	Average		
Upland Wells1,86733.4%Upland Wells in operation for Alternative 6-4Well 532414032445,360 [a]Well 638822538887,300 [a]Well 7015300Well 25010700Well 2776712476795,108 [b]Well 2438821038881,480 [a]MVPS, SWP2,50044.8%372,50092,500 [c]River Wells1,21521.8%901,215109,3505,582100.0%5,582511,098Zone 1 to Zone 23,00253.8%403,002120,080Zone 2 to Zone 363311.3%8063350,640Total681,818 $\$/AF$ 122Average Pumping Cost\$622,478 $\$/AF$ 112Extra Pumping Cost\$59,340	Water Supply	AF	Percent	\$/AF	AF	\$	Notes	
Upland Wells in operation for Alternative 6-4 Well 5 324 140 324 45,360 [a] Well 6 388 225 388 87,300 [a] Well 7 0 153 0 0 Well 25 0 107 0 0 Well 27 767 124 767 95,108 [b] Well 24 388 210 388 81,480 [a] MVPS, SWP 2,500 44.8% 37 2,500 92,500 [c] River Wells 1,215 21.8% 90 1,215 109,350 5,582 100.0% 5,582 511,098 Zone 1 to Zone 2 3,002 53.8% 40 3,002 120,080 Zone 2 to Zone 3 $\frac{633 11.3\% 80 633 50,640}{Total 681,818} \frac{\$/AF 122}{Average Pumping Cost $622,478} \frac{\$/AF 112}{\$/AF 112}$ Extra Pumping Cost \$59,340	Upland Wells	1,867	33.4%					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Upland Wells in	n operation	n for Altern	ative 6-4				
Well 6388225388 $87,300$ [a]Well 7015300Well 25010700Well 2776712476795,108 [b]Well 24388210388 $81,480$ [a]MVPS, SWP2,50044.8%372,50092,500 [c]River Wells1,21521.8%901,215109,350 $5,582$ 100.0%5,582511,098Zone 1 to Zone 23,00253.8%403,002120,080Zone 2 to Zone 3 633 11.3%80 633 50,640Total681,818\$/AF122Average Pumping Cost\$622,478\$/AF112Extra Pumping Cost\$59,340	Well 5	324		140	324	45,360	[a]	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Well 6	388		225	388	87,300	[a]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Well 7	0		153	0	0		
Well 2776712476795,108 [b]Well 24388210388 $81,480$ [a]MVPS, SWP2,50044.8%372,50092,500 [c]River Wells1,21521.8%901,215109,350 $5,582$ 100.0%5,582511,098Zone 1 to Zone 23,00253.8%403,002120,080Zone 2 to Zone 363311.3%8063350,640Total681,818\$/AF122Average Pumping Cost\$622,478\$/AF112Extra Pumping Cost\$59,340	Well 25	0		107	0	0		
Well 24388210388 $81,480$ [a]MVPS, SWP2,50044.8%372,50092,500 [c]River Wells1,21521.8%901,215109,350 $5,582$ 100.0%5,582511,098Zone 1 to Zone 23,00253.8%403,002120,080Zone 2 to Zone 363311.3%8063350,640Total 681,818\$/AF122Average Pumping Cost\$622,478\$/AF112Extra Pumping Cost\$59,340	Well 27	767		124	767	95,108	[b]	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Well 24	388		210	388	81,480	[a]	
River Wells $1,215$ 21.8% 90 $1,215$ $109,350$ $5,582$ 100.0% $5,582$ $511,098$ Zone 1 to Zone 2 $3,002$ 53.8% 40 $3,002$ $120,080$ Zone 2 to Zone 3 633 11.3% 80 633 $50,640$ Total $681,818$ \$/AF 122 Average Pumping Cost $$622,478$ \$/AF 112 Extra Pumping Cost\$59,340	MVPS, SWP	2,500	44.8%	37	2,500	92,500	[c]	
5,582 100.0% 5,582 511,098 Zone 1 to Zone 2 3,002 53.8% 40 3,002 120,080 Zone 2 to Zone 3 633 11.3% 80 633 50,640 Total 681,818 \$/AF 122 Average Pumping Cost \$622,478 \$/AF 112 Extra Pumping Cost \$59,340	River Wells	1,215	21.8%	90	1,215	109,350	-11	
Zone 1 to Zone 2 3,002 53.8% 40 3,002 120,080 Zone 2 to Zone 3 <u>633 11.3% 80 633 50,640</u> Total 681,818 \$/AF 122 Average Pumping Cost \$622,478 \$/AF 112 Extra Pumping Cost \$59,340		5,582	100.0%		5,582	511,098		
3,002 53.8% 40 3,002 120,080 Zone 2 to Zone 3 633 11.3% 80 633 50,640 Total 681,818 \$/AF 122 Average Pumping Cost \$622,478 \$/AF 112 Extra Pumping Cost \$59,340	Zone 1 to Zone	2						
Zone 2 to Zone 3 <u>633 11.3% 80 633 50,640</u> Total 681,818 \$/AF 122 Average Pumping Cost \$622,478 \$/AF 112 Extra Pumping Cost \$59,340		3,002	53.8%	40	3,002	120,080		
633 11.3% 80 633 50,640 Total 681,818 \$/AF 122 Average Pumping Cost \$622,478 \$/AF 112 Extra Pumping Cost \$59,340	Zone 2 to Zone	3						
Total 681,818 \$/AF 122 Average Pumping Cost \$622,478 \$/AF 112 Extra Pumping Cost \$59,340		633	11.3%	80	633	50,640		
\$/AF 122 Average Pumping Cost \$622,478 \$/AF 112 Extra Pumping Cost \$59,340	-				Total	681,818	-	
Average Pumping Cost \$622,478 \$/AF 112 Extra Pumping Cost \$59,340					\$/AF	122		
\$/AF 112 Extra Pumping Cost \$59,340	Average Pumping Cost \$622,478							
Extra Pumping Cost \$59,340				-	\$/AF	112		
]	Extra Pum	ping Cost	\$59,340		
\$/AF 10					\$/AF	10		

Future Energy Cost Alternative 6-4 Well 27 Packer

[a] Based on 80% operation per year

[b] Based on 50% operation per year and 25% reduction in flow

Attachment B

Alternative 1-1: Blend Well 7 with Well 24 into Existing 0.5 MG Zone 3 Tank Proposed Solutions

Maximum Hour Demand

377 gpm

Alt 1-1_Rev01.wtg

4/17/2014

I:\DATA\2492\Hydraulic Model\Blending

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Alternative 1-2: Blend Well7 with Well 24 at Well 7 Site Proposed Solutions

Maximum Hour Demand

377 gpm

Alt 1-1_Rev01.wtg

6/10/2014

I:\DATA\2492\Hydraulic Model\Blending

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Alternative 1-3: Blend Well 27 With Zone 2 Water then pumped into Zone-3 **Proposed Solutions**

Maximum Hour Demand

Alt 1-3_Rev02.wtg

4/17/2014

I:\DATA\2492\Hydraulic Model\Blending

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Alternative 1-4: Blend Well 28 With Zone 2 Water then pumped into Zone-3 Proposed Solutions

Maximum Hour Demand

615 gpm

Alt 1-4_Rev01.wtg

4/17/2014

I:\DATA\2492\Hydraulic Model\Blending

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Alternative 1-5: Blend Well 5 with Well 25 at Well 25 Site Proposed Solutions Maximum Hour Demand

Alt 1-5_Rev01.wtg 6/9/2014

I:\DATA\2492\Hydraulic Model\Blending

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Alternative 1-6: Blend Well 24 with Well 25 at Well 25 Site Proposed Solutions Maximum Hour Demand

377 gpm WELL-10 618 gpm

Alt 1-6_Rev01.wtg

4/17/2014

I:\DATA\2492\Hydraulic Model\Blending

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Alternative 2: Separate Irrigation Water System 2013 April Demand (1,870 gpm) with Frost Protection Demand (20,119 gpm) Total Irrigation Demand = 21,989 gpm

SYRWCD MASTER Stetson_Base v10.wtg 6/10/2014 I:\DATA\2492\Hydraulic Model\Ag Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Zone-3 Tanks 1,190 gpm WELL-24 4.2 fps 300 gpm Color Coding Legend Color Coding Legend Pipe: Velocity (ft/s) Junction: Pressure (psi) WELL-05 <= 4.0 245 gpm 0.0 10.0 25.0 50.0 100.0 150.0 <= Other 24.7 psi WELL-06 Othe 350 gpm Zone-2 Tank 4,484 gpm AP-1 1,772 gpm ۰ REFUGIO-3 ↓,033 gpm 16.5<mark>,</mark>ps 24.5 psi ČŽ/ 24.8 pş Zone-1 Tank REF2-1 206 gpm ML-1 1,022 gpm 1,524 gpm ML-3 TANK_PROP PS REF2-2 fps 1,200 gpm R 526 gpm 1,448 gpm 4.3 fps ML-4 4 fps 1,451 gpm 4.1 WELL-23 fps 390 gpm 5 fps WTP Pump WELL-21 WELL-19 MV-1 776 gpm 293 gpm 261 gpm 1,164 gpm WELL-08

Alternative 3: Surface Water Treatment Gallery Well Proposed Solutions Maximum Hour Demand

₩V-2

Alt 3 v01.wtg

4/21/2014

I:\DATA\2492\Hydraulic Model\Alt 3 Gallery Wells

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

WTP

MV-4

Alternative 4-1 Proposed Solutions, Maximum Hour Demand (14,175 gpm)

ID1 Hydraulic Model-Alt 4-SONV2.wtg 6/10/2014

I:\DATA\2492\Hydraulic Model\Good Wells On

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Alternative 4-2

Proposed Solutions

April Demand plus Frost Protection Demand

ID1 Hydraulic Model-Alt 4-SON Frost.wtg 6/10/2014 I:\DATA\2492\Hydraulic Model\Good Wells On Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Alternative 5-1: Treat Well 2 and Well 15 at Existing ID#1 Shop Site Proposed Solutions Maximum Hour Demand

Alt 5-1_Rev03.wtg

6/10/2014

I:\DATA\2492\Hydraulic Model\Alt 5 Water Treatment

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
Alternative 5-2: Treat Well 27 with Well 28 at Well 27 Site **Proposed Solutions Maximum Hour Demand**

Alt 5-2_Rev01.wtg

4/18/2014

I:\DATA\2492\Hydraulic Model\Alt 5 Water Treatment

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Alternative 6-1: Well 7- Block Inflow From High Cr6 Zone, 25% Flow Reduction Proposed Solutions

Maximum Hour Demand

611 gpm 376 gpm 1,127 gpm

Alt 6-1_25Percentage.wtg 6/10/2014 I:\DATA\2492\Hydraulic Model\Alt 6 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Alternative 6-2: Well 25- Block Inflow From High Cr6 Zone, 25% Flow Reduction Proposed Solutions

Maximum Hour Demand

Alt 6-2_25Percentage.wtg 6/10/2014 I:\DATA\2492\Hydraulic Model\Alt 6 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Alternative 6-3: Well 28- Block Inflow from High Cr6 Zone Proposed Solutions

Maximum Hour Demand

219 gpm 611 gpm

Alt 6 v01.wtg

4/24/2014

I:\DATA\2492\Hydraulic Model\Alt 6

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Alternative 6-4: Well 27- Block Inflow From High Cr6 Zone, 25% Flow Reduction Proposed Solutions Maximum Hour Demand

Alt 6-4_25Percentage.wtg 6/10/2014 I:\DATA\2492\Hydraulic Model\Alt 6 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Attachment C

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Wells				
Upland	1	200	0	2
Upland	2	500	0	2
Upland	3	600	0	2
Upland	5	250	245	3
Upland	6	300	350	3
Upland	7	900	900	3
Upland	15	1,200	0	2
Upland	24	300	300	3
Upland	25	950	0	3
Upland	27	1,250	0	2
Upland	28 _	750	0	2
	Subtotal (Upland)	7,200	1,795	
6 of wall field	Q	150	0	1
6 of swell field	0	130	0 772	1
6 of well field	9	575	618	1
6 of swell field	10	260	018	1
6 of a well field	19	200	203	1
6 of a well field	21	273	0	1
6 of swell field	22	200	304	1
		2 260	1654	1
Sui	biolal (0 cjs well jiela)	2,200	1,034	
4 cfs well field	12	600	0	1
4 cfs well field	14	600	518	1
4 cfs well field	17	375	343	1
4 cfs well field	18	200	179	1
Sul	btotal (4 cfs well field)	1,775	1,040	
Gallery Well		776	0	1
	Subtotal (Wells) =	12 011	1 180	
	Subiolai (Wells)	12,011	ч,чоу	
Mesa Verde Pump Stat	tion			
intest verde i unip sta	MV-1	1 200	1 176	1
	MV-2	1 145	1 151	1
	MV-3	885	911	1
	MV-4	865	911	1
	MV-5	1 105	1 127	1
	Subtotal(SWP)	5 200	5 276	1
	Subiolul(S #1)	5,200	5,270	
	Total (Wells + SWP)	17,211	9,765	

Alterative 1-1 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Booster Pumps (Existing)				
Alamo Pintado (AP)	1	1,800	1,772	3
	2	750	0	3
	3	900	0	3
	AP Subtotal	31,061	1,772	
Refugio-3 (REF-3)	NA	950	1,032	3
-	Zone 3 Subtotal	32,011	2,804	
Refugio-2 (REF-2)	1	1,100	1,022	2
	2	500	526	2
	3	550	0	2
	REF-2 Subtotal	2,150	1,548	
Meadow Lark (ML)	1	1,500	1,524	2
	2	1,500	0	2
	3	1,500	1,448	2
	4	1,500	1,450	2
	ML Subtotal	6,000	4,422	
	Zone 2 Subtotal	8,150	5,970	
Booster Pumps (Proposed)			
Pump at Zone 1 Tank	NA	1,000	1,000	2

Alterative 1-1 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	1,000	1,258	-258
2	4,166	5,312	-1,146
3	4,599	2,957	1,642
Total	9,765	9,527	238

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump N	Name Pump No.	(gpm)	(gpm)	Zone
Wells				
Upland	1	200	0	2
Upland	2	500	0	2
Upland	3	600	0	2
Upland	5	250	239	3
Upland	6	300	350	3
Upland	7	900	1,022	3
Upland	15	1,200	0	2
Upland	24	300	271	3
Upland	25	950	0	3
Upland	27	1,250	0	2
Upland	28	750	0	2
	Subtotal (Upland)	7,200	1,882	
6 cfs well field	8	150	0	1
6 cfs well field	9	375	377	1
6 cfs well field	10	600	618	1
6 cfs well field	19	260	265	1
6 cfs well field	21	275	0	1
6 cfs well field	22	200	0	1
6 cfs well field	23	400	394	1
	Subtotal (6 cfs well field)	2,260	1,654	
4 cfs well field	12	600	0	1
4 cfs well field	14	600	518	1
4 cfs well field	17	375	343	1
4 cfs well field	18	200	179	1
	Subtotal (4 cfs well field)	1,775	1,040	
Gallery Well		776	0	1
	Subtotal (Wells)	12,011	4,576	
Mesa Verde Pum	p Station			
	MV-1	1,200	1,176	1
	MV-2	1,145	1,151	1
	MV-3	885	911	1
	MV-4	865	911	1
	MV-5	1,105	1,127	1
	Subtotal(SWP)	5,200	5,276	
		17 011	0.972	
	1 otal (wells + SWP)	17,211	9,852	

Alterative 1-2 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

Well or Pump Name	Well or Pump No	Normal Flow	Model Flow	Pressure
Booster Pumps (Existing)	T unip 100.	(gpiii)	(gpiii)	Lonc
Alamo Pintado (AP)	1	1,800	1,728	3
	2	750	0	3
	3	900	0	3
	AP Subtotal	31,061	1,728	
Refugio-3 (REF-3)	NA	950	1,014	3
	Zone 3 Subtotal	32,011	2,742	
Refugio-2 (REF-2)	1	1,100	1,022	2
	2	500	526	2
	3	550	0	2
	REF-2 Subtotal	2,150	1,548	
Meadow Lark (ML)	1	1,500	1,524	2
	2	1,500	0	2
	3	1,500	1,447	2
	4	1,500	1,450	2
	ML Subtotal	6,000	4,421	
	Zone 2 Subtotal	8,150	5,969	
Booster Pumps (Proposed)			
Pump at Zone 1 Tank	NA	1,000	1,002	2

Alterative 1-2 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	999	1,258	-259
2	4,229	5,312	-1,083
3	4,624	2,957	1,667
Total	9,852	9,527	325

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Wells				
Upland	1	200	0	2
Upland	2	500	0	2
Upland	3	600	0	2
Upland	5	250	237	3
Upland	6	300	350	3
Upland	1	900	0	3
Upland	15	1,200	0	2
Upland	24	300	300	3
Upland	25	950	0	3
Upland	27	1,250	1,000	3
Upland	28 _	750	0	2
	Subtotal (Upland)	7,200	1,887	
6 of a wall field	Q	150	0	1
6 of a wall field	0	130	0	1
6 cfs well field	9	575	3// 619	1
6 cfs well field	10	000 260	018	1
6 cfs well field	19	200	203	1
6 crs well field	21	275	0	1
6 cfs well field	22	200	204	1
		2 260	394	1
500	ioiai (o cjs weli jiela)	2,200	1,034	
4 cfs well field	12	600	0	1
4 cfs well field	14	600	519	1
4 cfs well field	17	375	343	1
4 cfs well field	18	200	179	1
Sub	total (4 cfs well field)	1,775	1,041	
Gallery Well		776	0	1
	Subtotal (Walls) =	12 011	4 592	
	Subiolui (Wells)	12,011	4,502	
Mesa Verde Pump Stati	ion			
Niesu verde i unip Stat	MV-1	1 200	1 176	1
	MV-2	1,200	1,170	1
	MV_3	885	911	1
	MV_4	865	911	1
	MV V -+	1 105	1 1 27	1
	$\frac{1}{(SWD)}$	5 200	<u> </u>	1
	Subibilit(SWF)	3,200	3,270	
	Total (Wells + SWP)	17,211	9,858	

Alterative 1-3 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Booster Pumps (Existing)				
Alamo Pintado (AP)	1	1,800	1,697	3
	2	750	0	3
	3	900	0	3
	AP Subtotal	31,061	1,697	
Refugio-3 (REF-3)	NA	950	0	3
	Zone 3 Subtotal	32,011	1,697	
Refugio-2 (REF-2)	1	1,100	1,022	2
	2	500	526	2
	3	550	0	2
	REF-2 Subtotal	2,150	1,548	
Meadow Lark (ML)	1	1,500	1,527	2
	2	1,500	0	2
	3	1,500	1,452	2
	4	1,500	1,457	2
	ML Subtotal	6,000	4,436	
	Zone 2 Subtotal	8,150	5,984	
Booster Pumps (Proposed)			
Pump at Zone 1 Tank	NA	1,000	1,000	2
Pump at Well27 (Z2 to Z3)	NA	1,000	1,000	3

Alterative 1-3 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	987	1,258	-271
2	4,287	5,312	-1,025
3	4,584	2,957	1,627
Total	9,858	9,527	331

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Wells				
Upland	1	200	0	2
Upland	2	500	0	2
Upland	3	600	0	2
Upland	5	250	240	3
Upland	6	300	350	3
Upland	7	900	0	3
Upland	15	1,200	0	2
Upland	24	300	300	3
Upland	25	950	0	3
Upland	27	1,250	0	2
Upland	28	750	750	3
	Subtotal (Upland)	7,200	1,640	
6 cfs well field	8	150	150	1
6 cfs well field	9	375	376	1
6 cfs well field	10	600	615	1
6 cfs well field	19	260	263	1
6 cfs well field	21	275	0	1
6 cfs well field	22	200	0	1
6 cfs well field	23	400	392	1
Subte	otal (6 cfs well field)	2,260	1,796	
4 cfs well field	12	600	0	1
4 cfs well field	14	600	517	1
4 cfs well field	17	375	343	1
4 cfs well field	18	200	179	1
Subte	otal (4 cfs well field)	1,775	1,039	
Gallery Well		776	0	1
	Subtotal (Wells)	12,011	4,475	
Mesa Verde Pump Statio	n			
	MV-1	1,200	1,176	1
	MV-2	1,145	1,151	1
	MV-3	885	911	1
	MV-4	865	911	1
	MV-5	1,105	1,127	1
	Subtotal(SWP)	5,200	5,276	
	_			
1	Cotal (Wells + SWP)	17,211	9,751	

Alterative 1-4 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Booster Pumps (Existing)				
Alamo Pintado (AP)	1	1,800	1,728	3
	2	750	0	3
	3	900	0	3
	AP Subtotal	31,061	1,728	
Refugio-3 (REF-3)	NA	950	0	3
	Zone 3 Subtotal	32,011	1,728	-
Refugio-2 (REF-2)	1	1,100	1,021	2
	2	500	525	2
	3	550	0	2
	REF-2 Subtotal	2,150	1,546	
Meadow Lark (ML)	1	1,500	1,523	2
	2	1,500	0	2
	3	1,500	1,446	2
	4	1,500	1,447	2
	ML Subtotal	6,000	4,416	
	Zone 2 Subtotal	8,150	5,962	
Booster Pumps (Proposed)			
Pump at Zone 1 Tank	NA	1,000	1,002	2
Pump at Well28 (Z2 to Z3)	NA	1, <u>5</u> 00	1,500	3

Alterative 1-4 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	1,147	1,258	-111
2	4,486	5,312	-826
3	4,118	2,957	1,161
Total	9,751	9,527	224

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Wells				
Upland	1	200	0	2
Upland	2	500	0	2
Upland	3	600	0	2
Upland	5	250	237	3
Upland	6	300	350	3
Upland	/	900	0	3
Upland	15	1,200	0	2
Upland	24	300	300	3
Upland	25	950	1,060	3
Upland	27	1,250	0	2
Opland		730	1 047	2
	Subiolai (Opiana)	7,200	1,747	
6 cfs well field	8	150	0	1
6 cfs well field	9	375	377	1
6 cfs well field	10	600	618	1
6 cfs well field	19	260	265	1
6 cfs well field	21	275	0	1
6 cfs well field	22	200	0	1
6 cfs well field	23	400	394	1
Sub	total (6 cfs well field)	2,260	1,654	
4 cfs well field	12	600	0	1
4 cfs well field	14	600	517	1
4 cfs well field	17	375	343	1
4 cfs well field	18	200	179	1
Sub	total (4 cfs well field)	1,775	1,039	-
Gallery Well		776	0	1
	Subtotal (Wells) =	12 011	4 640	
	Subiolai (Wells)	12,011	4,040	
Mesa Verde Pump Stati	on			
filesa verde i amp stati	MV-1	1 200	1 147	1
	MV-2	1,145	1,118	1
	MV-3	885	901	1
	MV-4	865	901	1
	MV-5	1.105	1.109	- 1
	Subtotal(SWP)	5,200	5,176	-
	_			
	Total (Wells + SWP)	17,211	9,816	

Alterative 1-5 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

Well on Dump Nome	Well or	Normal Flow	Model Flow	Pressure
Reaster Pumps (Existing)	Pump No.	(gpm)	(gpm)	Zone
Alamo Pintado (AP)	1	1 800	0	3
Alamo I intado (Al)	1	750	812	3
	2	900	012	3
	AP Subtotal	31.061	812	5
		51,001	012	
Refugio-3 (REF-3)	NA	950	1,050	3
	Zone 3 Subtotal	32,011	1,862	
Refugio-2 (REF-2)	1	1,100	1,021	2
-	2	500	525	2
	3	550	0	2
	REF-2 Subtotal	2,150	1,546	
Meadow Lark (ML)	1	1,500	1,523	2
	2	1,500	0	2
	3	1,500	1,446	2
	4	1,500	1,447	2
	ML Subtotal	6,000	4,416	
	Zone 2 Subtotal	8,150	5,962	
Booster Pumps (Proposed)			
Pump at Zone 1 Tank	NA	1,000	1,002	2

Alterative 1-5 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	905	1,258	-353
2	5,102	5,312	-210
3	3,809	2,957	852
Total	9,816	9,527	289

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Wells				-
Upland	1	200	0	2
Upland	2	500	0	2
Upland	3	600	0	2
Upland	5	250	243	3
Upland	6	300	350	3
Upland	/	900	0	3
Upland	15	1,200	0	2
Upland	24	300	286	3
Upland	25	950	1,055	3
Upland	27	1,250	0	2
Upland		750	1.024	2
	Subiolai (Opiana)	7,200	1,954	
6 cfs well field	8	150	0	1
6 cfs well field	9	375	377	1
6 cfs well field	10	600	618	1
6 cfs well field	19	260	265	1
6 cfs well field	21	275	0	1
6 cfs well field	22	200	0	1
6 cfs well field	23	400	394	1
Subto	tal (6 cfs well field)	2,260	1,654	
4 cfs well field	12	600	0	1
4 cfs well field	14	600	517	1
4 cfs well field	17	375	343	1
4 cfs well field	18	200	179	1
Subto	tal (4 cfs well field)	1,775	1,039	
Gallery Well		776	0	1
	Subtotal (Wells)	12,011	4,627	
Mesa Verde Pump Station	1			
	MV-1	1,200	1,147	1
	MV-2	1,145	1,118	1
	MV-3	885	901	1
	MV-4	865	901	1
	MV-5	1,105	1,109	1
	Subtotal(SWP)	5,200	5,176	
T	otal (Wells + SWP)	17,211	9,803	

Alterative 1-6 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

Well on Dump Neme	Well or	Normal Flow	Model Flow	Pressure
Rooster Pumps (Existing)	rump No.	(gpiii)	(gpm)	Lone
Alamo Pintado (AP)	1	1 800	0	3
	2	750	805	3
	3	900	0	3
	AP Subtotal	31,061	805	U
Refugio-3 (REF-3)	NA	950	1,042	3
-	Zone 3 Subtotal	32,011	1,847	
Refugio-2 (REF-2)	1	1.100	1.021	2
	2	500	525	2
	3	550	0	2
	REF-2 Subtotal	2,150	1,546	
Meadow Lark (ML)	1	1,500	1,523	2
	2	1,500	0	2
	3	1,500	1,446	2
	4	1,500	1,447	2
	ML Subtotal	6,000	4,416	
	Zone 2 Subtotal	8,150	5,962	
Booster Pumps (Proposed)			
Pump at Zone 1 Tank	NA	1,000	1,001	2

Alterative 1-6 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	906	1,258	-352
2	5,116	5,312	-196
3	3,781	2,957	824
Total	9,803	9,527	276

Well or Pump Name	Well or Pump No.	Normal Flow (gpm)	Model Flow (gpm)	Pressure Zone
Wells				
Upland	1	200	200	2
Upland	2	500	583	2
Upland	3	600	633	2
Upland	15	1,200	1,198	2
Upland	28	750	833	2
	Subtotal (Upland)	3,250	3,447	
Gallery Well		776	776	1
	Subtotal (Wells)	4,026	4,223	
Booster Pumps (Propo	sed)			
Pump at AP Pump Statio	on NA	820	820	3

Alterative 2 Proposed Solutions, April Water Demand plus Frost Protection Demand (21,989 gpm) Well and Pump Operation Summary (Irrigation Water System Only)

Comparison of Water Supply Pumping Capacity and 2013 April Water Demand plus Frost Protection Demand

	Model Inflow	2013 Irrigation Water	Frost		Surplus (+) /
Zone	(gpm)	Demand	Protection	Total (gpm)	Deficit (-)
1	776	891	10,649	11,540	-10,764
2	3,447	634	6,745	7,379	-3,932
3	0	345	2,725	3,070	-3,070
Total	4,223	1,870	20,119	21,989	-17,766

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Wells				
Upland	1	200	0	2
Upland	2	500	0	2
Upland	3	600	0	2
Upland	5	250	245	3
Upland	6	300	350	3
Upland	7	900	0	3
Upland	15	1,200	0	2
Upland	24	300	300	3
Upland	25	950	0	3
Upland	27	1,250	0	2
Upland	28	750	0	2
	Subtotal (Upland)	7,200	895	
	0	150	0	
6 cfs well field	8	150	0	1
6 cfs well field	9	375	376	1
6 cfs well field	10	600	612	1
6 cfs well field	19	260	261	1
6 cfs well field	21	275	293	1
6 cfs well field	22	200	0	1
6 cfs well field	23	400	390	1
Subi	total (6 cfs well field)	2,260	1,932	
1 cfs well field	12	600	0	1
A cfs well field	12	600	513	1
A cfs well field	17	375	341	1
A cfs well field	17	200	178	1
Subi	total (4 cfs well field)	1,775	1,032	1
		,	,	
Gallery Well		776	776	1
	Subtotal (Wells)	12,011	4.635	
	(,	, -	,	
Mesa Verde Pump Stati	on			
-	MV-1	1,200	1,164	1
	MV-2	1,145	1,137	1
	MV-3	885	907	1
	MV-4	865	907	1
	MV-5	1,105	1,119	1
	Subtotal(SWP)	5,200	5,234	
	-			
,	Total (Wells + SWP)	17,211	9,869	

Alterative 3 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Booster Pumps (Existing)				
Alamo Pintado (AP)	1	1,800	1,772	3
	2	750	0	3
	3	900	0	3
	AP Subtotal	31,061	1,772	
Refugio-3 (REF-3)	NA	950	1,033	3
	Zone 3 Subtotal	32,011	2,805	
Refugio-2 (REF-2)	1	1,100	1,023	2
	2	500	526	2
	3	550	0	2
	REF-2 Subtotal	2,150	1,549	
Meadow Lark (ML)	1	1,500	1,524	2
	2	1,500	0	2
	3	1,500	1,448	2
	4	1,500	1,451	2
	ML Subtotal	6,000	4,423	
	Zone 2 Subtotal	8,150	5,972	
Booster Pumps (Proposed))			
Pump at Gallery Well WTP	NA	1,000	776	2

Alterative 3 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	3,002	1,258	1,744
2	3,167	5,312	-2,145
3	3,700	2,957	743
Total	9,869	9,527	342

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump	Name Pump No.	(gpm)	(gpm)	Zone
Wells				
Upland	1	200	0	2
Upland	2	500	0	2
Upland	3	600	0	2
Upland	5	250	241	3
Upland	6	300	300	3
Upland	7	900	0	3
Upland	15	1,200	0	2
Upland	24	300	300	3
Upland	25	950	0	3
Upland	27	1,250	0	2
Upland	28	750	0	2
	Subtotal (Upland)	7,200	841	
6 cfs well field	8	150	150	1
6 cfs well field	9	375	376	1
6 cfs well field	10	600	611	1
6 cfs well field	19	260	267	1
6 cfs well field	21	275	298	1
6 cfs well field	22	200	219	1
6 cfs well field	23	400	404	1
	Subtotal (6 cfs well field)	2,260	2,325	
4 cfs well field	12	600	0	1
4 cfs well field	14	600	591	1
4 cfs well field	17	375	365	1
4 cfs well field	18	200	189	1
	Subtotal (4 cfs well field)	1,775	1,145	
Gallery Well		776	0	1
	Subtotal (Wells)	12,011	4,311	
			·	
Mesa Verde Pu	mp Station			
	MV-1	1,200	1,164	1
	MV-2	1,145	1,138	1
	MV-3	885	907	1
	MV-4	865	907	1
	MV-5	1,105	1,120	1
	Subtotal(SWP)	5,200	5,236	
	Total (Wells + SWP)	17,211	9,547	

Alterative 4-1 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

Booster Pumps (Existing)			
Alamo Pintado (AP)	1	1,800	1,737	3
	2	750	0	3
	3	900	0	3
	AP Subtotal	31,061	1,737	
Refugio-3 (REF-3)	NA	950	1,014	3
	Zone 3 Subtotal	32,011	2,751	
			_	
Refugio-2 (REF-2)	1	1,100	0	2
	2	500	0	2
	3	550	0	2
	REF-2 Subtotal	2,150	0	
Meadow Lark (ML)	1	1,500	1,521	2
	2	1,500	0	2
	3	1,500	1,442	2
	4	1,500	1,442	2
	ML Subtotal	6,000	4,405	
	Zone 2 Subtotal	8,150	4,405	
Booster Pumps (Propose	d)			
Pump at RefigePump Stat	ion NA	1 500	1 502	2
Pump at Zone 1 Tank	ΝΔ	1,500	1,302	$\frac{2}{2}$
		1,230	1,431	2

Alterative 4-1 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	1,548	1,258	290
2	4,407	5,312	-905
3	2,751	2,957	-206
Total	8,706	9,527	-821

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump	Name Pump No.	(gpm)	(gpm)	Zone
Wells				
Upland	1	200	0	2
Upland	2	500	0	2
Upland	3	600	0	2
Upland	5	250	232	3
Upland	6	300	350	3
Upland	7	900	0	3
Upland	15	1,200	0	2
Upland	24	300	259	3
Upland	25	950	0	3
Upland	27	1,250	0	2
Upland	28	750	0	2
	Subtotal (Upland)	7,200	841	
6 cfs well field	8	150	150	1
6 cfs well field	9	375	377	1
6 cfs well field	10	600	627	1
6 cfs well field	19	260	278	1
6 cfs well field	21	200	312	1
6 cfs well field	21	200	229	1
6 cfs well field	22	400	415	1
o ens wen neid	Subtotal (6 cfs well field)	2,260	2,388	1
4 cfs well field	12	600	0	1
4 cfs well field	14	600	609	1
4 cfs well field	17	375	375	1
4 cfs well field	18	200	197	1
	Subtotal (4 cfs well field)	1,775	1,181	
Gallery Well		776	0	1
	Subtotal (Wells)	12,011	4,410	
Mesa Verde Pun	np Station			
	MV-1	1,200	1,193	1
	MV-2	1,145	1,170	1
	MV-3	885	918	1
	MV-4	865	918	1
	MV-5	1,105	1,137	1
	Subtotal(SWP)	5,200	5,336	
	Total (Wells + SWP)	17,211	9,746	

Alterative 4-2 Proposed Solutions, Peak Hour Demand in April 2011 Well and Pump Operation Summary

Booster Pumps (Existing)				
Alamo Pintado (AP)	1	1,800	0	3
	2	750	786	3
	3	900	0	3
	AP Subtotal	31,061	786	
Refugio-3 (REF-3)	NA	950	1,010	3
	Zone 3 Subtotal	32,011	1,796	
Refugio-2 (REF-2)	1	1,100	0	2
	2	500	595	2
	3	550	0	2
	REF-2 Subtotal	2,150	595	
Meadow Lark (ML)	1	1,500	1,526	2
	2	1,500	1,437	2
	3	1,500	1,452	2
	4	1,500	0	2
	ML Subtotal	6,000	4,415	
	Zone 2 Subtotal	8,150	5,010	
Booster Pumps (Proposed)			
 ` _ ·				
Pump at RefigoPump Statio	on NA	1,500	0	2
Pump at Zone 1 Tank	NA	1,250	1,277	2

Alterative 4-2 Proposed Solutions, Peak Hour Demand in April 2011 Well and Pump Operation Summary

Comparison of Water Supply Pumping Capacity and 2011 April Peak Hour Demand (With Frost Protection)

		2011 Peak			
	Model	Hour	Frost		
	Inflow	Demand	Protection	S	Surplus (+) /
Zone	(gpm)	(gpm)	Demand	Total	Deficit (-)
1	2,618	323	10,649	10,972	-8,354
2	4,491	1,453	6,745	8,198	-3,707
3	1,796	806	2,725	3,531	-1,735
Total	8,905	2,582	20,119	22,701	-13,796

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Wells				
Upland	1	200	200	2
Upland	2	500	500	2
Upland	3	600	0	2
Upland	5	250	245	3
Upland	6	300	300	3
Upland	/	900	1 200	3
Upland	15	1,200	1,200	2
Upland	24	300	300	3
Upland	25	950	0	3
Upland	27	1,250	0	2
Opland		750	2 7 45	2
	Subioiai (Opiana)	7,200	2,745	
6 cfs well field	8	150	0	1
6 cfs well field	9	375	376	1
6 cfs well field	10	600	616	1
6 cfs well field	19	260	263	1
6 cfs well field	21	275	297	1
6 cfs well field	22	200	222	1
6 cfs well field	23	400	0	1
Subto	tal (6 cfs well field)	2,260	1,774	
4 cfs well field	12	600	0	1
4 cfs well field	12	600	510	1
4 cfs well field	17	375	341	1
4 cfs well field	18	200	177	1
Subto	tal (4 cfs well field)	1,775	1,028	1
~				
Gallery Well		776	0	1
	Subtotal (Wells)	12,011	5,547	
Mesa Verde Pump Station	1			
	MV-1	1,200	1,173	1
	MV-2	1,145	1,147	1
	MV-3	885	910	1
	MV-4	865	0	1
	MV-5	1,105	1,125	1
	Subtotal(SWP)	5,200	4,355	
T	otal (Wells + SWP)	17,211	9,902	

Alterative 5-1 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Well or	Normal Flow	Model Flow	Pressure	
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone	
Booster Pumps (Existing)					
Alamo Pintado (AP)	1	1,800	1,773	3	
	2	750	0	3	
	3	900	0	3	
	AP Subtotal	31,061	1,773		
Refusio-3 (RFF-3)	NA	950	1 039	3	
iteragio 5 (iter 5)	Zone 3 Subtotal	32,011	2,812	5	
Refugio-2 (REF-2)	1	1,100	1,002	2	
	2	500	518	2	
	3	550	0	2	
	REF-2 Subtotal	2,150	1,520		
Meadow Lark (ML)	1	1,500	1,498	2	
	2	1,500	0	2	
	3	1,500	1,398	2	
	4	1,500	1,381	2	
	ML Subtotal	6,000	4,277		
	Zone 2 Subtotal	8,150	5,797		
Booster Pumps (Proposed)					
Pump at 1D1 Shop Site WT	P NA	1,900	1,900	2	

Alterative 5-1 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	1,360	1,258	102
2	4,885	5,312	-427
3	3,657	2,957	700
Total	9,902	9,527	375

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Wells				
Upland	1	200	0	2
Upland	2	500	0	2
Upland	3	600	0	2
Upland	5	250	240	3
Upland	6	300	350	3
Upland	7	900	0	3
Upland	15	1,200	0	2
Upland	24	300	0	3
Upland	25	950	0	3
Upland	27	1,250	1,250	2/3
Upland		750	750	2/3
	Subtotal (Upland)	7,200	2,590	
6 cfs well field	8	150	0	1
6 cfs well field	9	375	376	1
6 cfs well field	10	600	616	1
6 cfs well field	10	260	263	1
6 cfs well field	21	200	205	1
6 cfs well field	21	200	227	1
6 cfs well field	22	400	0	1
Subt	otal (6 cfs well field)	2.260	1.774	1
5.000	(° ejs " en jren)	_,_ 00	_,,,,,	
4 cfs well field	12	600	0	1
4 cfs well field	14	600	519	1
4 cfs well field	17	375	343	1
4 cfs well field	18	200	179	1
Subt	otal (4 cfs well field)	1,775	1,041	
Gallery Well		776	0	1
	Subtotal (Wells)	12,011	5,405	
Mesa Verde Pump Statio	on			
	MV-1	1,200	1,174	1
	MV-2	1,145	1,148	1
	MV-3	885	911	1
	MV-4	865	0	1
	MV-5	1,105	1,125	1
	Subtotal(SWP)	5,200	4,358	
n	= Fotol (Wolls + SWP)	17 311	0 762	
	10tal (Wells + SWP)	112/,11	9,703	

Alterative 5-2 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Booster Pumps (Existing	()			
Alamo Pintado (AP)	1	1,800	1,721	3
	2	750	0	3
	3	900	0	3
	AP Subtotal	31,061	1,721	
Refugio-3 (REF-3)	NA	950	994	3
	Zone 3 Subtotal	32,011	2,715	
				_
Refugio-2 (REF-2)	1	1,100	1,020	2
	2	500	525	2
	DEE 9 Subtotal	2 150	1 5 4 5	2
	KEF-2 Subiolai	2,150	1,545	
Meadow Lark (ML)	1	1,500	1,518	2
	2	1,500	0	2
	3	1,500	1,436	2
	4	1,500	1,433	2
	ML Subtotal	6,000	4,387	
	=	0.480		
	Zone 2 Subtotal	8,150	5,932	
Booster Pumps (Propose	d)			
Z2 Pump at Well 27	NA	1,400	1,400	2
Z3 Pump at Well 27	NA	600	600	3

Alterative 5-2 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	1,241	1,258	-17
2	4,617	5,312	-695
3	3,905	2,957	948
Total	9,763	9,527	236

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Wells				
Upland	1	200	0	2
Upland	2	500	0	2
Upland	3	600	0	2
Upland	5	250	242	3
Upland	6	300	300	3
Upland	7	900	650	3
Upland	15	1,200	0	2
Upland	24	300	300	3
Upland	25	950	0	3
Upland	27	1,250	0	2
Upland	28 _	750	0	2
	Subtotal (Upland)	7,200	1,492	
6 of wall field	0	150	150	1
6 of a well field	0	150	130	1
6 of a well field	9	5/3	370 611	1
6 cfs well field	10	000 260	011	1
6 cfs well field	19	200	202	1
6 crs well field	21	275	292	1
6 cfs well field	22	200	219	1
		2 260	2 026	1
Sui	biolai (6 cjs weli jiela)	2,200	2,030	
4 cfs well field	12	600	0	1
4 cfs well field	14	600	517	1
4 cfs well field	17	375	343	1
4 cfs well field	18	200	178	1
Sul	btotal (4 cfs well field)	1,775	1,038	
Gallery Well		776	0	1
	Subtotal (Wells)	12.011	4.566	
			1,200	
Mesa Verde Pump Stat	tion			
*	MV-1	1,200	1,176	1
	MV-2	1,145	1,151	1
	MV-3	885	911	1
	MV-4	865	911	1
	MV-5	1.105	1.127	1
	Subtotal(SWP)	5,200	5,276	-
	Total (Wells + SWP)	17,211	9,842	

Alterative 6-1 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

W. II. D. D. M. M.	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Booster Pumps (Existing)	1	1.000	1 751	2
Alamo Pintado (AP)	1	1,800	1,/51	3
	2	750	0	3
	3	900	0	3
	AP Subtotal	31,061	1,751	
Refugio-3 (REF-3)	NA	950	1.024	3
iteragio 5 (iter 5)	Zone 3 Subtotal	32,011	2,775	5
Refugio-2 (REF-2)	1	1,100	1,019	2
	$\frac{2}{2}$	500	524	2
) DEE 2 S-14-4-1	330	1542	2
	KEF-2 Subiolai	2,150	1,545	
Meadow Lark (ML)	1	1,500	1,522	2
	2	1,500	0	2
	3	1,500	1,443	2
	4	1,500	1,443	2
	ML Subtotal	6,000	4,408	
	Zone 2 Subtotal	8,150	5,951	
Booster Pumps (Proposed)			
Pump at Zone 1 Tank	NA	1,200	1,221	2

Alterative 6-1 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	1,178	1,258	-80
2	4,397	5,312	-915
3	4,267	2,957	1,310
Total	9,842	9,527	315

Well on Dome Name	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Upland	1	200	0	2
Upland	1	500	0	2
Upland	3	600	0	2
Upland	5	250	240	3
Upland	6	300	300	3
Upland	7	900	0	3
Upland	15	1.200	0	2
Upland	24	300	300	3
Upland	25	950	700	3
Upland	27	1,250	0	2
Upland	28	750	0	2
-	Subtotal (Upland)	7,200	1,540	
6 cfs well field	8	150	150	1
6 cfs well field	9	375	376	1
6 cfs well field	10	600	611	1
6 cfs well field	19	260	0	1
6 cfs well field	21	275	292	1
6 cfs well field	22	200	219	1
6 cfs well field	23	400	388	1
Subt	otal (6 cfs well field)	2,260	2,036	
4 cfs well field	12	600	0	1
4 cfs well field	14	600	517	1
4 cfs well field	17	375	343	1
4 cfs well field	18	200	179	1
Subt	otal (4 cfs well field)	1,775	1,039	
Gallery Well		776	0	1
	Subtotal (Wells)	12,011	4,615	
Mesa Verde Pump Statio	on			
	MV-1	1,200	1,176	1
	MV-2	1,145	1,151	1
	MV-3	885	911	1
	MV-4	865	911	1
	MV-5	1,105	1,127	1
	Subtotal(SWP)	5,200	5,276	
r	Fotal (Wells + SWP)	17,211	9,891	

Alterative 6-2 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Booster Pumps (Existing)				-
Alamo Pintado (AP)	1	1,800	1,737	3
	2	750	0	3
	3	900	0	3
	AP Subtotal	31,061	1,737	
Refusio-3 (RFF-3)	NA	950	1 019	3
iteragio 5 (iter 5)	Zone 3 Subtotal	32,011	2,756	5
Refugio-2 (REF-2)	1	1,100	1,019	2
	2	500	525	2
	<u> </u>	550	0	2
	KEF-2 Subtotal	2,150	1,544	
Meadow Lark (ML)	1	1,500	1,522	2
	2	1,500	0	2
	3	1,500	1,444	2
	4	1,500	1,444	2
	ML Subtotal	6,000	4,410	
	Zone 2 Subtotal	8,150	5,954	
Booster Pumps (Proposed)			
Pump at Zone 1 Tank	NA	1,200	1,200	2

Alterative 6-2 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	1,197	1,258	-61
2	4,398	5,312	-914
3	4,296	2,957	1,339
Total	9,891	9,527	364

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Wells				
Upland	1	200	0	2
Upland	2	500	0	2
Upland	3	600	0	2
Upland	5	250	244	3
Upland	6	300	350	3
Upland	/	900	0	3
Upland	15	1,200	0	2
Upland	24	300	300	3
Upland	25	950	0	3
Upland	27	1,250	500	2
Opiand		730	1 204	2
	Subiolai (Opiana)	7,200	1,394	
6 cfs well field	8	150	150	1
6 cfs well field	9	375	376	1
6 cfs well field	10	600	611	1
6 cfs well field	19	260	0	1
6 cfs well field	21	275	292	1
6 cfs well field	22	200	219	1
6 cfs well field	23	400	388	1
Sub	ototal (6 cfs well field)	2,260	2,036	
4 cfs well field	12	600	0	1
4 cfs well field	14	600	515	1
4 cfs well field	17	375	342	1
4 cfs well field	18	200	179	1
Sub	ototal (4 cfs well field)	1,775	1,036	
Gallery Well		776	0	1
	Subtotal (Wells)	12.011	4.466	
		,	-,	
Mesa Verde Pump Stat	ion			
	MV-1	1,200	1,176	1
	MV-2	1,145	1,150	1
	MV-3	885	911	1
	MV-4	865	911	1
	MV-5	1,105	1,127	1
	Subtotal(SWP)	5,200	5,275	
	_			
	Total (Wells + SWP)	17,211	9,741	

Alterative 6-3 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Booster Pumps (Existing)				-
Alamo Pintado (AP)	1	1,800	1,773	3
	2	750	0	3
	3	900	0	3
	AP Subtotal	31,061	1,773	
Refugio-3 (REF-3)	NA	950	1 036	3
iteragio 5 (iter 5)	Zone 3 Subtotal	32,011	2,809	5
Refugio-2 (REF-2)	1	1,100	1,015	2
	$\frac{2}{2}$	500	523	2
		550	1.520	2
	KEF-2 Subtotal	2,150	1,538	
Meadow Lark (ML)	1	1,500	1,518	2
	2	1,500	0	2
	3	1,500	1,437	2
	4	1,500	1,435	2
	ML Subtotal	6,000	4,390	
	Zone 2 Subtotal	8,150	5,928	
Booster Pumps (Proposed)			
Pump at Zone 1 Tank	NA	1,200	1,178	2

Alterative 6-3 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	1,241	1,258	-17
2	4,797	5,312	-515
3	3,703	2,957	746
Total	9,741	9,527	214

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Wells				
Upland	1	200	0	2
Upland	2	500	0	2
Upland	3	600	0	2
Upland	5	250	245	3
Upland	6	300	300	3
Upland	7	900	0	3
Upland	15	1,200	0	2
Upland	24	300	300	3
Upland	25	950	0	3
Upland	27	1,250	950	2
Upland	28 _	750	0	2
	Subtotal (Upland)	7,200	1,795	
6 of a wall field	Q	150	150	1
6 of a wall field	0	130	130	1
6 cfs well field	9	575	3/0 611	1
6 cfs well field	10	000 260	011	1
6 cfs well field	19	200	202	1
6 cfs well field	21	275	292	1
6 cfs well field	22	200	219	1
		2 260	2 026	1
500	ioiai (o cjs weli jiela)	2,200	2,030	
4 cfs well field	12	600	0	1
4 cfs well field	14	600	513	1
4 cfs well field	17	375	341	1
4 cfs well field	18	200	178	1
Sub	total (4 cfs well field)	1,775	1,032	
Gallery Well		776	0	1
2	_			
	Subtotal (Wells)	12,011	4,863	
Mesa Verde Pump Stati	ion			
	MV-1	1,200	1,175	1
	MV-2	1,145	1,150	1
	MV-3	885	911	1
	MV-4	865	911	1
	MV-5	1,105	1,126	1
	Subtotal(SWP)	5,200	5,273	
	=			
	Total (Wells + SWP)	17,211	10,136	

Alterative 6-4 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary
	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Booster Pumps (Existing)				
Alamo Pintado (AP)	1	1,800	1,779	3
	2	750	0	3
	3	900	0	3
	AP Subtotal	31,061	1,779	
Perfugio 3 (PEE 3)	ΝA	950	1.040	3
Kelugio-5 (KEI-5)	Zone 3 Subtotal	32.011	2.819	5
Refugio-2 (REF-2)	1	1,100	1,008	2
	2	500	520	2
	3	550	0	2
	REF-2 Subtotal	2,150	1,528	
Meadow Lark (ML)	1	1,500	1,513	2
	2	1,500	0	2
	3	1,500	1,426	2
	4	1,500	1,419	2
	ML Subtotal	6,000	4,358	
	Zone 2 Subtotal	8,150	5,886	
Booster Pumps (Proposed)			
Pump at Zone 1 Tank	NA	1,200	1,200	2

Alterative 6-4 Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

Comparison of Water Supply Pumping Capacity and Maximum Day Demand (MDD)

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	1,255	1,258	-3
2	5,217	5,312	-95
3	3,664	2,957	707
Total	10,136	9,527	609

Attachment D

	Description	Quantity	Unit	Un	it Cost	ľ	tem Cost
[2]	Pipelines16 Wells 3 and 15 to joint pipe to treatment plant10 Wells 1 and 2 to joint pipe to treatment plant6 Well 1 to joint pipe to treatment plant8 Well 3 to joint pipe to treatment plant16 Joint pipe from wells 1,2,3 and 15 to treatment plant16 Treatment plant discharge pipe10 Well 28 to well 27 pipe to treatment plantRelocation Zone 2 meter to Zone 312 Immediately downstream of GW treatment plant booster pump	4,400 2,500 100 5,400 1,000 700 4,000 1 200	LF LF LF LF LF LS LF	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	210 130 100 210 210 130 5,000 150	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	2,765,000 924,000 325,000 10,000 594,000 210,000 147,000 520,000 5,000 30,000
[3]	Control Valves Booster Pump (776 gpm, 195' TDH, 75 hp) at GW treatment plant Well 15 flow control valve Well 2 flow control valve Well 3 flow control valve Well 1 flow control valve Well 27 flow control valve Well 28 flow control valve Booster Pump (10 gpm) 6 and 8-inch valves 10-inch valves 12-inch valves 16-inch valves Blowoff valve assembly with valve box Air/vacuum and air relaease valve with valve box	1 1 1 1 1 1 4 4 2 6 11 11	LS LS LS LS LS LS LS LS Each Each Each Each	****	$\begin{array}{c} 10,000\\ 10,000\\ 5,000\\ 10,000\\ 10,000\\ 10,000\\ 2,000\\ 1,500\\ 2,000\\ 2,500\\ 3,500\\ 5,000\\ 5,000\\ \end{array}$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	212,000 10,000 5,000 10,000 5,000 10,000 10,000 2,000 6,000 8,000 5,000 21,000 55,000
[5]	<u>Pump Stations</u> Booster Pump (10 gpm) 17.4 to 60 psi Booster Pump (776 gpm, 195' TDH, 75 hp) at GW treatment plant Well 3 new pump and motor 600 gpm 75 hp	1.0 75 1	Hp Hp LS	\$ \$ \$	15,000 1,600 48,000	\$ \$ \$ \$ \$ \$	1 83,000 15,000 120,000 48,000
[6]	<u>Electrical Controls</u> Booster Pump (776 gpm, 195' TDH, 75 hp) at GW treatment plant Booster Pump (10 gpm)	1 1	LS LS	\$ \$	40,000 5,000	\$ \$ \$	45,000 40,000 5,000
[7]	SCADA System SCADA Connection, components, operations for GW booster	1	LS	\$	25,000	\$	25,000 25,000
[8]	Water Treatment PlantGW Membrane Equipment, Pall System (800 gpm)GW Backwash Tank SystemGW Treatment Plant Building and AppurtenancesWell 3 cleaning and developmentTreatment for Wells 1,2,3,15 Hazen & SawyerTreatment for Wells 27 & 28 Hazen & SawyerTreatment for Well 7 Hazen & SawyerTreatment for Well 25 Hazen & Sawyer	1 1 Costs prep Costs prep Costs prep Costs prep	LS LS LS ared by ared by ared by ared by	\$ Haze Haze Haze Haze	1,000,000 \$50,000 \$250,000 \$20,000 n & Sawye n & Sawye n & Sawye n & Sawye	\$ 91 91 91 91 91 91	\$1,320,000 \$1,000,000 \$50,000 \$250,000 20,000
[9]	<u>Electrical Power FacIlities</u> Booster Pump (10 gpm) Booster Pump (776 gpm, 195' TDH, 75 hp) at GW treatment plant	1 1	LS LS	\$ \$	10,000 20,000	\$ \$ \$	30,000 10,000 20,000
[10	I) Land and Right of Ways Acquire 100' by 100' of Land and permitting for GW treatment plant Acquire 20' by 1,500' ROW for pipe from well 28 and permitting Acquire 20' by 20' of Land and permitting	1 1,500 1	LS LF LS	\$ 	250,000 \$4 <u>30,000</u>	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	286,000 250,000 6,000 30,000 4,866,000

Complete Option A - Alt 5-1, 5-2, 5-3 and 5-4 and Gallery Well Treatment (Alt 3-1) Cost Estimate

r

GW = Gallery well

Total

	Average		2013	Average	Average			
Water Supply	AF	Percent	\$/AF	AF	\$	Notes	Water Use	
Upland Wells	4,639	83.1%				Z2 & 3		
	943					Z1	736	
	2,940					Z2	3,115	
	1,906					Z3	1,731	
Wells and Pump	os in operat	tion for Co	mplete Op	ptions A and	d B		5,582	
Well 5	0	0.0%	140	0	\$0	[a]		
Well 6	0	0.0%	225	0	\$0	[a]		
Well 7	728	13.0%	153	728	\$111,384	[b]		
Well 24	0	0.0%	210	0	\$0	[a]		
Well 25	767	13.7%	107	767	\$82,069	[b]		
Well 27	1,009	18.1%	124	1,009	\$125,116	[b]	410 To Zone 3	3 1,203 To Zone 2
Well 28	604	10.8%	90	604	\$54,360	[b]		
Well 1	163	2.9%	123	163	\$20,049	[b]		
Well 2	402	7.2%	123	402	\$49,446	[b]		
Well 3	0	0.0%	86	0	\$0	[b]		
Well 15	966	17.3%	86	966	\$83,076	[b]		
MVPS, SWP	800	14.3%	37	800	\$29,600	Assumed		
Gallery Well	0	0.0%	80	0	\$0	Limited by	y water right of 515 AF	
River Wells	143	2.6%	91	143	\$13,013	Assumed	. –	
	5,582	100.0%		5,582	\$568,113			
Zone 1 to Zone	2							
	207	3.7%	40	207	\$8,280			
Zone 2 to Zone	3							
	1	0.0%	80	1	\$80			
				Total	\$576,473	-8		
				\$/AF	103			
		Ave	erage Pum	ping Cost	\$622,478			
			0	\$/AF	112			
WTP B	ooster Pun	p Cost fro	m Hazen	& Sawyer	\$158,000			
		1		\$/AF	28			
]	Extra Pun	nping Cost	\$111,995			
				\$/AF	20			
[a] I	Based on 0 ⁴	% operatio	n per yeai	•				

Future Energy Cost Complete Option A (Alt 5-1, 5-2, 5-3, 5-4, 3-1) and Complete Option B (Alt 5-1, 5-2, 5-3, 5-4)

[b] Based on 50% operation per year

Complete Option B - Alt 5-1, 5-2, 5-3 and 5-4 Cost Estimate

	Description	Quantity	Unit	Ur	nit Cost	1	tem Cost
						e	2 735 000
[2]	Pipelines	4 400	15	¢	210	¢ ¢	2,735,000
	16 Wells 3 and 15 to joint pipe to treatment plant	4,400		φ φ	120	¢ P	325,000
	10 Wells 1 and 2 to joint pipe to treatment plant	2,500		φ φ	100	¢	10,000
	6 Well 1 to joint pipe to treatment plant	100		φ ¢	110	¢ P	504.000
	8 Well 3 to joint pipe to treatment plant	5,400		ф Ф	210	¢.	310,000
	16 Joint pipe from wells 1,2,3 and 15 to treatment plant	1,000		¢ D	210	ф ф	210,000
	16 Treatment plant discharge pipe	700		¢ ¢	210	¢.	F20.000
	10 Well 28 to well 27 pipe to treatment plant	4,000		ф Ф	5 000	φ s	5 000
	Relocation zone z meter to zone 5		20	Ψ	0,000	¥	0,000
[3]	Control Valves					\$	187,000
1-1	Well 15 flow control valve	1	LS	\$	10,000	\$	10,000
	Well 2 flow control valve	1	LS	\$	5,000	\$	5,000
	Well 3 flow control valve	1	LS	\$	10,000	\$	10,000
	Well 1 flow control valve	1	LS	\$	5,000	\$	5,000
	Well 27 flow control valve	1	LS	\$	10.000	\$	10,000
	Well 28 flow control valve	1	is	Ś	10.000	Ś	10,000
	Peoples Rump (10 gpm)	1	IS	ŝ	2,000	ŝ	2.000
	Booster Fullip (10 gpm)	4	Fach	ŝ	1,500	ŝ	6,000
		4	Fach	ŝ	2 000	ŝ	8,000
	10-inch valves	4	Each	¢	2,000	¢	0,000
	12-inch valves	0	Each	ф ¢	2,500	φ	21 000
	16-inch valves	0	Each	ዋ ዋ	5,500	9 6	21,000
	Blowoff valve assembly with valve box	10	Each	\$ \$	5,000	ф е	50,000
	Air/vacuum and air relaease valve with valve box	10	Each	Ф	5,000	Ф	50,000
[5]	Pump Stations					\$	63,000
[0]	Popotor Pump (10 gpm) 17 4 to 60 psi	10	Ho	\$	15 000	Ŝ	15,000
	Well 2 new numbers and motor 600 gpm 75 hp	1	15	ŝ	48 000	ŝ	48,000
	weil 3 new pump and motor 600 gpm 75 np	•	20	Ŷ	40,000	¥	10,000
[6]	Electrical Controls					\$	5,000
•••	Booster Pump (10 gpm)	1	LS	\$	5,000	\$	5,000
[7]	SCADA System			•		\$	-
		1	LS	\$	-	\$. e. (⁵ **)
101						¢	20.000
[8]	water Treatment Plant				¢20.000	49	20,000
	Well 3 cleaning and development	1	LS		\$20,000	Ф	20,000
	Treatment for Wells 1,2,3,15 Hazen & Sawyer	Costs prepa	ared by	Haze	n & Sawye	er -	
	Treatment for Wells 27 & 28 Hazen & Sawyer	Costs prepa	ared by	Haze	n & Sawye	r	
	Treatment for Well 7 Hazen & Sawyer	Costs prepa	ared by	Haze	n & Sawye	ər	
	Treatment for Well 25 Hazen & Sawyer	Costs prepa	ared by	Haze	n & Sawye	er	
101	Electrical Device Facilities					ŝ	10.000
[a]	Electrical Power Facilities	.	19	¢	10,000	¢.	10,000
	Booster Pump (10 gpm)		10	Ψ	10,000	Ψ	10,000
[10]	Land and Right of Ways					\$	36,000
	Acquire 20' by 1.500' ROW for pipe from well 28 and permitting	1,500	LF		\$4	\$	6,000
	Acquire 20' by 20' of Land and permitting	1	LS	\$	30,000	\$	30,000
_				Tot	al	\$	3,056,000

	Average		2013	Average	Average			
Water Supply	AF	Percent	\$/AF	AF	\$	Notes	Water Use	
Upland Wells	4,639	83.1%				Z2 & 3		
	943					Z1	736	
	2,940					Z2	3,115	
	1,906					Z3	1,731	
Wells and Pump	ps in operat	tion for Co	mplete Op	ptions A and	d B		5,582	
Well 5	0	0.0%	140	0	\$0	[a]		
Well 6	0	0.0%	225	0	\$0	[a]		
Well 7	728	13.0%	153	728	\$111,384	[b]		
Well 24	0	0.0%	210	0	\$0	[a]		
Well 25	767	13.7%	107	767	\$82,069	[b]		
Well 27	1,009	18.1%	124	1,009	\$125,116	[b]	410 To Zone 3	1,203 To Zone 2
Well 28	604	10.8%	90	604	\$54,360	[b]		
Well 1	163	2.9%	123	163	\$20,049	[b]		
Well 2	402	7.2%	123	402	\$49,446	[b]		
Well 3	0	0.0%	86	0	\$0	[b]		
Well 15	966	17.3%	86	966	\$83,076	[b]		
MVPS, SWP	800	14.3%	37	800	\$29,600	Assumed		
Gallery Well	0	0.0%	80	0	\$0	Limited by	y water right of 515 AF	
River Wells	143	2.6%	91	143	\$13,013	Assumed		
2=	5,582	100.0%		5,582	\$568,113			
Zone 1 to Zone	2							
	207	3.7%	40	207	\$8,280			
Zone 2 to Zone	3							
	1	0.0%	80	1	\$80			
8=				Total	\$576,473	-		
				\$/AF	103			
		Ave	erage Pum	ping Cost	\$622,478			
			U	\$/AF	112			
WTP B	looster Pun	np Cost fro	m Hazen	& Sawyer	\$158,000			
		1		\$/AF	28			
]	Extra Pun	ping Cost	\$111,995			
		-		\$/AF	20			
[a]]	Based on 0	% operatio	n per year	r -				

Future Energy Cost Complete Option A (Alt 5-1, 5-2, 5-3, 5-4, 3-1) and Complete Option B (Alt 5-1, 5-2, 5-3, 5-4)

[b] Based on 50% operation per year

Complete Option C - Alt 5-1, 5-3, 5-4, 1-4 and 6-4 Cost Estimate

	Description	Quantity	Unit	U	nit Cost	ľ	tem Cost
[2]	<u>Plpelines</u> 16 Pipeline from well 28 to zone 3	2,000	LF	\$	210	\$ \$	2,723,000 420,000
	8 Pipeline from well 28 to zone 3	800	LF	\$	110	\$	88,000
	16 Wells 3 and 15 to joint pipe to treatment plant	4,400		\$	210	\$	924,000
	10 Wells 1 and 2 to joint pipe to treatment plant	2,500		ф ф	100	ф Ф	10,000
	6 Well 1 to joint pipe to treatment plant	5 400		¢ v	110	φ ¢	594 000
	8 Weil 3 to joint pipe to treatment plant	1,400		¢ v	210	ŝ	210 000
	16 Treatment plant discharge nine	700	LF	ŝ	210	ŝ	147.000
	Relocation Zone 2 meter to Zone 3	, 00	LS	\$	5,000	\$	5,000
[3]	Control Valves					\$	238,000
r-1	Valves at Well 28	1	LS	\$	20,000	\$	20,000
	Valves at Well 28 new booster pump	1	LS	\$	20,000	\$	20,000
	Flow control valves at well 28 and new booster at well 28	2	Each	\$	5,000	\$	10,000
	12-inch inline blending static mixer	1	LS	\$	15,000	\$	15,000
	Well 15 flow control valve	1	LS	\$	10,000	\$	10,000
	Well 2 flow control valve	1	LS	\$	5,000	\$	5,000
	Well 3 flow control valve	1	LS	\$	10,000	\$	10,000
	Well 1 flow control valve	1	LS	\$	5,000	\$	5,000
	Booster Pump (10 gpm)	1	LS	\$	2,000	\$	2,000
	6 and 8-inch valves	6	Each	\$	1,500	\$	9,000
	10-inch valves	2	Each	\$	2,000	\$	4,000
	12-inch valves	0	Each	\$	2,500	\$	
	16-inch valves	8	Each	\$	3,500	\$	28,000
	Blowoff valve assembly with valve box	10	Each	\$	5,000	\$	50,000
	Air/vacuum and air relaease valve with valve box	10	Each	\$	5,000	φ	50,000
[5]	Pump Stations					\$	288,000
r-1	Booster Pump (10 gpm) 17.3 to 60 psi	1.0	Hp	\$	15,000	\$	15,000
	Booster Pump (1,500 gpm, 300 TDH, 150 hp) at Well 28	150	Hp	\$	1,500	\$	225,000
	Well 3 new pump and motor 600 gpm 75 hp	1	LS	\$	48,000	\$	48,000
[6]	Electrical Controls					\$	65,000
	Booster Pump (10 gpm)	1	LS	\$	5,000	\$	5,000
	Booster Pump (1,500 gpm, 300 TDH, 150 hp) at Well 28	1	LS	\$	60,000	\$	60,000
[7]	SCADA System					\$	25,000
	SCADA Connection, components, operations for new booster	1	LS	\$	25,000	\$	25,000
(81	Water Treatment Plant					\$	120,000
	Packer at well 27	1	LS	\$	100,000	\$	100,000
	Well 3 cleaning and development	1	LS		\$20,000	\$	20,000
	Treatment for Wells 1,2,3,15 Hazen & Sawyer	Costs prepa	ared by	Haze	en & Sawye	۲	
	Treatment for Well 7 Hazen & Sawyer	Costs prepa	ared by	Haze	n & Sawye	r	
	Treatment for Well 25 Hazen & Sawyer	Costs prepa	ared by	Haze	en & Sawye),	
[9]	Electrical Power Facilities					\$	10,000
[0]	Booster Pump (10 gpm)	1	LS	\$	10,000	\$	10,000
[10	Land and Right of Wave					\$	30.000
10	Acquire 20' by 20' of Land and permitting	1	LS	\$	30.000	\$	30,000
_	And a second			Tot	al	\$	3,499,000

.....

	Average		2013	Average	Average			
Water Supply	AF	Percent	\$/AF	AF	\$	Notes	Water Use	
Upland Wells	3,503	62.8%				Z2 & 3		
	2,079					Z1	736	
	3,161					Z2	3,115	
	1,731					Z3	1,731	
Wells and Pum	ps in opera	tion for Co	mplete O	ption C			5,582	
Well 5	15	0.3%	140	15	\$2,155	[a]		
Well 6	18	0.3%	225	18	\$4,147	[a]		
Well 7	728	13.0%	153	728	\$111,384	[c]		
Well 24	18	0.3%	210	18	\$3,870	[a]		
Well 25	767	13.7%	107	767	\$82,069	[c]		
Well 27	378	6.8%	124	378	\$46,919	[b]		
Well 28	46	0.8%	90	46	\$4,131	[a]	92 To Zone 3	0 To Zone 2
Well 1	163	2.9%	123	163	\$20,049	[c]		
Well 2	402	7.2%	123	402	\$49,446	[c]		
Well 3	0	0.0%	86	0	\$0			
Well 15	966	17.3%	86	966	\$83,076	[c]		
MVPS, SWP	1,579	28.3%	37	1,579	\$58,423	Assumed		
Gallery Well	0	0.0%	80	0	\$0	Limited b	y water right of 515 AF	
River Wells	500	9.0%	93	500	\$46,500	Assumed		
-	5,582	100.0%		5,582	\$512,169	-		
Zone 1 to Zone	2							
	1,343	24.1%	40	1,343	\$53,720			
Zone 2 to Zone	3							
	92	1.6%	80	92	\$7,345	_		
				Total	\$573,233			
				\$/AF	103			
		Av	erage Pun	nping Cost	\$622,478			
			U	\$/AF	112			
WTP H	Booster Pur	np Cost fro	om Hazen	& Sawyer	\$104,000)		
		1		\$/AF	19)		
			Extra Pun	nping Cost	\$54,755			
					10)		
[a]	Based on 3	8.8% opera	tion per ye	ear				

Future Energy Cost Complete Option C (Alt 5-1, 5-3, 5-4, 1-4, 6-4)

[b] Based on 25% operation per year and 25% flow reduction

[c] Based on 50% operation per year

Complete Option D - Alt 5-1, 5-2, 1-2, and 1-5 Cost Estimate

	Description	Quantity	Unit	Ur	nit Cost	!!	em Cost
						e	2 476 000
[2]	<u>Pipelines</u>	4 400		¢	240	ф.	024 000
	16 Wells 3 and 15 to joint pipe to treatment plant	4,400		¢	210	φ Φ	924,000
	10 Wells 1 and 2 to joint pipe to treatment plant	2,500		¢	130	ф ф	325,000
	6 Well 1 to joint pipe to treatment plant	100		\$	100	Þ	10,000
	8 Well 3 to joint pipe to treatment plant	5,400		\$	110	\$	594,000
	16 Joint pipe from wells 1,2,3 and 15 to treatment plant	1,000		\$	210	\$	210,000
	16 Treatment plant discharge pipe	700		\$	210	\$	147,000
	10 Well 28 to well 27 pipe to treatment plant	4,000	LF	\$	130	\$	520,000
	8 pipeline from well 7 to 12" mainline	700	LF	\$	110	\$	77,000
	8 pipeline from well 24 to well 7	2,300	LF	\$	110	\$	253,000
	8 pipeline from well 5 to well 25	3,500	LF	\$	110	\$	385,000
	10 Well 7 to pipe intersection	200	LF	\$	130	\$	26,000
	Relocation Zone 2 meter to Zone 3	1	LS	\$	5,000	\$	5,000
[3]	Control Valves					\$	296,000
	Well 15 flow control valve	1	LS	\$	10,000	\$	10,000
	Well 2 flow control valve	1	LS	\$	5,000	\$	5,000
	Well 3 flow control valve	1	LS	\$	10,000	\$	10,000
	Well 1 flow control valve	1	LS	\$	5,000	\$	5,000
	Well 27 flow control valve	1	LS	\$	10,000	\$	10,000
	Well 28 flow control valve	1	LS	\$	10,000	\$	10,000
	Valves at Well 24	1	LS	\$	10,000	\$	10,000
	Valves at Well 7	1	LS	\$	10,000	\$	10,000
	12 inch inline blending static mixer for wells 7 and 24	1	LS	\$	10.000	\$	10,000
	Volvos at Well 25	1	IS	Ŝ	10.000	\$	10,000
	Valves at Well 5	1	IS	Ŝ	10.000	Ŝ	10.000
	12 isob isling blonding static mixer for wells 5 and 25	1	IS	ŝ	10.000	ŝ	10.000
	Reaster Dump (10 apr)	1	is	ŝ	2 000	ŝ	2,000
	Booster Pump (To gpm)	10	Each	ŝ	1 500	ŝ	15 000
	6 and 6-inch valves	10	Each	¢	2,000	ŝ	8,000
		4	Each	¢	2,000	¢	0,000
	12-inch valves	0	Each	φ Φ	3,500	φ	21.000
	16-inch valves	0	Each	¢ ¢	5,000	¢.	70,000
	Blowoff valve assembly with valve box	14	Each	φ Φ	5,000	ф ф	70,000
	Air/vacuum and air relaease valve with valve box	14	Each	Φ	5,000	φ	70,000
[5]	Pump Stations					\$	63,000
	Booster Pump (10 gpm) 17.4 to 60 psi	1.0	Нр	\$	15,000	\$	15,000
	Well 3 new pump and motor 600 gpm 75 hp	1	LS	\$	48,000	\$	48,000
[6]	Electrical Controls					\$	5,000
[-]	Booster Pump (10 gpm)	1	LS	\$	5,000	\$	5,000
[7]	SCADA Svetom					\$	
111		1	LS	\$	-	\$	i i
101	Water Treatment Plant					\$	20.000
[o]	Wall 2 algoning and development	ः 1	19		\$20,000	¢.	20,000
	Treatment for Mello 1.2.2.15 Horon & Sourcer	Costa propi	ared by	U	\$ Saune	Ψ	20,000
	Treatment for Mells 1,2,3, 15 Hazen & Sawyer	Costs prepa	ared by	Laza	n 8 Source	51 \r	
	Treatment for Mell 7 Heren & Sever	Costs prep	ared by			71 \r	
	Treatment for VVell / Hazen & Sawyer	Costs prepa	ared by	naze		; I	
	i reatment for vveli 25 Hazen & Sawyer	Costs prep	area by	naze	n a sawye	;(
[9]	Electrical Power Facilities					\$	10,000
[0]	Booster Pump (10 gpm)	1	LS	\$	10,000	\$	10,000
						e	36 000
[10	Lang ang Kight of Ways	1 500	15		¢.4	¢.	6 000
	Acquire 20' by 20' of Land and permitting	1,500	LF Q	¢	ዋዋ ዓር በበባ	¢.	30,000
		1	LO		<u></u>	÷	3 906 000
				100	a1	₽	3,300,000

	Average	1	2013	Average	Average			
Water Supply	AF	Percent	\$/AF	AF	\$	Notes	Water Use	
Upland Wells	4,414	79.1%				Z2 & 3		
-	1,168					Z1	736	
	2,734					Z2	3,115	
	1,730					Z3	1,731	
Wells and Pump	os in operat	tion for Co	mplete Oj	otion D			5,582	
Well 5	118	2.1%	140	118	\$16,500	[a]		
Well 6	141	2.5%	225	141	\$31,755	[a]		
Well 7	424	7.6%	153	424	\$64,825	[a]		
Well 24	141	2.5%	210	141	\$29,638	[a]		
Well 25	446	8.0%	107	446	\$47,733	[a]		
Well 27	1,009	18.1%	124	1,009	\$125,116	[b]	410 To Zone 3	1,203 To Zone 2
Well 28	604	10.8%	90	604	\$54,360	[b]		
Well 1	163	2.9%	123	163	\$20,049	[b]		
Well 2	402	7.2%	123	402	\$49,446	[b]		
Well 3	0	0.0%	86	0	\$0	[b]		
Well 15	966	17.3%	86	966	\$83,076	[b]		
MVPS, SWP	768	13.8%	37	768	\$28,416	Assumed		
Gallery Well	0	0.0%	80	0	\$0	Limited b	y water right of 515 AF	
River Wells	400	7.2%	91	400	\$36,400	Assumed		
	5,582	100.0%		5,582	\$587,315			
Zone 1 to Zone	2				,			
	432	7.7%	40	432	\$17,280			
Zone 2 to Zone	3							
	50	0.9%	80	50	\$4,000	-		
-				Total	\$608,595	-		
				\$/AF	109			
		Ave	erage Purr	ping Cost	\$622,478			
			-	\$/AF	112			
WTP B	ooster Pun	np Cost fro	m Hazen	& Sawyer	\$108,000			
		-		\$/AF	19			
		J	Extra Pun	ping Cost	\$94,117			
				\$/AF	17			
[a] I	Based on 2	9.1% opera	tion per y	vear				

Future Energy Cost Complete Option D (Alt 5-1, 5-2, 1-2, 1-5)

[b] Based on 50% operation per year

Complete Option D-P- Alt 5-1, 5-2, 6-1 and 6-2 Cost Estimate

	Description	Quantity Unit Unit Cost			nit Cost	Item Cost	
101						•	2 735 000
[2]	<u>Pipelines</u> 16 Wells 3 and 15 to joint nine to treatment plant	4 400	IF	\$	210	ŝ	924,000
	10 Wells 1 and 2 to joint pipe to treatment plant	2 500	LE	\$	130	ŝ	325,000
	6 Well 1 to joint pipe to treatment plant	100	LF	ŝ	100	Ŝ	10,000
	8 Well 3 to joint pipe to treatment plant	5,400	LF	\$	110	\$	594,000
	16 Joint pipe from wells 1.2.3 and 15 to treatment plant	1.000	LF	\$	210	\$	210,000
	16 Treatment plant discharge pipe	700	LF	\$	210	\$	147,000
	10 Well 28 to well 27 pipe to treatment plant	4,000	LF	\$	130	\$	520,000
	Relocation Zone 2 meter to Zone 3	1	LS	\$	5,000	\$	5,000
121	Control Values					\$	187.000
[5]	Well 15 flow control valve	1	LS	\$	10.000	\$	10.000
	Well 2 flow control valve	1	LS	ŝ	5,000	Ŝ	5,000
	Well 3 flow control valve	1	LS	\$	10.000	\$	10,000
	Well 1 flow control valve	1	LS	\$	5,000	\$	5,000
	Well 27 flow control valve	1	LS	\$	10,000	\$	10,000
	Well 28 flow control valve	1	LS	\$	10,000	\$	10,000
	Booster Pump (10 gpm)	1	LS	\$	2,000	\$	2,000
	6 and 8-inch valves	4	Each	\$	1,500	\$	6,000
	10-inch valves	4	Each	\$	2,000	\$	8,000
	12-inch valves	0	Each	\$	2,500	\$	-
	16-inch valves	6	Each	\$	3,500	\$	21,000
	Blowoff valve assembly with valve box	10	Each	\$	5,000	\$	50,000
	Air/vacuum and air relaease valve with valve box	10	Each	\$	5,000	\$	50,000
[5]	Pump Stations					\$	63,000
r-1	Booster Pump (10 gpm) 17.4 to 60 psi	1.0	Hp	\$	15,000	\$	15,000
	Well 3 new pump and motor 600 gpm 75 hp	1	LS	\$	48,000	\$	48,000
161	Flectrical Controls					\$	5,000
[0]	Booster Pump (10 gpm)	1	LS	\$	5,000	\$	5,000
[7]	SCADA System			•		\$	(*)
		1	LS	\$	•	\$	-
181	Water Treatment Plant					\$	220,000
[0]	Well 3 cleaning and development	1	LS		\$20,000	\$	20,000
	Install nacker in well 25	1	LS		\$100,000	\$	100,000
	Install packer in well 7	1	LS		\$100,000	\$	100,000
	Treatment for Wells 1,2,3,15 Hazen & Sawyer	Costs prepa	ared by	Haze	en & Sawye	r	
	Treatment for Wells 27 & 28 Hazen & Sawyer	Costs prepa	ared by	Haze	en & Sawye	r	
	Treatment for Well 7 Hazen & Sawyer	Costs prepa	ared by	Haze	en & Sawye	r	
	Treatment for Well 25 Hazen & Sawyer	Costs prepa	ared by	Haze	en & Sawye	ſ	
[9]	Electrical Power Facilities					\$	10,000
[0]	Booster Pump (10 gpm)	1	LS	\$	10,000	\$	10,000
140	Land and Dialth of Maya					\$	36.000
[IU	Land and rught of Ways Acquire 20' by 1 500' POW for size from well 28 and permitting	1 500	I F		\$4	ŝ	6 000
	Acquire 20 by 1,500 KOW for pipe from well 20 and permitting Acquire 20' by 20' of Land and permitting	1,000	LS	\$	30.000	ŝ	30.000
-	tradence of the ot particular harmonia	•		To	tal	Ŝ	3,256,000

	Average		2013	Average	Average			
Water Supply	AF	Percent	\$/AF	AF	\$	Notes	Water Use	
Upland Wells	4,416	79.1%				Z2 & 3		
	1,166					Z1	736	
	2,734					Z2	3,115	
	1,732					Z3	1,731	
Wells and Pump	ps in operat	tion for Co	mplete O	ption D-P a	nd D-C		5,582	
Well 5	145	2.6%	140	145	\$20,299	[a]		
Well 6	174	3.1%	225	174	\$39,067	[a]		
Well 7	376	6.7%	153	376	\$57,567	[b]		
Well 24	174	3.1%	210	174	\$36,462	[a]		
Well 25	404	7.2%	107	404	\$43,209	[b]		
Well 27	1,009	18.1%	124	1,009	\$125,116	[c]	410 To Zone	3 1,203 To Zone 2
Well 28	604	10.8%	90	604	\$54,360	[c]		
Well 1	163	2.9%	123	163	\$20,049	[c]		
Well 2	402	7.2%	123	402	\$49,446	[c]		
Well 3	0	0.0%	86	0	\$0			
Well 15	966	17.3%	86	966	\$83,076	[c]		
MVPS, SWP	766	13.7%	37	766	\$28,342	Assumed		
Gallery Well	0	0.0%	80	0	\$0	Limited b	y water right of 515 AF	
River Wells	400	7.2%	91	400	\$36,400	Assumed		
3=	5,582	100.0%		5,582	\$593,393	•>		
Zone 1 to Zone	2							
	430	7.7%	40	430	\$17,200			
Zone 2 to Zone	3							
	50	0.9%	80	50	\$4,000			
=				Total	\$614,593	•		
				\$/AF	110	L		
		Ave	erage Pun	ping Cost	\$622,478			
			U	\$/AF	112			
WTP B	ooster Pun	np Cost fro	m Hazen	& Sawyer	\$108,000	I		
		•		\$/AF	19			
]	Extra Pun	ping Cost	\$100,115			
				\$/AF	18			
[a] I	Based on 3	5.8% opera	tion per y	vear				8

Future Energy Cost Complete Option D-P (Alt 5-1, 5-2, 6-1, 6-2) and D-C (Alt 1-2, 1-5, 5-1, 5-2, 6-1, 6-2)

[b] Based on 35.8% operation per year and 25% flow reduction

[c] Based on 50% operation per year

Complete Option D-C - Alt 5-1, 5-2, 1-2, 1-5, 6-1, and 6-2 Cost Estimate

20	Description	Quantity	Unit	U	nit Cost	11	em Cost
[0]	Direlian					¢	3 472 000
[4]	<u>Pipelines</u>	4 400	1 =	¢	210	¢	021 000
	To vveils 3 and 15 to joint pipe to treatment plant	4,400		¢.	420	¢	324,000
	10 vvelis 1 and 2 to joint pipe to treatment plant	2,500		¢ Å	100	¢ ¢	10,000
	6 Viel 1 to joint pipe to treatment plant	5 400		¢	110	¢	594 000
	8 Well 3 to joint pipe to treatment plant	1,000		ę	210	¢	210 000
	16 Joint pipe from weils 1,2,3 and 15 to treatment plant	700		e e	210	¢ ¢	147 000
	16 Treatment plant discharge pipe	1 000		\$	130	е Ф	520,000
	10 Weil 28 to weil 27 pipe to treatment plant	4,000		¢	110	έ	77 000
	8 pipeline from well 7 to 12 mainline	2,500		¢.	110	¢	275,000
	8 pipeline from well 24 to well 7	2,500		÷	110	φ ¢	385,000
	Relocation Zone 2 meter to Zone 3	3,500	LS	\$	5,000	\$	5,000
						*	206.000
[3]	<u>Control Valves</u>		10	¢	10.000	¢.	290,000
	Well 15 flow control valve	1		ф Ф	5,000	ф Ф	10,000 E 000
	Well 2 flow control valve	1	LS	ф ¢	5,000	¢ D	5,000
	Well 3 flow control valve	1	LS	ф С	5,000	¢ ¢	5,000
	Well 1 flow control valve	1	LO	ф ф	10,000	¢.	10,000
	Weil 27 flow control valve	1		φ φ	10,000	¢ t	10,000
	Well 28 flow control valve	1		φ ¢	10,000	¢	10,000
,	Valves at Well 24	1		φ	10,000	¢ ¢	10,000
	Valves at Well /	1		ę	10,000	φ ¢	10,000
	12-Inch Inline blending static mixer for wells 7 and 24	1	19	¢ ¢	10,000	Ψ 2	10,000
	Valves at Well 25	1		¢ ¢	10,000	¢ ¢	10,000
	Valves at Well 5	1	19	¢	10,000	÷	10,000
	12-inch inline blending static mixer for wells 5 and 25	1	19	ф Ф	2 000	φ ¢	2 000
	Booster Pump (10 gpm)	10	Each	Ψ Φ	1 500	φ ¢	15,000
	6 and 8-inch valves	10	Each	¢	2,000	¢ ¢	8 000
	10-inch valves	4	Each	έ	2,000	ŝ	0,000
	12-inch valves	6	Each	¢	3 500	÷.	21 000
	16-inch valves	14	Each	¢	5,000	¢.	70,000
	Air/vacuum and air relaease valve with valve box	14	Each	\$	5,000	\$	70,000
							62.000
[5]	Pump Stations	4.0		~	45.000	¢ ¢	15 000
	Booster Pump (10 gpm) 17.4 to 60 psi	1.0	нр	ð ¢	15,000	þ	15,000
	Well 3 new pump and motor 600 gpm 75 hp	1	LS	\$	48,000	Ф	40,000
[6]	Electrical Controls					\$	5,000
	Booster Pump (10 gpm)	1	LS	\$	5,000	\$	5,000
[7]	SCADA System					\$	-
• •	<u></u>	1	LS	\$	14	\$	-
[8]	Water Treatment Plant					\$	220,000
[0]	Well 3 cleaning and development	1	LS		\$20,000	\$	20,000
	Install packer in well 25	1	LS		\$100,000	\$	100,000
	Install packer in well 7	1	LS		\$100,000	\$	100,000
	Treatment for Wells 1.2.3.15 Hazen & Sawyer	Costs prepa	ared by	Haze	en & Sawve	eΓ	
	Treatment for Wells 27 & 28 Hazen & Sawyer	Costs prepa	ared by	Haze	en & Sawve	r	
	Treatment for Well 7 Hazen & Sawyer	Costs prepa	ared by	Haze	en & Sawve	er.	
	Treatment for Well 25 Hazen & Sawyer	Costs prepa	ared by	Haze	en & Sawye	er	
(01						¢	10.000
[9]	Booster Pump (10 gpm)	1	LS	\$	10,000	\$	10,000
							20 000
[10]	Land and Right of Ways	4 700				\$	36,000
	Acquire 20' by 1,500' ROW for pipe from well 28 and permitting	1,500	LF		\$4	\$	0,000
-	Acquire 20. by 20. or Land and permitting	1	LS	\$	_30,000	\$	30,000
				101	d	\$	4,102,000

	Average		2013	Average	Average	1.		
Water Supply	AF	Percent	\$/AF	AF	\$	Notes	Water Use	
Upland Wells	4,416	79.1%				Z2 & 3		
	1,166					Z1	736	
	2,734					Z2	3,115	
	1,732					Z3	1,731	
Wells and Pum	ps in opera	tion for Co	mplete O	ption D-P a	nd D-C		5,582	
Well 5	145	2.6%	140	145	\$20,299	[a]		
Well 6	174	3.1%	225	174	\$39,067	[a]		
Well 7	376	6.7%	153	376	\$57,567	[b]		
Well 24	174	3.1%	210	174	\$36,462	[a]		
Well 25	404	7.2%	107	404	\$43,209	[b]		
Well 27	1,009	18.1%	124	1,009	\$125,116	[c]	410 To Zone 3	1,203 To Zone 2
Well 28	604	10.8%	90	604	\$54,360	[c]		
Well 1	163	2.9%	123	163	\$20,049	[c]		
Well 2	402	7.2%	123	402	\$49,446	[c]		
Well 3	0	0.0%	86	0	\$0			
Well 15	966	17.3%	86	966	\$83,076	[c]		
MVPS, SWP	766	13.7%	37	766	\$28,342	Assumed	ļ	
Gallery Well	0	0.0%	80	0	\$C	Limited b	by water right of 515 AF	
River Wells	400	7.2%	91	400	\$36,400	Assumed	l	
1	5,582	100.0%		5,582	\$593,393	-		
Zone 1 to Zone	e 2							
	430	7.7%	40	430	\$17,200	1		
Zone 2 to Zone	e 3							
	50	0.9%	80	50	\$4,000	-		
9				Total	\$614,593			
				\$/AF	110)		
		Av	erage Pun	nping Cost	\$622,478	1		
			-	\$/AF	112	,		
WTP I	Booster Pun	np Cost fro	m Hazen	& Sawyer	\$108,000			
		•		\$/AF	19)		
			Extra Pun	nping Cost	\$100,115	;		
				\$/AF	18			
[a]	Based on 3	5.8% oper	ation per y	year				

Future Energy Cost Complete Option D-P (Alt 5-1, 5-2, 6-1, 6-2) and D-C (Alt 1-2, 1-5, 5-1, 5-2, 6-1, 6-2)

[b] Based on 35.8% operation per year and 25% flow reduction

[c] Based on 50% operation per year

Complete Option E - Alt 5-1, 1-2, 1-4, 1-5 and 6-4 Cost Estimate

	Description	Quantity	Unit	U	nit Cost	!	tem Cost
2							
[2]	<u>Pipelínes</u>					\$	3,460,000
	16 Pipeline from well 28 to zone 3	2,000	LF	\$	210	\$	420,000
	8 Pipeline from well 28 to zone 3	800	LF	\$	110	\$	88,000
	16 Wells 3 and 15 to joint pipe to treatment plant	4,400	LF	\$	210	\$	924,000
	10 Wells 1 and 2 to joint pipe to treatment plant	2,500	LF	\$	130	\$	325,000
	6 Well 1 to joint pipe to treatment plant	100	LF	\$	100	\$	10,000
	8 Well 3 to joint pipe to treatment plant	5,400	LF	\$	110	\$	594,000
	16 Joint pipe from wells 1,2,3 and 15 to treatment plant	1,000	LF	\$	210	\$	210,000
	16 Treatment plant discharge pipe	700	LF	\$	210	\$	147,000
	8 Pipeline from well 7 to 12" mainline	700	LF	\$	110	\$	77,000
	8 Pipeline from well 24 to well 7	2,500	LF	\$	110	\$	275,000
	8 Pipeline from well 5 to well 25	3,500	LF	\$	110	\$	385,000
	Relocation Zone 2 meter to Zone 3	1	LS	\$	5,000	\$	5,000
131	Control Valvos					\$	387.000
[9]	Valves at Well 28	1	LS	\$	20.000	\$	20,000
	Valves at Well 28 new booster nump	1	is	ŝ	20,000	ŝ	20,000
	Flow control values at well 28 and new booster at well 28	2	Fach	ŝ	5.000	Ŝ	10.000
	12 inch inline blending static mixer	1	IS	ŝ	15,000	ŝ	15,000
	Volvos at Miell 24	1	is	ŝ	10 000	ŝ	10,000
	Valves at Well 24	1	IS	ŝ	10,000	ŝ	10,000
	Valves at Well 7	1	LS	ŝ	10,000	ŝ	10,000
	Yz-Inch Inline Diending static mixer for weils 7 and 24	1	15	¢	10,000	ŝ	10,000
	Valves at Well 20	1	IS	ŝ	10,000	ŝ	10,000
	Valves at Well 5	1	15	φ ¢	10,000	ŝ	10,000
	12-inch inline blending static mixer for wells 5 and 25	1	IS	φ	10,000	ę	10,000
	Well 15 flow control valve	1		¢.	5,000	φ	5 000
	Vveil 2 flow control valve	1	10	Ψ	10,000	é	10,000
	vveil 3 flow control valve	1		φ	5 000	é	5 000
	Well 1 flow control valve	1	LO	¢	2,000	¢ ¢	2,000
	Booster Pump (10 gpm)	10	LO	ዋ	4,000	φ.	19,000
	6 and 8-inch valves	12	Each	φ Φ	1,500	- - -	10,000
	10-inch valves	2	Each	Þ	2,000	3	4,000
	12-inch valves	0	Each	Þ	2,500	4	-
	16-inch valves	8	Each	\$	3,500	Ð	20,000
	Blowoff valve assembly with valve box	18	Each	\$	5,000	Ð	90,000
	Air/vacuum and air relaease valve with valve box	18	Each	Þ	5,000	Ф	90,000
[5]	Pump Stations					\$	288,000
[~]	Booster Pump (10 gpm) 17 3 to 60 psi	1.0	dН	\$	15,000	\$	15,000
	Booster Pump (1 500 gpm, 300 TDH, 150 hp) at Well 28	150	Hp	\$	1,500	\$	225,000
	Well 3 new pump and motor 600 gpm 75 hp	1	LS	\$	48,000	\$	48,000
						-	
[6]	Electrical Controls					\$	65,000
	Booster Pump (10 gpm)	1	LS	\$	5,000	\$	5,000
	Booster Pump (1,500 gpm, 300 TDH, 150 hp) at Well 28	1	LS	\$	60,000	\$	60,000
							25 000
[7]	SCADA System			•	05 000	\$	25,000
	SCADA Connection, components, operations for new booster	1	LS	Þ	25,000	Ф	25,000
[8]	Water Treatment Plant					\$	120,000
[0]	Packer at well 27	1	IS	\$	100 000	\$	100.000
	Well 3 cleaning and development	1	is	*	\$20,000	ŝ	20,000
	Treatment for Wells 1 2 3 15 Hazen & Sawver	Costs prep	ared by	Haze	n & Sawve	۰. ۲	
	Treatment for Well 7 Hazen & Sawyer	Costs prep	ared by	Haze	en & Sawve	er.	
	Treatment for Well 25 Hazen & Sawyer	Costs prep	ared by	Haze	en & Sawye	ər	
	•				-		
[9]	Electrical Power Facilities					\$	10,000
	Booster Pump (10 gpm)	1	LS	\$	10,000	\$	10,000
[10]	Land and Right of Ways	20	10-2	23	12202-200	\$	30,000
_	Acquire 20' by 20' of Land and permitting	1	LS_	_\$	30,000	\$	30,000
				Tot	a	S	4.385.000

	Average		2013	Average	Average			
Water Supply	AF	Percent	\$/AF	AF	\$	Notes	Water Use	
Upland Wells	2,934	52.6%				Z2 & 3		
	2,648					Z1	736	
	1,915					Z2	3,115	
	1,733					Z3	1,731	
Wells and Pum	ps in opera	tion for Co	mplete Oj	otion E			5,582	
Well 5	74	1.3%	140	74	\$10,376	[a]		
Well 6	89	1.6%	225	89	\$19,970	[a]		
Well 7	266	4.8%	153	266	\$40,767	[a]		
Well 24	89	1.6%	210	89	\$18,639	[a]		
Well 25	281	5.0%	107	281	\$30,018	[a]		
Well 27	384	6.9%	124	384	\$47,554	[b]		
Well 28	221	4.0%	90	221	\$19,896	[a]	442 To Zone 3	0 To Zone 2
Well 1	163	2.9%	123	163	\$20,049	[c]		
Well 2	402	7.2%	123	402	\$49,446	[c]		
Well 3	0	0.0%	86	0	\$0			
Well 15	966	17.3%	86	966	\$83,076	[c]		
MVPS, SWP	2,000	35.8%	37	2,000	\$74,000	Assumed		
Gallery Well	0	0.0%	80	0	\$0	Limited b	by water right of 515 AF	
River Wells	648	11.6%	95	648	\$61,560	Assumed		
	5,582	100.0%		5,582	\$475,350			
Zone 1 to Zone	2							
	1,912	34.3%	40	1,912	\$76,480			
Zone 2 to Zone	3							
	492	8.8%	80	492	\$39,370			
				Total	\$591,200			
				\$/AF	106			
		Ave	erage Pun	ping Cost	\$622,478			
			-	\$/AF	112			
WTP E	Booster Pun	np Cost fro	m Hazen	& Sawyer	\$54,000	1		
				\$/AF	10	1		
]	Extra Pun	ping Cost	\$22,722			
				\$/AF	4			
[a] [Based on 1	8.3% opera	ation per y	vear				

Future Energy Cost Complete Option E (Alt 5-1, 1-2, 1-4, 1-5, 6-4)

[b] Based on 18.3% operation per year and 25% flow reduction

[c] Based on 50% operation per year

Complete Option E-P - Alt 5-1, 1-4 6-1, 6-2 and 6-4 Cost Estimate

	Description	Quantity	Unit	U	nit Cost	ľ	tem Cost
(0)							2 722 000
[2]	Pipelines	0.000		e.	240	¢ ¢	2,723,000
	16 Pipeline from well 28 to zone 3	2,000		P C	210	ф Ф	420,000
	8 Pipeline from well 28 to zone 3	800		P C	110	ф ф	00,000
	16 Wells 3 and 15 to joint pipe to treatment plant	4,400		¢	210	φ ¢	924,000
	10 Wells 1 and 2 to joint pipe to treatment plant	2,500		\$	130	\$	325,000
	6 Well 1 to joint pipe to treatment plant	100		\$	100	Ъ Ф	10,000
	8 Well 3 to joint pipe to treatment plant	5,400		\$	110	\$	594,000
	16 Joint pipe from wells 1,2,3 and 15 to treatment plant	1,000	LF	\$	210	\$	210,000
	16 Treatment plant discharge pipe	700	LF	\$	210	\$	147,000
	Relocation Zone 2 meter to Zone 3	1	LS	\$	5,000	\$	5,000
(3)	Control Valves					\$	238.000
[•]	Valves at Well 28	1	LS	\$	20.000	\$	20,000
	Valves at Well 28 new booster pump	1	LS	Ŝ	20.000	\$	20,000
	Flow control valves at well 28 and new booster at well 28	2	Each	Ŝ	5.000	\$	10,000
	12-inch inline blending static mixer	1	LS	Ŝ	15.000	Ś	15,000
	Well 15 flow control valve	1	is	\$	10.000	ŝ	10,000
	Well 2 flow control valve	1	is	ŝ	5 000	ŝ	5.000
	Well 2 flow control valve	1	15	ŝ	10,000	ŝ	10,000
	Well 5 now control valve	1	IS	ŝ	5 000	ŝ	5 000
	Reaster Rump (10 com)	1		¢.	2 000	ŝ	2,000
	Booster Fump (To gpm)	Ê	Each	¢	1 500	¢.	9,000
	6 and 6-men valves	2	Each	ě	2 000	ě	4 000
	10-inch valves	2	Each	¢	2,000	¢	4,000
	12-inch valves	0	Each	φ ¢	2,000	φ	28.000
	16-inch valves	0	Each	φ ¢	5,000	φ Φ	20,000
	Blowoff valve assembly with valve box	10	Each	ф ф	5,000	φ.	50,000
	Air/vacuum and air relaease valve with valve box	10	Each	φ	5,000	Ψ	50,000
[5]	Pump Stations					\$	288,000
101	Booster Pump (10 apm) 17 3 to 60 psi	1.0	Нр	\$	15.000	\$	15,000
	Booster Pump (1 500 gpm, 300 TDH, 150 hp) at Well 28	150	Hp	Ś	1,500	\$	225,000
	Well 3 new nump and motor 600 gpm 75 hp	1	LS	Ś	48,000	\$	48,000
	Weil 5 new pump and motor occ gpm romp	÷		•		•	
[6]	Electrical Controls					\$	65,000
	Booster Pump (10 gpm)	1	LS	\$	5,000	\$	5,000
	Booster Pump (1,500 gpm, 300 TDH, 150 hp) at Well 28	1	LS	\$	60,000	\$	60,000
(71	SCADA System					\$	25.000
[1]	SCADA Connection, components, operations for new booster	1	LS	\$	25,000	\$	25,000
						•	220.000
[8]	Water Treatment Plant			•	400.000	÷	320,000
	Packer at well 27	1	LS	\$	100,000	\$	100,000
	Packer at well 7	1	LS	\$	100,000	\$	100,000
	Packer at well 25	1	LS	\$	100,000	\$	100,000
	Well 3 cleaning and development	1	LS		\$20,000	\$	20,000
	Treatment for Wells 1,2,3,15 Hazen & Sawyer	Costs prepa	ared by	Haze	en & Sawye	F	
[9]	Flectrical Power Facilities					\$	10.000
1-1	Booster Pump (10 gpm)	1	LS	\$	10.000	\$	10.000
	Property Light / 10 Shuth	,		Ŧ		*	-,
[10]	Land and Right of Ways	20	gross	1045		\$	30,000
_	Acquire 20' by 20' of Land and permitting	1	LS	\$	30,000	\$	30,000
				Tot	al	\$	3,699,000

	Average		2013	Average	Average			
Water Supply	AF	Percent	\$/AF	AF	\$	Notes	Water Use	
Upland Wells	2,867	51.4%				Z2 & 3		
	2,715					Z1	736	
	1,915					Z2	3,115	
	1,727					Z3	1,731	
Wells and Pump	ps in operat	tion fo <mark>r</mark> Co	mplete Oj	otion E-P ar	nd E-C		5,582	
Well 5	81	1.5%	140	81	\$11,340	[a]		
Well 6	97	1.7%	225	97	\$21,825	[a]		
Well 7	210	3.8%	153	210	\$32,161	[b]		
Well 24	97	1.7%	210	97	\$20,370	[a]		
Well 25	226	4.0%	107	226	\$24,139	[b]		
Well 27	384	6.9%	124	384	\$47,554	[b]		20
Well 28	242	4.3%	90	242	\$21,744	[a]	483 To Zone 3	0 To Zone 2
Well 1	163	2.9%	123	163	\$20,049	[c]		
Well 2	402	7.2%	123	402	\$49,446	[c]		
Well 3	0	0.0%	86	0	\$0			
Well 15	966	17.3%	86	966	\$83,076	[c]		
MVPS, SWP	2,000	35.8%	37	2,000	\$74,000	Assumed		
Gallery Well	0	0.0%	80	0	\$0	Limited by	y water right of 515 AF	
River Wells	715	12.8%	98	715	\$70,070	Assumed	_	
1	5,582	100.0%		5,582	\$475,774			
Zone 1 to Zone	2							
	1,979	35.5%	40	1,979	\$79,160			
Zone 2 to Zone	3							
	533	9.5%	80	533	\$42,640			
=				Total	\$597,574			
				\$/AF	107			
		Ave	rage Pum	ping Cost	\$622,478			
			U	\$/AF	112			
WTP B	looster Pun	10 Cost fro	m Hazen	& Sawver	\$54,000			
				\$/AF	10			
		I	Extra Purr	ping Cost	\$29.096			
		-		\$/AF	5			
[a]]	Based on 20	0% operati	on per yea	ar	·			

Future Energy Cost Complete Option E-P (Alt 1-4, 5-1, 6-1, 6-2, 6-4) and E-C (Alt 1-2, 1-4, 1-5, 5-1, 6-1, 6-2, 6-4)

[b] Based on 20% operation per year and 25% flow reduction

[c] Based on 50% operation per year

Complete Option E-C - Alt 5-1, 1-2, 1-4, 1-5, 6-1, 6-2 and 6-4 Cost Estimate

	Description	Quantity	Unit	Ur	it Cost	lt	em Cost
0							2 202 000
[2]	Pipelines		. –			\$	3,383,000
	16 Pipeline from well 28 to zone 3	2,000	LF	\$	210	\$	420,000
	8 Pipeline from well 28 to zone 3	800	LF	\$	110	\$	88,000
	8 pipeline from well 24 to well 7	2,500	LF	\$	110	\$	275,000
	8 pipeline from well 5 to well 25	3,500	LF	\$	110	\$	385,000
	16 Wells 3 and 15 to joint pipe to treatment plant	4,400	LF	\$	210	\$	924,000
	10 Wells 1 and 2 to joint pipe to treatment plant	2,500	LF	\$	130	\$	325,000
	6 Well 1 to joint pipe to treatment plant	100	LF	\$	100	\$	10,000
	8 Well 3 to joint pipe to treatment plant	5,400	LF	\$	110	\$	594,000
	16 Joint pipe from wells 1 2 3 and 15 to treatment plant	1,000	LF	\$	210	\$	210,000
	16 Treatment plant discharge pine	700	LF	\$	210	\$	147,000
	Relocation Zone 2 meter to Zone 3	1	LS	\$	5,000	\$	5,000
101	On the Malazza					\$	334.000
ျပ	Control Valves	1	LS	\$	20,000	ŝ	20,000
	Valves at Well 20	1	15	ŝ	20,000	ŝ	20,000
	Valves at Well 28 new booster pump	2	Each	é.	5,000	ŝ	10,000
	Flow control valves at well 28 and new pooster at well 26	4	Laun	φ	10,000	έ.	10,000
	Valves at Well 24	4		φ e	10,000	÷	10,000
	Valves at Well 7	1		φ ¢	10,000	φ Φ	10,000
	12-inch inline blending static mixer for wells 7 and 24		LO	¢	10,000	ф ф	10,000
	Valves at Well 25	1	LS	\$	10,000	ф Ф	10,000
	Valves at Well 5	1	LS	\$	10,000	\$	10,000
	12-inch inline blending static mixer for wells 5 and 25	1	LS	\$	10,000	\$	10,000
	12-inch inline blending static mixer for well 28	1	LS	\$	15,000	\$	15,000
	Well 15 flow control valve	1	LS	\$	10,000	\$	10,000
	Well 2 flow control valve	1	LS	\$	5,000	\$	5,000
	Well 3 flow control valve	1	LS	\$	10,000	\$	10,000
	Well 1 flow control valve	1	LS	\$	5,000	\$	5,000
	Booster Pump (10 gpm)	1	LS	\$	2,000	\$	2,000
	6 and 8-inch valves	10	Each	\$	1,500	\$	15,000
	10-inch valves	2	Each	\$	2,000	\$	4,000
	12 inch valves	0	Each	\$	2,500	\$	
	12-inch valves	B	Fach	Ŝ	3,500	\$	28,000
	IO-IIICII valves	13	Each	ŝ	5 000	\$	65,000
	Blowoff valve assembly with valve box	13	Each	ŝ	5,000	ŝ	65,000
	Alfvacuum and alf feldease valve with valve box	10	Euon	Ŧ	0,000	Ŧ	
[5]	Pump Stations					\$	288,000
1-1	Booster Pump (10 apm) 17.3 to 60 psi	1.0	Hp	\$	15,000	\$	15,000
	Booster Pump (1 500 gpm, 300 TDH, 150 hp) at Well 28	150	Hp	\$	1,500	\$	225,000
	Well 3 new pump and motor 600 gpm 75 hp	1	LS	\$	48,000	\$	48,000
161	Electrical Controls					\$	65,000
[o]	Electrical Controls Booster Pump (10 gpm)	1	15	\$	5.000	\$	5,000
	Booster Pump (1,500 gpm, 300 TDH, 150 hp) at Well 28	i	LS	\$	60,000	\$	60,000
						\$	25.000
U)	SCADA System	1	15	\$	25 000	\$	25.000
		•	20	Ŧ	_0,000	Ť	
[8]	Water Treatment Plant					\$	320,000
6-1	Packer at well 27	1	LS	\$	100,000	\$	100,000
	Packer at well 7	1	LS	\$	100,000	\$	100,000
	Packer at well 25	1	LS	\$	100.000	\$	100,000
	Well 3 cleaning and development	1	15		\$20,000	Ś	20,000
	Treatment for Wells 1,2,3,15 Hazen & Sawyer	Costs prep	ared by	Haze	en & Sawye	er	
						¢	10 000
[9]	Electrical Power Facilities Booster Pump (10 gpm)	1	LS	\$	10,000	₽ \$	10,000
		·		·	·	•	
[10	Land and Right of Ways	я	19	¢	30.000	\$	30,000
-	Acquire zo by zo or cand and permitting	1	1.0	Tat	al	é	4 455 000
				101	G (1)	Ŷ	-1-100,000

	Average		2013	Average	Average				
Water Supply	AF	Percent	\$/AF	AF	\$	Notes	Water Use		
Upland Wells	2,867	51.4%				Z2 & 3			
	2,715					Z1	736		
	1,915					Z2	3,115		
	1,727					Z3	1,731		
Wells and Pum	ps in opera	tion for Co	mplete Op	ption E-P a	nd E-C		5,582		
Well 5	81	1.5%	140	81	\$11,340	[a]			
Well 6	97	1.7%	225	97	\$21,825	[a]			
Well 7	210	3.8%	153	210	\$32,161	[b]			
Well 24	97	1.7%	210	97	\$20,370	[a]			
Well 25	226	4.0%	107	226	\$24,139	[b]			
Well 27	384	6.9%	124	384	\$47,554	[b]			
Well 28	242	4.3%	90	242	\$21,744	[a]	483 To Zone	3	0 To Zone 2
Well 1	163	2.9%	123	163	\$20,049	[c]			
Well 2	402	7.2%	123	402	\$49,446	[c]			
Well 3	0	0.0%	86	0	\$0				
Well 15	966	17.3%	86	966	\$83,076	[c]			
MVPS, SWP	2,000	35.8%	37	2,000	\$74,000	Assumed			
Gallery Well	0	0.0%	80	0	\$0	Limited by	y water right of 515 AF		
River Wells	715	12.8%	98	715	\$70,070	Assumed			
	5,582	100.0%		5,582	\$475,774				
Zone 1 to Zone	2								
	1,979	35.5%	40	1,979	\$79,160				
Zone 2 to Zone	e 3								
	533	9.5%	80	533	\$42,640				
5 2				Total	\$597,574	-S •			
				\$/AF	107	1			
		Av	erage Pun	ping Cost	\$622,478				
			U	\$/AF	112	,			
WTP B	Booster Pun	np Cost fro	m Hazen	& Sawyer	\$54,000)			
		•		\$/AF	10)			
			Extra Pun	nping Cost	\$29,096				
				\$/AF	5				
[_]	Deced on 2	00/ amonati							

Future Energy Cost Complete Option E-P (Alt 1-4, 5-1, 6-1, 6-2, 6-4) and E-C (Alt 1-2, 1-4, 1-5, 5-1, 6-1, 6-2, 6-4)

[a] Based on 20% operation per year

[b] Based on 20% operation per year and 25% flow reduction

[c] Based on 50% operation per year

Complete Option F - Alt 4-1 Cost Estimate

	Description	Quantity	Unit	U	nit Cost	ľ	tem Cost
[2]	Plpelines10 Immediately downstream of 6 cfs well field10 Immediately downstream of 6 cfs well field12 Immediately downstream of Mesa Verde10 Immediately downstream of Mesa Verde12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps12 Zone 1 main line from Mesa Verde to Refugio Booster Pumps12 Relocation Zone 1 meters to Zone 2Relocation Zone 1 meters to Zone 2Relocation Zone 2 meter to Zone 38 Immediately downsteram of new booster @ Zone 1 Tank	500 2,000 400 1,800 1,600 1,500 1,500 1,300 1,000 1 1 1 600	LF F F F F F F S S F	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	130 130 150 150 150 150 150 10,000 5,000 110	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1,590,000 65,000 60,000 234,000 120,000 240,000 225,000 195,000 110,000 5,000 66,000
[3]	<u>Control Valves</u> Booster Pump (1,250 gpm, 60 hp) at Zone 1 Tank Booster Pump (10 gpm) Luma Yucca Rd 8-inch valves 10-inch valves 12-inch valves Blowoff valve assembly with valve box Air/vacuum and air relaease valve with valve box	1 4 6 10 10 10	LS LS Each Each Each Each Each	\$ \$ \$ \$ \$ \$ \$	10,000 2,000 1,500 2,000 2,500 5,000 5,000	\$\$\$\$\$\$	155,000 10,000 2,000 6,000 12,000 25,000 50,000 50,000
[5]	<u>Pump Stations</u> Booster Pump (1,250 gpm, 60 hp) at Zone 1 Tank Install new pump at Refugio-2 (1,500 gpm, 100 hp) Booster Pump (10 gpm) 17.1 to 60 psi	75 75 1	Hp Hp Hp	\$ \$ \$	1,600 600 15,000	\$ \$ \$ \$	180,000 120,000 45,000 15,000
[6]	<u>Electrical Controls</u> Booster Pump (1,250 gpm, 60 hp) at Zone 1 Tank Refugio-2 upgrade to larger 100 hp pump Booster Pump (10 gpm)	1 1 1	LS LS LS	\$ \$ \$	40,000 10,000 5,000	\$ \$ \$ \$	55,000 40,000 10,000 5,000
[7]	SCADA System SCADA Connection, components, operations for new booster, Z1	1	LS	\$	25,000	\$ \$	25,000 25,000
[9]	<u>Electrical Power Facilities</u> Booster Pump (1,250 gpm, 60 hp) at Zone 1 Tank Booster Pump (10 gpm)	1 1	LS LS	\$ \$	20,000 10,000	\$ \$	30,000 20,000 10,000
[10]	Land and Right of Ways Acquire 50' by 50' of Land and permitting Acquire 20' by 20' of Land and permitting	1	LS LS	\$ \$ To	200,000 <u>30,000</u> tal	\$\$ \$ \$ \$	230,000 200,000 <u>30,000</u> 2,265,000

A	verage		2013	Average	Average	
Water Supply	AF	Percent	\$/AF	AF	\$	Notes
Upland Wells	1,100	19.7%				
Upland Wells in o	operation	for Alterna	tive 4			
Well 5	324		140	324	\$45,360	[a]
Well 6	388		225	388	\$87,300	[a]
Well 24	388		210	388	\$81,480	[a]
MVPS, SWP	2,500	44.8%	37	2,500	\$92,500	[b]
River Wells	1,982	35.5%	90	1,982	\$178,380	
	5,582	100.0%		5,582	\$485,020	
Zone 1 to Zone 2						
	3,769	67.5%	40	3,769	\$150,760	
Zone 2 to Zone 3						
	633	11.3%	80	633	\$50,640	
				Total	\$686,420	•
				\$/AF	123	
		Ave	erage Pum	ping Cost	\$622,478	
				\$/AF	112	
]	Extra Pum	ping Cost	\$63,942	
				\$/AF	11	

Future Energy Cost Alternative 4-1

[a] Based on 80% operation per year[b] Based on approximate 2013 water use (rounded)

Complete Option G - Alt 1-2, 1-5, 2-1, and 6-4 Cost Estimate

	Description	Quantity	Unit	U	nit Cost	ľ	tem Cost
[2]	Pipelines					\$	14,343,000
11	8 -inch pipelines	73,900	LF	\$	100	\$	7,390,000
		18,000	LF	\$	130	Ŝ	2.340.000
	12 - inch pipelines	24,000	LE	ŝ	150	Ś	3,600,000
	12 - Inch pipelines	1 500	LE	ŝ	200	Ŝ	300.000
	Polosetica Zaza 2 materita Zaza 2	1,000	19	ě	5 000	ŝ	5 000
	Relocation Zone Z meter to Zone 3	200		ě	120	é	26,000
	10 pipeline near well 7 in Zone 3	200		÷	110	φ	44,000
	8 pipeline parallel in Zone 3	400			110	φ.	44,000
	8 pipeline from well 24 to well 7	2,300		\$	110	ð,	253,000
	8 pipeline from well 5 to well 25	3,500	LF	\$	110	\$	385,000
							4 000 000
[3]	Control Valves			_		\$	1,000,000
	Gallery well hydropneumatic tank valves	1	LS	\$	5,000	\$	5,000
	100,000 gallon tank valves	1	LS	\$	10,000	\$	10,000
	Zone 2 to Zone 3 Booster Pump @ Alamo Pintado (785 gpm)	1	LS	\$	10,000	\$	10,000
	Valves at Well 24	1	LS	\$	10,000	\$	10,000
	Valves at Well 7	1	LS	\$	10,000	\$	10,000
	12-inch inline blending static mixer for wells 7 and 24	1	LS	\$	10,000	\$	10,000
	Valves at Well 25	1	LS	\$	10,000	\$	10,000
	Valves at Well 5	1	LS	\$	10,000	\$	10,000
	12-inch inline blending static mixer for wells 5 and 25	1	LS	\$	10,000	\$	10,000
	4-inch pressure reducing valves connection to existing system	6	Each	\$	10,000	\$	60,000
	6 inch pressure reducing valves connection to existing system	4	Each	Š	15 000	ŝ	60,000
	6-inch pressure reducing valves connection to existing system	2	Fach	š	20,000	ŝ	40,000
	8-inch pressure reducing valves connection to existing system	2	Each	ě	26,000	ě	40,000
	10-inch pressure reducing valves connection to existing system	0	Each	- P	20,000	φ.	
	12-inch pressure reducing valves connection to existing system	0	Each	\$	30,000	ф Ф	2.42
	4-inch pressure reducing valves Zone 2 to Zone 1	0	Each	\$	10,000	\$	
	8-inch valves	41	Each	\$	1,500	\$	61,500
	10-inch valves	9	Each	\$	2,000	\$	18,000
	12-inch valves	12	Each	\$	2,500	\$	30,000
	16-inch valves	1	Each	\$	3,500	\$	3,500
	Booster Pump (10 gpm)	1	LS	\$	2,000	\$	2,000
	Blowoff valve assembly with valve box	65	Each	\$	5,000	\$	325,000
	Air/vacuum and air relaease valve with valve box	61	Each	Ś	5.000	\$	305.000
	Miell #3 connection to separate irrigation system	1	IS	ŝ	10,000	Ś	10.000
	Weil #5 connection to separate inigation system	•	20	*			
141	M. 1.					¢	340 000
[4]	Ianks	241	10	¢	110.000	ě	110,000
	15,000 hydropheumatic tank at Gallery Well			- P	000,001	Ψ e	80,000
	10,000 hydropneumatic tank at Alamo Pintado booster pump	1	10	Þ	00,000	φ.	450,000
	100,000 gallon tank at Zone 2 existing tank site	1	LS	\$	150,000	Ф	150,000
[5]	Pump Stations					Ş	113,000
	Zone 2 to Zone 3 Booster Pump @ Alamo Pintado (785 gpm) 50 hp	1	LS	\$	50,000	\$	50,000
	Booster Pump (10 gpm) 17.6 to 60 psi	1.0	Hp	\$	15,000	\$	15,000
	Well #3 pump and motor 600 gpm 75 hp	1	LS	\$	48,000	\$	48,000
161	Electrical Controls					\$	50,000
fol	Gallery Well presure tank	1	1.5	\$	5 000	ŝ	5 000
	Baastar Rump (10 gpm)	1	15	ŝ	5,000	¢	5,000
	Zana 2 ta Zana 2 Baastar Dumn @ Alama Bintada (25 bn)	1	1.5	Ψ	40,000	é	40,000
	Zone z to zone s Booster Pump @ Alamo Pintado (25 hp)	1	10	φ	40,000	Ψ	40,000
						¢	75 000
[7]	SCADA System						75,000
	SCADA Connection, components, operations at new Zone 2 tank	1	LS	\$	25,000	\$	25,000
	SCADA Connection, components, operations at new Zone 3 booster	1	LS	\$	25,000	\$	25,000
	SCADA Connection, components, operations at Gallery well	1	LS	\$	25,000	\$	25,000
[8]	Water Treatment					\$	120,000
	Well #3 cleaning and development	1	LS	\$	20,000	\$	20,000
	Install packer in well 27	1	LS	•	\$100,000	Ś	100,000
			~-			•	
[0]	Float-inal Downs Excilition					\$	25.000
fal	Zana 2 to Zana 2 Resister Dump @ Alama Bistado (25 hp)	4	19	¢	15 000	ŝ	15,000
	Zone z to Zone 3 Booster Pump @ Alamo Pintado (25 mp)	1	10	ф ф	10,000	φ ¢	10,000
	Booster Pump (10 gpm)		L3	φ	10,000	φ	10,000
							E90 000
[10	Land and Right of Ways					\$	630,000
	Acquire 50' by 50' of land and permitting for Zone 3 booster	1	LS	\$	250,000	\$	250,000
	Acquire 20' by 20' of Land and permitting	1	LS	\$	30,000	\$	30,000
_	Acquire 50' by 50' of land and permitting for Gallery well tank	1	<u>LŞ</u>	_\$	250,000	\$	250,000
				T	otal	\$	16,595,000
						٠	

I:\DATA\2492\Analyses\Cost EstImates\Complete Option G Cost Estimate 06-09-2014

	Average		2013	Average	Average			
Water Supply	AF	Percent	\$/AF	AF	\$	Notes	Water Use	
Upland Wells	4,067	72.9%				Z2 & 3		
	1,515					Z1	736	
	2,823					Z2	3,115	
	1,731					Z3	1,731	
Wells and Pump	os in opera	tion for Co	mplete O	ption G			5,582	
Well 5	142	2.5%	140	142	\$19,845	[a]		
Well 6	170	3.0%	225	170	\$38,194	[a]		
Well 7	368	6.6%	153	368	\$56,281	[a]		
Well 24	170	3.0%	210	170	\$35,648	[a]		
Well 25	395	7.1%	107	395	\$42,244	· [a]		
Well 27	384	6.9%	124	384	\$47,554	[b]	0 To Zone 3	384 To Zone 2
Well 28	423	7.6%	90	423	\$38,052	[a]		
Well 1	163	2.9%	123	163	\$20,049	[c]		
Well 2	402	7.2%	123	402	\$49,446	[c]		
Well 3	486	8.7%	86	486	\$41,796	[c]		
Well 15	966	17.3%	86	966	\$83,076	[c]		
MVPS, SWP	915	16.4%	37	915	\$33,855	Assumed		
Gallery Well	300	5.4%	80	300	\$24,000	Limited by	y water right of 515 AF	
River Wells	300	5.4%	91	300	\$27,300	Assumed		
	5,582	100.0%		5,582	\$557,339	=)		
Zone 1 to Zone	2							
	779	14.0%	40	779	\$31,160)		
Zone 2 to Zone	3							
	487	8.7%	80	487	\$38,960)		
=				Total	\$627,459	=)		
				\$/AF	112	2		
		Ave	erage Pun	nping Cost	\$622,478	3		
			0	\$/AF	112	2		
ŴTP B	ooster Pun	np Cost fro	m Hazen	& Sawyer	\$0)		
		1		\$/AF	()		
			Extra Pun	nping Cost	\$4,981	Ĺ		
				\$/AF	. 1	l		
[a]]	Based on 3	5% operati	on per ve	ar				

Future Energy Cost Complete Option G (Alt 1-2, 1-5, 2-1, 6-4)

[a] Based on 35% operation per year[b] Based on 25% operation per year and 25% flow reduction

[c] Based on 50% operation per year

Complete Option H - Alt 1-2, 1-5, 6-3, and 6-4 Cost Estimate

÷.

	Description	Quantity		Unit Cost		Item Cost	
[2]	Pipelines 8 -inch pipelines in Zone 1 10 - inch pipelines in Zone 1 Relocation Zone 2 meter to Zone 3 8 pipeline relocation Zone 1 meter to Zone 2 8 pipeline parallel in Zone 3 8 pipeline from well 24 to well 7 8 pipeline from well 5 to well 25	1,400 3,900 1 1,200 200 2,500 3,500	LF LS LF LF LF	\$ \$ \$ \$ \$ \$	100 130 5,000 110 110 110 110	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$	1,466,000 140,000 507,000 5,000 132,000 22,000 275,000 385,000
[3]	Control Valves Valves at Well 24 Valves at Well 7 12-inch inline blending static mixer for wells 7 and 24 Valves at Well 25 Valves at Well 5 12-inch inline blending static mixer for wells 5 and 25 8-inch valves 10-inch valves Booster Pump (10 gpm) Blowoff valve assembly with valve box Air/vacuum and air relaease valve with valve box	1 1 1 1 6 2 1 8 8	LS LS LS LS Each LS Each LS Each Each	\$\$\$\$\$\$ \$\$\$\$	10,000 10,000 10,000 10,000 10,000 1,500 2,000 2,000 5,000 5,000	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	155,000 10,000 10,000 10,000 10,000 10,000 9,000 4,000 40,000 40,000
[4]	Tanks					\$	X
[5]	Pump Stations Booster Pump (10 gpm) 17.1 to 60 psi	1.0	Hp	\$	15,000	\$ \$	15,000 15,000
[6]	Electrical Controls Booster Pump (10 gpm)	1	LS	\$	5,000	\$ \$	5,000 5,000
[7]	SCADA Şystem					\$	
[8]	<u>Water Treatment</u> Install packer in well 27 Install packer in well 28	1 1	LS LS	\$ \$	100,000 100,000	\$ \$	200,000 100,000 100,000
[9]	Electrical Power Facilities Booster Pump (10 gpm)	1	LS	\$	10,000	\$ \$	10,000 10,000
[10]	Acquire 20' by 20' of Land and permitting	11	LS	\$	30,000	\$ \$	30,000 30,000
				ſO	tal	\$	1,000,000

÷1

	Average		2013	Average	Average			
Water Supply	AF	Percent	\$/AF	AF	\$	Notes	Water Use	
Upland Wells	2,235	40.0%				Z2 & 3		
	3,347					Z1	736	
	1,169					Z2	3,115	
	1,731					Z3	1,731	
Wells and Pump	ps in operat	tion for Co	mplete Oj	ption H			5,582	
Well 5	122	2.2%	140	122	\$17,010	[a]		
Well 6	146	2.6%	225	146	\$32,738	[a]		
Well 7	315	5.6%	153	315	\$48,241	[a]		
Well 24	146	2.6%	210	146	\$30,555	[a]		
Well 25	338	6.1%	107	338	\$36,209	[a]		
Well 27	767	13.7%	124	767	\$95,108	[b]	0 To Zone 3	767 To Zone 2
Well 28	402	7.2%	90	402	\$36,180	[b]		
Well 1	0	0.0%	123	0	\$0			
Well 2	0	0.0%	123	0	\$0			
Well 3	0	0.0%	86	0	\$0			
Well 15	0	0.0%	86	0	\$0			
MVPS, SWP	2,000	35.8%	37	2,000	\$74,000	Assumed		
Gallery Well	0	0.0%	80	0	\$0	Limited by	y water right of 515 AF	
River Wells	1,347	24.1%	94	1,347	\$126,618	Assumed		
	5,582	100.0%		5,582	\$496,658	•		
Zone 1 to Zone	2							
	2,611	46.8%	40	2,611	\$104,440			
Zone 2 to Zone	3							
	665	11.9%	80	665	\$53,200	2		
.=				Total	\$654,298	•		
				\$/AF	117			
Average Pumping Cost								
\$/AF					112			
WTP Booster Pump Cost from Hazen & Sawyer \$/AF Extra Pumping Cost						1		
						I		
						I		
				\$/AF	6			
[a]]	Based on 30	0% operati	on per yea	ar				

Future Energy Cost Complete Option H (Alt 1-2, 1-5, 6-3, 6-4)

[b] Based on 50% operation per year and 25% flow reduction

Attachment E

Complete Option A Proposed Solutions, Maximum Hour Demand (14,175 gpm)

ID1 Hydraulic Model-OptA V2.wtg

6/6/2014

I:\DATA\2492\Hydraulic Model\Complete Options

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Complete Option B Proposed Solutions, Maximum Hour Demand (14,175 gpm)

ID1 Hydraulic Model-OptB V2.wtg

6/9/2014

I:\DATA\2492\Hydraulic Model\Complete Options

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Complete Option C Proposed Solutions, Maximum Hour Demand (14,175 gpm)

ID1 Hydraulic Model-Opt C.wtg

6/6/2014

I:\DATA\2492\Hydraulic Model\Complete Options

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

WELL-25 1,045 gpm Color Coding Legend Zone-3 Tanks Pipe: Velocity (ft/s) -820 gpm WELL-24 7 278 gpm Color Coding Legend Junction: Pressure (psi) 4.0 <= WELL-05 5.0 <= WELL-07 229 gpm <= 0.0 1,037 gpm 6.0 <-10.0 <= 25.0 <= 8.0 45.0 <= 10.0 <= 100.0 <= <= 150.0 12.0 <= Other WELL-06 Other 300 gpm Zone-2 Tank 2,579 gpm AP-1 1,711 gpm 7 Z3 Pump Z2 Pump 620 gpm 1,380 gpm WELL-27 1,250 gpm WELL-28 750 gpm WELL-15 1,200 gpm WELL-01 200 gpm WELL-02 500 gpm <u>2</u>4.8 pş/i Pro. Pump at ID1 Shop Site 1,900 gpm REF2-2 Zone-1 Tank 986 gpm 612 gpm Þ ML-1 1,584 gpm ML-3 1,561 gpm MV-1 1,203 gpm

Complete Option D Proposed Solutions, Maximum Hour Demand (14,175 gpm)

WELL-09

MV-3

ID1 Hydraulic Model-Opt D.wtg

5/21/2014

I:\DATA\2492\Hydraulic Model\Complete Options

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Complete Option D-C Proposed Solutions, Maximum Hour Demand (14,175 gpm)

ID1 Hydraulic Model-Opt D-C.wtg

5/21/2014

I:\DATA\2492\Hydraulic Model\Complete Options

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Complete Option D-P Proposed Solutions, Maximum Hour Demand (14,175 gpm)

ID1 Hydraulic Model-Opt D-P.wtg

5/21/2014

I:\DATA\2492\Hydraulic Model\Complete Options

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

ID1 Hydraulic Model-Opt E.wtg

5/22/2014

I:\DATA\2492\Hydraulic Model\Complete Options

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

ID1 Hydraulic Model-Opt E-C.wtg

5/22/2014

I:\DATA\2492\Hydraulic Model\Complete Options

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Complete Option E-P Proposed Solutions, Maximum Hour Demand (14,175 gpm)

ID1 Hydraulic Model-Opt E-P v2.wtg

6/6/2014

I:\DATA\2492\Hydraulic Model\Complete Options

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
Complete Option F Proposed Solutions, Maximum Hour Demand (14,175 gpm)

ID1 Hydraulic Model-Opt FV2.wtg

6/10/2014

I:\DATA\2492\Hydraulic Model\Complete Options

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley WaterCAD V8i [08.11.00.30] Page 1 of 1

WELL-10 623 gpm

WELL-14 575 gpm 9

ID1 Hydraulic Model-Opt G.wtg

5/27/2014

I:\DATA\2492\Hydraulic Model\Complete Options

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley WaterCAD V8i [08.11.00.30] Page 1 of 1

WELL-25 700 gpm Zone-3 Tanks 411 gpm Color Coding Legend Pipe: Velocity (ft/s) WELL-24 283 gpm Color Coding Legend Junction: Pressure (psi) <= 4.0 WELL-07 WELL-05 <= 5.0 ⁹ 650 gpm 234 gpm <= 0.0 <= 6.0 10.0 <= <= 25.0 <= 8.0 45.0 <= <= 10.0 <= 100.0 <= 150.0 <= 12.0 WELL-06 Other 300 gpm Other Zone-2 Tank 2,791 gpm 7 WELL-27 AP-2 950 gpm 795 gpm 17.1 psi WELL-28 REFUGIO-3 500 gpm 🏓 1,028 gpm œ .4 pşí REF2-1 ML-1 1,151 gpm 1,520 gpm Zone-1 Tank Ā ML-3 676 gpm 4.3 ft/s 1,439 gpm 4.4 ft 4.1 ft/s ML-4 4.4 ft/s 4.2 ft/s 1,438 gpm 4.1 MV-3 912 gpm MV-1 MV-4 1,177 gpm

Complete Option H Proposed Solutions, Maximum Hour Demand (14,175 gpm)

ID1 Hydraulic Model-Opt H.wtg

6/9/2014

I:\DATA\2492\Hydraulic Model\Complete Options

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley WaterCAD V8i [08.11.00.30] Page 1 of 1 Attachment F

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Wells				
Upland	1	200	200	2
Upland	2	500	500	2
Upland	3	600	0	2
Upland	5	250	236	3
Upland	6	300	300	3
Upland	15	900	1,025	3
Upland	15	1,200	1,200	2
Upland	24	300	300	3
Upland	25	950	1,048	3
Upland	27	1,250	1,250	2/3
Opland	28 Subtatal (Unland)	750	/50	2/3
	Subiolai (Opiana)	7,200	0,009	
6 cfs well field	8	150	0	1
6 cfs well field	9	375	377	1
6 cfs well field	10	600	624	1
6 cfs well field	19	260	0	1
6 cfs well field	21	275	0	1
6 cfs well field	22	200	0	1
6 cfs well field	23	400	0	1
Subto	otal (6 cfs well field)	2,260	1,001	
4 cfs well field	12	600	0	1
4 cfs well field	14	600	593	1
4 cfs well field	17	375	0	1
4 cfs well field	18	200	0	1
Subto	otal (4 cfs well field)	1,775	593	-
Gallery Well		776	0	1
	Subtotal (Wells)	12.011	8.403	
	2	,	-,	
Mesa Verde Pump Station	n			
-	MV-1	1,200	1,203	1
	MV-2	1,145	0	1
	MV-3	885	921	1
	MV-4	865	921	1
	MV-5	1,105	0	1
	Subtotal(SWP)	5,200	3,045	
Т	otal (Wells + SWP)	17,211	11,448	

Complete Option A Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

Woll or Pump Name	Well or Bump No	Normal Flow	Model Flow	Pressure
Roostor Pumps (Existing)	Fullip No.	(gpm)	(gpm)	Lone
Alamo Pintado (AP)	1	1 800	1 711	3
Alamo I intado (AI)	1	750	1,711	3
	2	730	0	3
	A P Subtotal	31.061	1711	5
	AI Subiolui	51,001	1,/11	
Refugio-3 (REF-3)	NA	950	0	3
	Zone 3 Subtotal	32,011	1,711	
Refugio-2 (REF-2)	1	1,100	0	2
	2	500	612	2
	3	550	0	2
	REF-2 Subtotal	2,150	612	
Meadow Lark (ML)	1	1,500	1,584	2
	2	1,500	0	2
	3	1,500	1,561	2
	4	1,500	0	2
	ML Subtotal	6,000	3,145	
	Zone 2 Subtotal	8,150	3,757	
Booster Pumps (Proposed)	1			
Z2 Pump at Well 27 Site W	TP NA	1,380	1,380	2
Z3 Pump at Well 27 Site W	TP NA	620	620	3
Pump at 1D1 Shop Site WT	P NA	1,900	1,900	2

Complete Option A Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	882	1,258	-376
2	5,326	5,312	14
3	5,240	2,957	2,283
Total	11,448	9,527	1,921

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Wells		200	200	2
Upland	1	200	200	2
Upland	2	500	500	2
Upland	5	600 250	0	2
Upland	5	250	230	3
Upland	0 7	500	1 025	3
Upland	15	900	1,023	3
Upland	15	1,200	1,200	2
Upland	24	500 950	1 048	3
Upland	23	1 250	1,048	2/3
Upland	27	750	750	2/3
Opland	Subtotal (Upland)	7,200	<u> </u>	2/3
6 cfs well field	8	150	0	1
6 cfs well field	9	375	377	1
6 cfs well field	10	600	624	1
6 cfs well field	19	260	0	1
6 cfs well field	21	275	0	1
6 cfs well field	22	200	0	1
6 cfs well field	23	400	0	1
Subto	otal (6 cfs well field)	2,260	1,001	
4 cfs well field	12	600	0	1
4 cfs well field	14	600	593	1
4 cfs well field	17	375	0	1
4 cfs well field	18	200	0	1
Subto	otal (4 cfs well field)	1,775	593	
Gallery Well		776	0	1
	Subtotal (Wells)	12,011	8,403	
Mesa Verde Pump Statio	n			
	MV-1	1,200	1,203	1
	MV-2	1,145	0	1
	MV-3	885	921	1
	MV-4	865	921	1
	MV-5	1,105	0	1
	Subtotal(SWP)	5,200	3,045	
Т	otal (Wells + SWP)	17,211	11,448	

Complete Option B Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Booster Pumps (Existing)				
Alamo Pintado (AP)	1	1,800	1,711	3
	2	750	0	3
	3	900	0	3
	AP Subtotal	31,061	1,711	
Refugio-3 (REF-3)	NA	950	0	3
	Zone 3 Subtotal	32,011	1,711	
Refugio-2 (REF-2)	1	1,100	0	2
	2	500	612	2
	3	550	0	2
	REF-2 Subtotal	2,150	612	
Meadow Lark (ML)	1	1,500	1,584	2
	2	1,500	0	2
	3	1,500	1,561	2
	4	1,500	0	2
	ML Subtotal	6,000	3,145	
	Zone 2 Subtotal	8,150	3,757	
Booster Pumps (Proposed))			
Z2 Pump at Well 27 Site W	TP NA	1,380	1,380	2
Z3 Pump at Well 27 Site W	TP NA	620	620	3
Pump at 1D1 Shop Site WT	P NA	1,900	1,900	2

Complete Option B Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	882	1,258	-376
2	5,326	5,312	14
3	5,240	2,957	2,283
Total	11,448	9,527	1,921

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Wells		200	200	2
Upland	1	200	200	2
Upland	2	500	500	2
Upland	3 5	600 250	0	2
Upland	5	250	230	3
Upland	07	500	1 026	3
Upland	15	900	1,020	3
Upland	13	1,200	1,200	2
Upland	24	500 950	1 040	3
Upland	23	1 250	1,049	3
Upland	27	750	950 750	23
Opland	Subtotal (Upland)	7,200	6,511	5
6 cfs well field	8	150	0	1
6 cfs well field	9	375	0	1
6 cfs well field	10	600	630	1
6 cfs well field	19	260	0	1
6 cfs well field	21	275	0	1
6 cfs well field	22	200	0	1
6 cfs well field	23	400	0	1
Sub	total (6 cfs well field)	2,260	630	
4 cfs well field	12	600	0	1
4 cfs well field	14	600	600	1
4 cfs well field	17	375	0	1
4 cfs well field	18	200	0	1
Sub	total (4 cfs well field)	1,775	600	
Gallery Well		776	0	1
	Subtotal (Wells)	12,011	7,741	
Mesa Verde Pump Stati	on			
	MV-1	1,200	1,174	1
	MV-2	1,145	0	1
	MV-3	885	910	1
	MV-4	865	910	1
	MV-5	1,105	1,125	1
	Subtotal(SWP)	5,200	4,119	
	= Total (Wells + SWP)	17,211	11,860	

Complete Option C Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

Well or Pump Name	Well or Pump No	Normal Flow	Model Flow	Pressure
Booster Pumps (Existing)	1 ump 110.	(gpiii)	(gpiii)	Lonc
Alamo Pintado (AP)	1	1.800	0	3
	2	750	775	3
	3	900	0	3
	AP Subtotal	31,061	775	
Refugio-3 (REF-3)	NA	950	0	3
iteragio 5 (iter 5)	Zone 3 Subtotal	32,011	775	5
Refugio-2 (REF-2)	1	1,100	1,142	2
	2	500	0	2
	3	550	0	2
	REF-2 Subtotal	2,150	1,142	
Meadow Lark (ML)	1	1,500	1,575	2
	2	1,500	0	2
	3	1,500	1,545	2
	4	1,500	0	2
	ML Subtotal	6,000	3,120	
	Zone 2 Subtotal	8,150	4,262	
Booster Pumps (Proposed))			
Pump at Well 28 Site WTP	NA	1,500	1,500	3
Pump at 1D1 Shop Site WT	P NA	1,900	1,900	2

Complete Option C Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	1,087	1,258	-171
2	5,587	5,312	275
3	5,186	2,957	2,229
Total	11,860	9,527	2,333

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Wells				
Upland	1	200	200	2
Upland	2	500	500	2
Upland	3	600	0	2
Upland	5	250	229	3
Upland	6	300	300	3
Upland	/	900	1,037	3
Upland	15	1,200	1,200	2
Upland	24	300	2/8	3
Upland	25	950	1,045	3
Upland	27	1,250	1,250	2/3
Opland	28 Subtotal (Unland)	750	/50	2/3
	Subiolai (Opiana)	7,200	0,789	
6 cfs well field	8	150	0	1
6 cfs well field	9	375	377	1
6 cfs well field	10	600	624	1
6 cfs well field	19	260	0	1
6 cfs well field	21	275	0	1
6 cfs well field	22	200	0	1
6 cfs well field	23	400	0	1
Subtor	tal (6 cfs well field)	2,260	1,001	
4 cfs well field	12	600	0	1
4 cfs well field	14	600	593	1
4 cfs well field	17	375	0	1
4 cfs well field	18	200	0	1
Subto	tal (4 cfs well field)	1,775	593	-
Gallery Well		776	0	1
	Subtotal (Wells) =	12,011	8,383	
	(,	,-	-)	
Mesa Verde Pump Station	l			
-	MV-1	1,200	1,203	1
	MV-2	1,145	0	1
	MV-3	885	921	1
	MV-4	865	921	1
	MV-5	1,105	0	1
	Subtotal(SWP)	5,200	3,045	
Т		17,211	11,428	

Complete Option D Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

Woll or Pump Name	Well or Bump No	Normal Flow	Model Flow	Pressure
Roostor Pumps (Existing)	Fullip No.	(gpm)	(gpm)	Lone
Alamo Pintado (AP)	1	1 800	1 711	3
Alamo I intado (AI)	1	750	1,711	3
	2	730	0	3
	A P Subtotal	31.061	1711	5
	AI Subiolui	51,001	1,/11	
Refugio-3 (REF-3)	NA	950	0	3
	Zone 3 Subtotal	32,011	1,711	
Refugio-2 (REF-2)	1	1,100	0	2
	2	500	612	2
	3	550	0	2
	REF-2 Subtotal	2,150	612	
Meadow Lark (ML)	1	1,500	1,584	2
	2	1,500	0	2
	3	1,500	1,561	2
	4	1,500	0	2
	ML Subtotal	6,000	3,145	
	Zone 2 Subtotal	8,150	3,757	
Booster Pumps (Proposed)	1			
Z2 Pump at Well 27 Site W	TP NA	1,380	1,380	2
Z3 Pump at Well 27 Site W	TP NA	620	620	3
Pump at 1D1 Shop Site WT	P NA	1,900	1,900	2

Complete Option D Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	882	1,258	-376
2	5,326	5,312	14
3	5,220	2,957	2,263
Total	11,428	9,527	1,901

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Wells		200	200	2
Upland	1	200	200	2
Upland	2	500	500	2
Upland	5	600 250	0	2
Upland	5	250	232	3
Upland	0 7	500	500	3
Upland	15	900	1 200	3
Upland	13	1,200	1,200	2
Upland	24	300 950	219	3
Upland	23	1 250	1 250	2/3
Upland	27	750	750	2/3
Opland	Subtotal (Upland)	7,200	<u> </u>	2/3
6 cfs well field	8	150	0	1
6 cfs well field	9	375	377	1
6 cfs well field	10	600	624	1
6 cfs well field	19	260	0	1
6 cfs well field	21	275	0	1
6 cfs well field	22	200	0	1
6 cfs well field	23	400	0	1
Subto	otal (6 cfs well field)	2,260	1,001	
4 cfs well field	12	600	0	1
4 cfs well field	14	600	593	1
4 cfs well field	17	375	0	1
4 cfs well field	18	200	0	1
Subto	otal (4 cfs well field)	1,775	593	
Gallery Well		776	0	1
	Subtotal (Wells)	12,011	7,655	
Mesa Verde Pump Statio	n			
	MV-1	1,200	1,203	1
	MV-2	1,145	0	1
	MV-3	885	921	1
	MV-4	865	921	1
	MV-5	1,105	0	1
	Subtotal(SWP)	5,200	3,045	
Т		17,211	10,700	

Complete Option D-C Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

Wall or Pump Name	Well or Pump No	Normal Flow	Model Flow	Pressure
Booster Pumps (Existing)	1 ump 110.	(gpiii)	(gpiii)	Lone
Alamo Pintado (AP)	1	1 800	1 725	3
	2	750	1,720	3
	3	900	0	3
	AP Subtotal	31,061	1,725	U
		,	,	
Refugio-3 (REF-3)	NA	950	0	3
-	Zone 3 Subtotal	32,011	1,725	
	_	1.100		
Refugio-2 (REF-2)	1	1,100	0 612	2
	$\frac{2}{3}$	500	012	$\frac{2}{2}$
	REF-2 Subtotal	2,150	612	2
Meadow Lark (ML)	1	1,500	1,584	2
	2	1,500	0	2
	3	1,500	1,561	2
	4	1,500	0	2
	ML Subtotal	6,000	3,145	
	Zone 2 Subtotal	8,150	3,757	
Booster Pumps (Proposed))			
Z2 Pump at Well 27 Site W	TP NA	1,380	1,380	2
Z3 Pump at Well 27 Site W	TP NA	620	620	3
Pump at 1D1 Shop Site WT	P NA	1,900	1,900	2

Complete Option D-C Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	882	1,258	-376
2	5,312	5,312	0
3	4,506	2,957	1,549
Total	10,700	9,527	1,173

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Wells		200	200	2
Upland	1	200	200	2
Upland	2	500	500	2
Upland	3 5	600 250	0	2
Upland	5	230	237	3
Upland	07	500	500	3
Upland	15	900	1 200	3
Upland	13	1,200	1,200	2
Upland	24	500 950	300 700	3
Upland	23	1 250	1 250	2/3
Upland	27	1,230	1,230	2/3
Opialiu	Subtotal (Unland)	730	6 087	2/3
	Subiolai (Opialia)	7,200	0,007	
6 cfs well field	8	150	0	1
6 cfs well field	9	375	377	1
6 cfs well field	10	600	624	1
6 cfs well field	19	260	0	1
6 cfs well field	21	275	0	1
6 cfs well field	22	200	0	1
6 cfs well field	23	400	0	1
Subi	total (6 cfs well field)	2,260	1,001	
4 cfs well field	12	600	0	1
4 cfs well field	14	600	593	1
4 cfs well field	17	375	0	1
4 cfs well field	18	200	0	1
Subi	total (4 cfs well field)	1,775	593	
Gallery Well		776	0	1
	Subtotal (Wells)	12,011	7,681	
		,	,	
Mesa Verde Pump Stati	on			
	MV-1	1,200	1,203	1
	MV-2	1,145	0	1
	MV-3	885	921	1
	MV-4	865	921	1
	MV-5	1,105	0	1
	Subtotal(SWP)	5,200	3,045	
	= Total (Wells + SWP)	17,211	10,726	

Complete Option D-P Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

Well or Pump Name	Well or Pump No	Normal Flow	Model Flow	Pressure
Rooster Pumps (Existing)	1 ump 110.	(gpiii)	(gpiii)	Lonc
Alamo Pintado (AP)	1	1.800	1.723	3
	2	750	0	3
	3	900	0	3
	AP Subtotal	31,061	1,723	
Defusio 2 (DEE 2)	ΝA	050	0	2
Kelugio-5 (KEF-5)	Zone 3 Subtotal	32,011	1,723	5
Refugio-2 (REF-2)	1	1,100	0	2
	2	500	612	2
		330	(12)	Z
	KEF-2 Sudiotai	2,150	012	
Meadow Lark (ML)	1	1,500	1,584	2
	2	1,500	0	2
	3	1,500	1,561	2
	4	1,500	0	2
	ML Subtotal	6,000	3,145	
	Zone 2 Subtotal	8,150	3,757	
Booster Pumps (Proposed)	•			
Z2 Pump at Well 27 Site W	ΓΡ ΝΑ	1,380	1,380	2
Z3 Pump at Well 27 Site W	ΓΡ ΝΑ	620	626	3
Pump at 1D1 Shop Site WT	P NA	1,900	1,900	2

Complete Option D-P Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	882	1,258	-376
2	5,314	5,312	2
3	4,536	2,957	1,579
Total	10,732	9,527	1,205

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Wells		• • • •	• • • •	-
Upland	l	200	200	2
Upland	2	500	500	2
Upland	3	600	0	2
Upland	5	250	229	3
Upland	0 7	300	300 1.026	3
Upland	15	900	1,030	3
Upland	15	1,200	1,200	2
Upland	24	500	1.046	3
Upland	23	930	1,040	3
Upland	27	1,230	930 750	2
Opialiu		730	<u> </u>	5
	Subibilit (Opiana)	7,200	0,470	
6 cfs well field	8	150	0	1
6 cfs well field	9	375	0	1
6 cfs well field	10	600	630	1
6 cfs well field	19	260	0	1
6 cfs well field	21	275	0	1
6 cfs well field	22	200	0	1
6 cfs well field	23	400	0	1
Subt	otal (6 cfs well field)	2,260	630	
4 cfs well field	12	600	0	1
4 cfs well field	14	600	600	1
4 cfs well field	17	375	0	1
4 cfs well field	18	200	0	1
Subt	otal (4 cfs well field)	1,775	600	
Gallery Well		776	0	1
	Subtotal (Wells)	12,011	7,720	
Mesa Verde Pump Static	on			
	MV-1	1,200	1,174	1
	MV-2	1,145	0	1
	MV-3	885	910	1
	MV-4	865	910	1
	MV-5	1,105	1,125	1
	Subtotal(SWP)	5,200	4,119	
	=			
7	Fotal (Wells + SWP)	17,211	11,839	

Complete Option E Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

Well or Pump Name	Well or Pump No	Normal Flow	Model Flow	Pressure
Booster Pumps (Existing)	1 ump 110.	(gpiii)	(gpiii)	Lonc
Alamo Pintado (AP)	1	1.800	0	3
,	2	750	775	3
	3	900	0	3
	AP Subtotal	31,061	775	
Refugio-3 (REF-3)	NA	950	0	3
	Zone 3 Subtotal	32,011	775	U
Refugio-2 (REF-2)	1	1,100	1,142	2
	2	500	0	2
	3	550	0	2
	REF-2 Subtotal	2,150	1,142	
Meadow Lark (ML)	1	1,500	1,575	2
	2	1,500	0	2
	3	1,500	1,545	2
	4	1,500	0	2
	ML Subtotal	6,000	3,120	
	Zone 2 Subtotal	8,150	4,262	
Booster Pumps (Proposed)				
Pump at Well 28 Site WTP	NA	1.500	1.500	3
Pump at 1D1 Shop Site WT	P NA	1,900	1,900	2

Complete Option E Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	1,087	1,258	-171
2	5,587	5,312	275
3	5,165	2,957	2,208
Total	11,839	9,527	2,312

Well on Doorse Norse	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Upland	1	200	200	2
Upland	2	200 500	200 500	2
Upland	3	600	0	$\frac{2}{2}$
Upland	5	250	232	3
Upland	6	300	300	3
Upland	7	900	650	3
Upland	15	1,200	1,200	2
Upland	24	300	284	3
Upland	25	950	700	3
Upland	27	1,250	950	2
Upland	28	750	750	3
	Subtotal (Upland)	7,200	5,766	
6 of a wall field	Q	150	0	1
6 cfs well field	8	150	0	1
6 of swell field	9	575	630	1
6 cfs well field	10	260	030	1
6 cfs well field	21	200	0	1
6 cfs well field	21	200	0	1
6 cfs well field	22	400	0	1
Subto	otal (6 cfs well field)	2,260	630	1
		,		
4 cfs well field	12	600	0	1
4 cfs well field	14	600	600	1
4 cfs well field	17	375	0	1
4 cfs well field	18	200	0	1
Subto	otal (4 cfs well field)	1,775	600	
Gallery Well		776	0	1
	Subtotal (Wells)	12,011	6,996	
Mesa Verde Pump Station	n			
	MV-1	1,200	1,174	1
	MV-2	1,145	0	1
	MV-3	885	910	1
	MV-4	865	910	1
	MV-5	1,105	1,125	1
	Subtotal(SWP)	5,200	4,119	
Т	otal (Wells + SWP)	17,211	11,115	

Complete Option E-C Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

Well or Pump Name	Well or Pump No.	Normal Flow (gpm)	Model Flow (gpm)	Pressure Zone
Booster Pumps (Existing)		(81)	(81)	
Alamo Pintado (AP)	1	1,800	0	3
	2	750	780	3
	3	900	0	3
	AP Subtotal	31,061	780	
Refugio-3 (REF-3)	NA	950	0	3
	Zone 3 Subtotal	32,011	780	
Refugio-2 (REF-2)	1	1,100	1,142	2
	2	500	0	2
	3	550	0	2
	REF-2 Subtotal	2,150	1,142	
Meadow Lark (ML)	1	1,500	1,575	2
	2	1,500	0	2
	3	1,500	1,545	2
	4	1,500	0	2
	ML Subtotal	6,000	3,120	
	Zone 2 Subtotal	8,150	4,262	
Booster Pumps (Proposed)				
Dump at Wall 28 Site WTD	ΝA	1 500	1 500	3
Pump at 1D1 Shop Site WTP		1,500	1,300	3
rump at 1D1 Snop Site W1	r NA	1,900	1,900	2

Complete Option E-C Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	1,087	1,258	-171
2	5,582	5,312	270
3	4,446	2,957	1,489
Total	11,115	9,527	1,588

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Wells				
Upland	1	200	200	2
Upland	2	500	500	2
Upland	3	600	0	2
Upland	5	250	238	3
Upland	6	300	300	3
Upland	7	900	650	3
Upland	15	1,200	1,200	2
Upland	24	300	300	3
Upland	25	950	700	3
Upland	27	1,250	950	2
Upland	28 -	750	750	3
	Subtotal (Upland)	7,200	5,788	
6 cfs well field	8	150	0	1
6 cfs well field	9	375	0	1
6 cfs well field	10	600	630	1
6 cfs well field	19	260	0	1
6 cfs well field	21	275	0	1
6 cfs well field	22	200	0	1
6 cfs well field	23	400	0	1
Subtot	al (6 cfs well field)	2,260	630	
4 cfs well field	12	600	0	1
4 cfs well field	14	600	600	1
4 cfs well field	17	375	0	1
4 cfs well field	18 _	200	0	1
Subtot	al (4 cfs well field)	1,775	600	
Gallery Well		776	0	1
	Subtotal (Wells)	12,011	7,018	
Mesa Verde Pump Station				
	MV-1	1,200	1,174	1
	MV-2	1,145	0	1
	MV-3	885	910	1
	MV-4	865	910	1
	MV-5	1,105	1,125	1
	Subtotal(SWP)	5,200	4,119	
Το	tal (Wells + SWP)	17.211	11.137	

Complete Option E-P Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

Well or Pump Name	Well or Pump No	Normal Flow	Model Flow	Pressure Zone
Booster Pumps (Existing)	1 ump 110.	(gpiii)	(gpm)	Zone
Alamo Pintado (AP)	1	1,800	0	3
	2	750	780	3
	3	900	0	3
	AP Subtotal	31,061	780	
Refugio-3 (REF-3)	NA	950	0	3
	Zone 3 Subtotal	32,011	780	
Refugio-2 (REF-2)	1	1,100	0	2
-	2	500	780	2
	3	550	0	2
	REF-2 Subtotal	2,150	780	
Meadow Lark (ML)	1	1,500	1,587	2
	2	1,500	0	2
	3	1,500	1,568	2
	4	1,500	0	2
	ML Subtotal	6,000	3,155	
	Zone 2 Subtotal	8,150	3,935	
Booster Pumps (Proposed))			
Pump at Well 28 Site WTP	NA	1.500	1.500	3
Pump at 1D1 Shop Site WT	P NA	1,900	1,900	2

Complete Option E-P Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	1,414	1,258	156
2	5,255	5,312	-57
3	4,468	2,957	1,511
Total	11,137	9,527	1,610

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Wells				
Upland	1	200	0	2
Upland	2	500	0	2
Upland	3	600	0	2
Upland	5	250	241	3
Upland	6	300	300	3
Upland	7	900	0	3
Upland	15	1,200	0	2
Upland	24	300	300	3
Upland	25	950	0	3
Upland	27	1,250	0	2
Upland	28 _	750	0	2
	Subtotal (Upland)	7,200	841	
6 of wall field	8	150	150	1
6 of well field	0	275	276	1
6 of well field	9	575	570	1
6 of well field	10	260	011 267	1
6 of a well field	19	200	207	1
6 of a well field	21	273	290	1
6 of a well field	22	200	219	1
o cis well field		2 260	2 2 2 5	1
Sub	ioiai (o cjs weli jiela)	2,200	2,525	
4 cfs well field	12	600	0	1
4 cfs well field	14	600	591	1
4 cfs well field	17	375	365	1
4 cfs well field	18	200	189	1
Sub	ototal (4 cfs well field)	1,775	1,145	
Gallery Well		776	0	1
	Subtotal (Wells)	12,011	4,311	
Mesa Verde Pump Stat	ion			
	MV-1	1,200	1,164	1
	MV-2	1,145	1,138	1
	MV-3	885	907	1
	MV-4	865	907	1
	MV-5	1,105	1,120	1
	Subtotal(SWP)	5,200	5,236	
	Total (Walls + SWP)	17 311	0 547	
	10tal (Wells + SWP)	1/,411	9,34/	

Complete Option F Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

Well or Pump Name	Well or Pump No.	Normal Flow (gpm)	Model Flow (gpm)	Pressure Zone
Booster Pumps (Existing)		(81)	(81)	
Alamo Pintado (AP)	1	1,800	1,737	3
	2	750	0	3
	3	900	0	3
	AP Subtotal	31,061	1,737	
Refugio-3 (REF-3)	NA	950	1,014	3
	Zone 3 Subtotal	32,011	2,751	
Refugio-2 (REF-2)	1	1,100	0	2
	2	500	0	2
	3	550	0	2
	REF-2 Subtotal	2,150	0	
Meadow Lark (ML)	1	1,500	1,521	2
	2	1,500	0	2
	3	1,500	1,442	2
	4	1,500	1,441	2
	ML Subtotal	6,000	4,404	
	Zone 2 Subtotal	8,150	4,404	
Booster Pumps (Proposed)				
Pump at RefigoPump Statio	n NA	1 500	1 502	2
Pump at Zone 1 Tank	NA	1,300	1,302	2

Complete Option F Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	1,549	1,258	291
2	4,406	5,312	-906
3	3,592	2,957	635
Total	9,547	9,527	20

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Na	me Pump No.	(gpm)	(gpm)	Zone
Wells				
Upland	1	200	0	2
Upland	2	500	0	2
Upland	3	600	0	2
Upland	5	250	231	3
Upland	6	300	300	3
Upland	7	900	1,034	3
Upland	15	1,200	0	2
Upland	24	300	275	3
Upland	25	950	1,050	3
Upland	27	1,250	950	2
Upland	28	750	0	3
	Subtotal (Upland)	7,200	3,840	
6 cfs well field	8	150	0	1
6 cfs well field	9	375	377	1
6 cfs well field	10	600	623	1
6 cfs well field	19	260	0	1
6 cfs well field	21	275	0	1
6 cfs well field	22	200	0	1
6 cfs well field	23	400	0	1
	Subtotal (6 cfs well field)	2,260	1,000	
4 cfs well field	12	600	0	1
4 cfs well field	14	600	575	1
4 cfs well field	17	375	0	1
4 cfs well field	18	200	ů 0	1
i els wen nera	Subtotal (4 cfs well field)	1,775	575	1
Gallery Well		776	0	1
	Subtotal (Wells)	12,011	5,415	
Mesa Verde Pump	Station			
	MV-1	1,200	1,196	1
	MV-2	1,145	0	1
	MV-3	885	919	1
	MV-4	865	919	1
	MV-5	1,105	0	1
	Subtotal(SWP)	5,200	3,034	
	= Total (Wells + SWP)	17,211	8,449	

Complete Option G Proposed Solutions, Maximum Hour Demand (10, 103 gpm Potable Demand Only) Well and Pump Operation Summary

Well or Pump Name	Well or Pump No.	Normal Flow (gpm)	Model Flow (gpm)	Pressure Zone
Booster Pumps (Existing)				
Alamo Pintado (AP)	1	1,800	0	3
	2	750	798	3
	3	900	0	3
	AP Subtotal	31,061	798	
Refugio-3 (REF-3)	NA	950	0	3
	Zone 3 Subtotal	32,011	798	
Refugio-2 (REF-2)	1 2	1,100 500	1,172 0	2 2
	³ REF-2 Subtotal	2,150	1,172	2
Meadow Lark (ML)	1	1,500	1,626	2
	2	1,500	0	2
	3	1,500	1,644	2
	4	1,500	0	2
	ML Subtotal	6,000	3,270	
	Zone 2 Subtotal	8,150	4,442	

Complete Option G Proposed Solutions, Maximum Hour Demand (10, 103 gpm Potable Demand Only) Well and Pump Operation Summary

Comparison of Water Supply Pumping Capacity and Maximum Day Demand (MDD)

	Model		
Zone	Inflow (gpm)	MDD (gpm)	Surplus (+) / Deficit (-)
1*	167	0	167
2	4,594	4,536	58
3	3,688	2,581	1,107
Total	8,449	7,117	1,332

Note: * Zone 1 demand is mainly for irrigation use. To be

conservative on pipe velocities, potable demand is assumed to be zero in this model run.

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Wells				
Upland	1	200	0	2
Upland	2	500	0	2
Upland	3	600	0	2
Upland	5	250	234	3
Upland	6	300	300	3
Upland	/	900	650	3
Upland	15	1,200	0	2
Upland	24	300	283	3
Upland	25	950	/00	3
Upland	27	1,250	950	2
Opland		750	2 617	2
	Subiolai (Opiana)	7,200	5,017	
6 cfs well field	8	150	0	1
6 cfs well field	9	375	376	1
6 cfs well field	10	600	615	1
6 cfs well field	19	260	0	1
6 cfs well field	21	275	0	1
6 cfs well field	22	200	0	1
6 cfs well field	23	400	407	1
Subte	otal (6 cfs well field)	2,260	1,398	
	10	600	0	
4 cfs well field	12	600	0	l
4 cfs well field	14	600	596	l
4 cfs well field	1/	3/5	368	1
4 cfs well field		200	191	1
Subte	stal (4 cjs well jiela)	1,775	1,155	
Gallery Well		776	0	1
	Subtotal (Wells)	12,011	6.170	
	(, -	-, -	
Mesa Verde Pump Statio	n			
_	MV-1	1,200	1,177	1
	MV-2	1,145	0	1
	MV-3	885	912	1
	MV-4	865	912	1
	MV-5	1,105	1,127	1
	Subtotal(SWP)	5,200	4,128	
	=			
1	Cotal (Wells + SWP)	17,211	10,298	

Complete Option H Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Well or	Normal Flow	Model Flow	Pressure
Well or Pump Name	Pump No.	(gpm)	(gpm)	Zone
Booster Pumps (Existing)				
Alamo Pintado (AP)	1	1,800	0	3
	2	750	795	3
	3	900	0	3
	AP Subtotal	31,061	795	
Refugio-3 (REF-3)	NA	950	1.028	3
	Zone 3 Subtotal	32,011	1,823	-
Refugio-2 (REF-2)	1	1,100	1,151	2
	2	500	0	2
	3	550	0	2
	REF-2 Subtotal	2,150	1,151	
Meadow Lark (ML)	1	1,500	1,520	2
	2	1,500	0	2
	3	1,500	1,439	2
	4	1,500	1,438	2
	ML Subtotal	6,000	4,397	
	Zone 2 Subtotal	8,150	5,548	

Complete Option H Proposed Solutions, Maximum Hour Demand (14,175 gpm) Well and Pump Operation Summary

	Model		
	Inflow		Surplus (+) /
Zone	(gpm)	MDD (gpm)	Deficit (-)
1	1,133	1,258	-125
2	5,175	5,312	-137
3	3,990	2,957	1,033
Total	10,298	9,527	771

8.0 REFERENCES

- American Water Works Association, 2003, *Water Transmission and Distribution*, 3d ed, Denver: AWWA
- American Water Works Association, 2004, *Sizing Water Service Lines and Meters, Manual M22,* 2d ed., Denver: AWWA
- American Water Works Association, 2005, *Computer Modeling of Distribution Systems, Manual M32*, 2d ed., Denver: AWWA
- American Water Works Association, 2006, *Installation, Field Testing, and Maintenance of Fire Hydrants (M17)*, 4th Edition, Denver: AWWA
- Department of Health Services, November 12, 2004, "Waterworks Standards", Title 22 <u>California Code of Regulations</u>, Section 64566, System Pressure
- Finnemore, E. John, and Joseph B. Franzini, 2002, *Fluid Mechanics with Engineering Applications*, 10th ed., New York: McGraw Hill, Inc.
- Gupta, Ram S., 2001, Hydrology and Hydraulic Systems, Illinois: Waveland Press, Inc.
- Karassik, Igor, 2001, et al. Pump Handbook, 3d ed, New York: McGraw Hill, Inc.
- Mays, Larry, 1999, Hydraulic Design Handbook, New York: McGraw Hill, Inc.
- Mays, Larry, 2000, Water Distribution Systems Handbook, New York: McGraw Hill, Inc.
- Sanks, Robert L., 1998, et al. Pumping Station Design, 2d ed., Woburn: Butterworth-Heinemann

APPENDIX D

Dudek Well Profile Report

DRAFT

Santa Ynez River Water Conservation District ID No. 1 Hexavalent Chromium MCL Compliance Santa Ynez Upland Groundwater Basin Well Profiling

Technical Memorandum

Prepared By

September 15, 2014

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

<u>SE</u>	PAGE NO.					
1	Purp	ose		1		
2	Back	ground		1		
3	Geolo	Geologic Setting2				
4	Hydrogeological Setting					
5	Methods			3		
5	5.1 Dynamic Flow			3		
	5.2	2 Ambient Temperature Surveys 4				
	5.3	5.3 Groundwater Chemistry				
6	Resu	lts	·	5		
	6.1	Well No	. 15	5		
		6.1.1	Location and Construction	5		
		6.1.2	Flow Profiles	5		
		6.1.3	Groundwater Chemistry	5		
	6.2	Well No	. 25	6		
		6.2.1	Location and Construction	6		
		6.2.2	Flow profile	6		
		6.2.3	Groundwater Chemistry	6		
	6.3	Well No	. 27	7		
		6.3.1	Location and Construction	7		
		6.3.2	Flow Profiles	7		
		6.3.3	Groundwater Chemistry	8		
	6.4	Well No	. 28	8		
		6.4.1	Location	8		
		6.4.2	Flow Profiles	8		
		6.4.3	Groundwater Chemistry	8		
7	Conclusions			9		
	7.1	Well No	. 15	9		
	7.2	Well No). 25	9		
	7.3	Well No). 27	10		
	7.4	Well No	. 28	10		
8	Recommendations					
9	References11					

TABLES

Table 1 Upland Wells Historical Cr(VI) Concentrations

ID No. 1

FIGURES

Figure 1 Upland Groundwater Basin Map Figure 2 Upland Groundwater Basin Wellhead Cr(VI) Concentrations Map Figure 3 Geologic Map Figure 4 Watershed Map Figure 5 Down-Hole Temperature, Resistivity, Flow, and Chromium Data from Well 15 Figure 6 Down-Hole Temperature, Resistivity, Flow, and Chromium Data from Well 25 Figure 7 Down-Hole Temperature, Resistivity, Flow, and Chromium Data from Well 27 Figure 8 Down-Hole Temperature, Resistivity, Flow, and Chromium Data from Well 28

APPENDICIES

Appendix D1 BESST Inc. Report Well 15 Appendix D2 BESST Inc. Report Well 25

Appendix D3 Pacific Surveys Data Well 27

Appendix D4 BESST Inc. Report Well 28

Appendix D5 Eaton Analytical Laboratory Reports

Appendix D6 Ambient Pressure and Temperature Down-Well Surveys

ACRONYM	MEANING
А	interval between i and i+1
втос	below top of casing
с	concentration of given constituent
СДРН	California Department of Public Health
BGS	feet below the ground surface
GPM	gallons per minute
CR(VI)	hexavalent chromium
НР	horse power
1	first sample collection and flow measurement depth
l+1	second sample collection and flow measurement depth
ID NO.1	Improvement District No. 1
MCL	maximum contaminant level

ACRONYMS AND ABBREVIATIONS

ID No. 1	Draft Santa Ynez Upland Groundwater Basin Well Profiling
μG/L	micrograms per liter
PVC	polyvinyl chloride
Q	flow of water within the well (either as a volume per unit time, as velocity, or as a percent of total discharge)
R	radius
ID NO. 1	Santa Ynez River Water Conservation District Improvement District No. 1
TDS	total dissolved solids
USGS	U.S. Geological Survey
V	velocity

THIS PAGE INTENTIONALLY LEFT BLANK
TECHNICAL MEMORANDUM

Date:	September 15, 2014
Authors:	Trey Driscoll, PG, CHG
Review:	Steven Dickey, PG, CHG, CEG; Steven Stuart, PE; Jill Weinberger, PhD, PG
Subject:	Santa Ynez Upland Groundwater Basin Hexavalent Chromium Well Profiling

1 PURPOSE

This technical memorandum summarizes the profiling results of Santa Ynez River Water Conservation District Improvement District No. 1 (ID No.1) water supply wells No.15, No. 25, No. 27 and No. 28. These wells are impacted by naturally occurring hexavalent chromium (Cr(VI)) at concentrations that exceed or have the potential to exceed the newly adopted California Department of Public Health (CDPH) maximum contaminant level (MCL) of 10 micrograms per liter (μ g/L). The profiling was conducted to identify specific strata, or zones, that contribute Cr(VI) at concentrations above the MCL under pumping, or dynamic, conditions. Depth discrete samples were collected and analyzed for total chromium and Cr(IV). Additional profiling was conducted to understand the ambient flow conditions within the well casing under static, non-pumping, conditions. The results of the profiling were used to develop recommendations for treatment and/or well modifications that ID No. 1 may consider and implement to bring the water supply wells in compliance with the MCL.

2 BACKGROUND

ID No. 1 currently operates 9 groundwater wells, maintains an additional 2 groundwater wells on standby status and monitors 1 well in the Santa Ynez Upland Groundwater Basin (Upland Basin), generally located north of Santa Ynez, California, in the Alamo Pintado Creek Watershed (Figure 1). Of these 12 groundwater wells, 4 have historically and consistently exceeded the Cr(VI) MCL of 10 μ g/L (Table 1 and Figure 2).

Upland	Cr(VI) Concentrations (µg/L)			Wall Status
Well	Low	High	Average	vven Status
1	21		21	Stand-by
2	22	23	23	Operational
3	<10 ^a	12 ^a	11 ^a	Stand-by ^b
4	1.9		1.9	Monitoring ^c
5	0.7	1.1	0.8	Operational
6	0	0	0	Operational
7	2.1	10	8.4	Operational
15	25	25	25	Operational
24	1.3	3.1	3.1	Operational
25	8.4	9.3	9.3	Operational
27	6.9	11	11	Operational
28	8.7	8.9	8.9	Operational

Table 1 Upland Wells Historical Cr(VI) Concentrations

a. Results are for total chromium

b. Well 3 is currently offline due to elevated nitrate concentrations.

c. Well 4 is not viable for production and is only used as a monitoring well. Boldface type denotes exceedance of the Cr(VI) MCL of 10 µg/L.

Note: All samples were not analyzed using the same analytical method. These data are provided solely for historical context and should not be used for compliance monitoring purposes.

Chromium is a heavy metal and the 21st most abundant element on the planet (Helmenstine 2014). Chromium can be found in two anion forms, trivalent chromium ((Cr(III)) and Cr(VI). Naturally occurring chromium is found in chromium rich iron oxides, which are most abundant in mafic igneous rocks and older volcanic rocks (Ernst 2012). Often these formations are found along tectonically active areas, such as California, which exposes these materials to weathering (Ernst 2012). Weathering of chromium-rich deposits leads to naturally high concentrations of chromium as both Cr(III) and Cr(VI) (Oze 2007).

Cr(VI) occurs naturally in the Upland Basin. This chromium has been weathered from ancient rocks of the San Rafael Mountains. The material has migrated down gradient into the Upland Basin. The source is likely the serpentine associated with the Franciscan complex and Mesozoic plutonic rocks in the San Rafael Mountains (Oze 2007) (Figures 1 and 2). ID No. 1 wells are typically screened across intervals of thinly bedded sands, gravels, and clays associated with the Paso Robles Formation, a poorly consolidated, heterogeneous, non-marine sedimentary deposit, that contains cobbles of the Mesozoic plutonic rocks (LaFreniere 1968). The heterogeneity of the Paso Robles Formation may influence the vertical distribution of Cr(VI) in the SYRCWD wells. If discrete zones of high Cr(VI) concentration exist within a well, it may be possible to re-engineer it to produce more water from intervals with lower Cr(VI) concentrations, thereby reducing the wellhead concentration below the MCL. The well profiling work described below documents the vertical distribution of flow, total chromium, and Cr(VI) within ID No. 1 wells No.15, No. 25, No. 27, and No. 28.

3 GEOLOGIC SETTING

The Upland Basin is a triangular-shaped 130-square-mile area that narrows to the east (Figure 3). The basin was created by faulting and uplift of the Transverse Ranges. To the south, the basin is bounded by the Santa Ynez River fault zone. To the north, the basin is bounded by the Little Pine Fault.

The surface of the Upland basin consists of a terraced upland underlain by poorly consolidated sedimentary deposits (Figure 3). The underlying deposits are of Tertiary (1.65 million to 63 million years) and Quaternary age (11,000 years to 1.65 million years). The basal unit of the Upland basin is the Careaga sand, a marine deposit of fine to medium sand, generally coarser in the upper part (LaFreniere 1968). Overlying the Careaga sand is the Paso Robles Formation, a weakly consolidated valley alluvial sediment composed largely of Monterey Shale detritus (Diblee 1993). The Paso Robles formation was deposited by streams that drained the rising San Rafael Mountains. The primary gravels in the Paso Robles Formation are derived from the Monterey Shale; however, the Paso Robles formation also contains cobbles and boulders of serpentine close to outcrops of the Franciscan complex and Mesozoic plutonic rocks (LaFreniere 1968). Overlying the Paso Robles Formation are Quaternary terrace deposits and alluvium that are less deformed than the underlying formations (LaFreniere 1968).

The geology of the San Rafael Mountains on the north eastern side of the Santa Ynez Valley favors Cr(VI) formation in the Upland Basin. The San Rafael Mountains are part of the Transverse Ranges, an east-west oriented mountain range that is part of the Franciscan Complex, which forms the basement rock in the Coast Range ophiolite (Wahl 1995, 1998). The Franciscan is the oldest formation in the area and is made up of a serpentine matrix known to result in oxidation of chromite to Cr(VI) (Whal 1995; Oze 2007). The Franciscan formed as a result of Farallon-North American Plate convergence (Whal 1998).

4 HYDROGEOLOGICAL SETTING

Unconsolidated Tertiary and Quaternary sands and gravels comprise the primary water-bearing formations in the Upland Basin. The thickness of these deposits exceeds 4,000 feet (Dibblee 1993). Underlying the unconsolidated marine and non-marine deposits are pre-Tertiary consolidated rocks that form the boundaries of the groundwater basin (LaFreniere 1968).

Almost all water production in the Upland Basin is from the Paso Robles Formation, which is characterized by heterogeneous lenticular deposits that result in highly variable well yields. In some instances, thick beds of clay separate distinct water-producing zones. All of the ID No. 1 Upland Basin wells are screened in and produce water from the Paso Robles Formation.

5 METHODS

5.1 Dynamic Flow

Depth-discrete flow profiles documenting the flow contributions from the perforated sections of ID No. 1 wells No. 15, No. 25, and No. 28 were created using the U.S. Geological Survey (USGS) Tracer Pulse Dynamic Flow Profile method (USGS 1999). In this method, a high-pressure hose equipped with valves for dye injection is lowered to a known depth in the well, and a pulse (~150 milliliters) of dye is injected into the water column. The travel-time of the tracer to a detector on the surface is measured. The hose is then lowered to the next depth, another pulse of dye is injected into the water column, and the travel-time is measured. The distance between the depths of dye release divided by the difference in the travel-times yields the velocity of the water in the well. Assuming piston flow, the flow rate (Q) is calculated using a known well radius (r) and the velocity (v):

 $Q = (v\pi r^2)$ where: $v = (d^2-d^1)/(t^2-t^1)$

where:

Q = flow rate (gallons per minute) (multiply cubic feet per minute by 7.48052) v = velocity (feet per minute) π = Pi (3.14159) r = well radius (feet) d1 = distance one (feet) d2 = distance two (feet) t1 = travel time at distance one (minutes) t2 = travel time at distance two (minutes)

The flow rate profile for each well was constructed from the velocities measured at multiple depths in the well.

The dynamic flow contribution from the perforated sections of ID No. 1 well No. 27 was measured with a Titan spinner/flow meter (spinner) tool. The spinner tool has an impeller that measures counts per second as it is lowered down the well casing at a constant line speed. Multiple passes with the spinner tool were performed to provide in situ calibration and estimate fluid velocity by depth.

5.2 Ambient Temperature Surveys

Prior to conducting the dynamic flow survey, ambient temperature surveys were conducted for wells No. 15, No. 25, No. 27, and No. 28 in order to determine the potential vertical flow within the well casing under static, non-pumping conditions.

These profiles were created to assist with evaluation of the depth distribution of Cr(VI) in the wells. Water moving from one depth in the aquifer to a different depth in the aquifer via the well bore can alter the concentration of constituents in the groundwater adjacent to the depth at which water exits the well. Wells No. 15, No. 25, No. 27, and No. 28 were pumped for 24 hours before the depth discrete samples were collected in order to minimize the effects of vertical flow on the sampled concentrations. To accurately assess the long-term effects of vertical flow in the well, a series of depth discrete samples should be collected after the wells have been pumping for longer periods of time to see if there is a trend in concentration with time.

5.3 Groundwater Chemistry

Depth-discrete water quality samples were collected using the HydroBooster sampling method for wells No. 15, No. 25, and No. 28. The Hydro Booster sampling method was developed by USGS to collect water at selected depths within production wells that have limited access to fit traditional wire-line tools (Izbicki 1999). A wire-line sampler was used for well No. 27, because a 2-inch Schedule 40 polyvinyl chloride (PVC) access tube was installed to a depth below the test pump. Each well was pumped for approximately 24 hours before the depth-discrete groundwater samples were collected.

The groundwater samples were analyzed for total dissolved solids (TDS), total chromium, and Cr(VI). The measured concentrations at each depth represent the average concentration of the entire water column below the sample point. In order to convert the measured concentrations to depth-discrete concentrations, the measured concentrations were adjusted based on the flow rates determined for each interval from the dynamic flow survey using the following equation:

where:

C = concentration of given constituent

Q = flow of water within the well (either as a volume per unit time, as velocity, or as a percent of total discharge) i = first sample collection and flow measurement depth

 $C_a = (C_iQ_i - C_{i+1}Q_{i+1})/Q_a$

i+1 = second sample collection and flow measurement depth

a = interval between i and i+1

The above equation is only valid for changes in concentration between adjacent samples that exceed the laboratory error limits and for changes in flow that exceed the error in velocity derived from travel time measurements in the field. For intervals over which these conditions were not met, the concentration was not adjusted and was assumed to equal the measured concentration.

6 RESULTS

6.1 Well No. 15

6.1.1 Location and Construction

Well 15, drilled in 1986, is located within the town of Santa Ynez (Figure 1). The Well 15 completion consists of dual casing construction that is designed to address cascading water from the upper zone. The well is dual cased from 130 to 240 feet below the ground surface (bgs) with an 18-inch-diameter louvered casing and 14-inch-diameter inside blank casing. Below the dual casing is a 30 foot "window" blank 18-inch-diameter section that connects back to the 14-inch-diameter casing, which is designed to allow flow from 130 to 240 feet to discharge into the 14-inch-diameter casing between 240 and 270 feet. Under static, non-pumping conditions, the depth to water is approximately 95 feet. When pumping, the depth to water increases to approximately 110 feet. The single 14-inch-diameter well casing is screened from 280 to 470 feet bgs and completed to 490 feet bgs with a 20-foot blank section.

Well 15 is fitted with an electric Hitachi 150-horse-power (hp) submersible pump with a capacity of 1,400 gallons per minute (gpm). The suction intake depth is set at 205 feet bgs with an 8 inch column pipe (drop pipe). Currently, the well produces approximately 1,250 gpm.

6.1.2 Flow Profiles

Well No. 15 was pumped at an average pumping rate of 1,200 gpm with a pumping water level of approximately 110 feet below top of casing (btoc) during the dynamic flow survey. The dynamic survey indicates that approximately 80% of the flow in well No. 15 comes from the upper screened interval and cascades into the well through the dual casing window (Figure 5).

The results of the temperature survey for well No. 15 are inconclusive, showing little change in the slope of the profile with depth in the well and temperatures consistently above the estimated local geothermal gradient (Figure 5).

6.1.3 Groundwater Chemistry

6.1.3.1 Total Chromium

Measured total chromium concentrations within well No. 15 do not vary with depth (Figure 5). The average concentration between 230 and 330 feet bgs is approximately 23 μ g/L, and the average concentration between 330 and 430 feet bgs is approximately 20 μ g/L. All of the total chromium concentrations measured are below the MCL for total chromium of 50 μ g/L.

6.1.3.2 Hexavalent Chromium

Measured Cr(VI) concentrations in samples collected from well No. 15 were greater than the MCL of 10 μ g/L at all depths (Figure 5). Samples collected between 230 and 330 feet bgs have concentrations between 26 and 27 μ g/L, and samples collected between 330 and 430 feet bgs have concentrations between 16 and 22 μ g/L. Two wellhead samples were collected prior to and after the depth-discrete water quality sampling. Both samples had a concentration of 25 μ g/L.

6.1.3.3 Total Dissolved Solids

Well 15 TDS ranges from 490 to 660 mg/L (Figure 5). TDS increases slightly with depth between 230 and 660 feet bgs. Below 660 feet bgs, TDS declines slightly with the lowest concentration measured at 490 mg/L in the sample collected at 435 feet bgs.

6.2 Well No. 25

6.2.1 Location and Construction

Well 25, drilled in 2007, is located on a private property easement approximately 1 mile to the north of the town of Los Olivos (Figure 1). The well is cased to 950 feet bgs with a 14.5-inch outer diameter stainless steel casing. The well casing is screened from 630 to 750 feet bgs, 775 to 820 feet bgs, and 880 to 930 feet bgs. Well 25 is fitted with a 200-hp submersible pump with a suction intake depth of 520 feet bgs and a flow rate of 900 gpm.

6.2.2 Flow profile

Well No. 25 was pumped at an average pumping rate of 960 gpm, with a pumping water level of approximately 427 feet btoc during the dynamic flow profile testing. The dynamic survey indicates that approximately 17% of the total flow in the well is produced between 600 and 630 feet bgs, above the top of the upper screen interval (Figure 6). A video survey of the well in 2008 indicated cascading water flowed into the well through leaks in the welds of the blank casing above the screen interval.

From intervals within the well screen, the dynamic survey found approximately 39% of the flow in well No. 25 is produced between 630 and 660 feet bgs, and an additional 37% is produced between 660 and 735 feet bgs (Figure 6). The middle and upper portions of the upper well screen produce the majority of the total flow in the well under dynamic conditions. The lower and middle well screens produce approximately 7% of the total flow under dynamic conditions.

Under static, non-pumping conditions, the temperature survey suggests water enters well No. 25 through the lower and middle well screens, flows upward within the well, and may exit the well within the middle to upper portions of the upper well screen (Figure 6). A temperature survey also indicates that water moves vertically down the well from 330 to 600 feet bgs, agreeing with both the video and dynamic flow surveys of the well. This water, entering the well through leaky welds in the blank casing above the first screen interval may account for up to 17% of the flow in well No. 25 and has the potential to alter the concentrations of the constituents in the formation adjacent to the well, as well as the concentrations of constituents measured at the wellhead under dynamic conditions.

6.2.3 <u>Groundwater Chemistry</u>

6.2.3.1 Total Chromium

Three samples were collected at the wellhead prior to, during, and after the depth-discrete water quality sampling. These samples have total chromium concentrations of 8.9 μ g/L, 8.6 μ g/L, and 8.5 μ g/L, respectively. The average total chromium concentration measured between 500 and 750 feet bgs is approximately 7 μ g/L. There is, however, a trend of decreasing chromium concentrations with depth in this interval, and chromium was not detected in any of the samples collected below 750 feet bgs (Figure 6). The highest concentration of total chromium is 14 μ g/L, measured in the shallowest sample collected

(500 feet bgs). None of the measured samples have concentrations that exceed 50 μ g/L, the MCL for total chromium.

The flow adjusted concentrations indicate that the zone between 500 and 600 feet bgs has the highest concentration of total chromium (Figure 6). The flow adjusted concentration in this zone, which is above the uppermost well screen, is approximately 40 μ g/L (Figure 6). Between 600 and 750 feet bgs, the average flow-adjusted chromium concentration is approximately 9 μ g/L. None of the flow-adjusted concentrations exceed the MCL for total chromium.

6.2.3.2 Hexavalent Chromium

The wellhead Cr(VI) samples collected prior to, during and after the depth-discrete water quality sampling have concentrations of 9.7 μ g/L, 9.8 μ g/L, and 9.8 μ g/L, respectively. Measured concentrations of Cr(VI) collected at discrete depths within well No. 25 range from non-detect to 14 μ g/L, with the highest concentration of Cr(VI) measured in the shallowest sample. Samples collected below 750 feet bgs, within the middle- and lower-screened intervals, did not have detectable concentrations of Cr(VI). The average concentration of the samples collected between 500 and 750 feet bgs is approximately 8 μ g/L.

The flow-adjusted concentrations indicate that the zone between 500 and 600 feet bgs has the highest concentration of Cr(VI) (Figure 6). The flow adjusted concentration in this zone, which is above the uppermost well screen, is approximately $36 \ \mu g/L$ (Figure 6). Between 600 and 750 feet bgs, the average flow-adjusted chromium concentration is approximately $10 \ \mu g/L$.

6.2.3.3 Total Dissolved Solids

Well 25 TDS concentrations range from 410 to 540 mg/L. The concentration of TDS between 765 and 890 feet bgs ranges from 410 to 450 mg/L, and the concentration of TDS between 500 and 750 feet bgs ranges from 480 to 540 mg/L.

6.3 Well No. 27

6.3.1 Location and Construction

Well 27, drilled in 2006, is located on a private property easement approximately 2.25 miles southeast of the town of Los Olivos (Figure 1). The well is cased to 1,205 feet bgs. The well casing is screened from 940 to 1,040 feet bgs and 1,095 and 1,185 feet bgs. Well 27 is fitted with a Goulds 200-hp vertical turbine pump and U.S. Electric Motor with a suction intake depth of 430 feet bgs and a flow rate of 1,343 gpm. During the flow survey of Well No. 27, a test pump was installed with a suction intake depth of 300 feet bgs and a flow rate of 560 gpm, or approximately 42% of the normal operating production rate.

6.3.2 <u>Flow Profiles</u>

The spinner log for Well 27 indicates that, at a production rate of 560 gpm, approximately 75% of the total flow is produced between 940 and 1040 feet bgs in the upper screen interval (Figure 7). The temperature profile suggests that, under static conditions, water enters the well at approximately 1,090 feet bgs and flows upward in the well to the top of the lower screen interval, where it exits the well at approximately 970 feet bgs (Figure 7). The zone of vertical flow under static conditions corresponds to the zone from which the majority of the water is produced during pumping. Down-hole pressures were not measured in this well.

6.3.3 Groundwater Chemistry

6.3.3.1 Total Chromium

The concentration of total chromium in wellhead samples collected prior to and after the depth-discrete water quality sampling is 13 and 15 μ g/L, respectively. Total chromium concentrations in samples collected from well No. 27 range from 12 to 35 μ g/L (Figure 7). None of the samples collected have total chromium concentrations above 50 μ g/L, the MCL for total chromium.

6.3.3.2 Hexavalent Chromium

Cr(VI) concentrations in samples collected from well No. 27 ranged from 2 to 14 μ g/L (Figure 7). The concentration of Cr(VI) in both wellhead samples collected prior to and after the depth-discrete water quality sampling is 14 μ g/L. Between 940 and 1040 feet bgs, the upper screen interval, the average concentration of Cr(VI) is approximately 12 μ g/L, which is above the MCL for Cr(VI). In contrast, between 1080 and 1195 feet bgs, the lower screen interval, the average concentration of Cr(VI) is approximately 3 μ g/L.

6.3.3.3 Total Dissolved Solids

Well 27 TDS concentrations range from 460 to 530 mg/L.

6.4 Well No. 28

6.4.1 Location

Well 28, drilled in 2008, is located on ID No. 1-owned property approximately 2 miles northeast of the town of Santa Ynez and 2.4 miles southeast of the town of Los Olivos (Figure 1). The well is cased to 940 feet bgs with a 14.5-inch outer diameter stainless steel casing. The well casing is screened from 640 to 685 feet bgs, 725 to 800 feet bgs, and 900 to 920 feet bgs. Well 28 is fitted with a Byron Jackson 100-hp submersible pump and CentriPro motor with a suction intake depth of 443.5 feet bgs and a flow rate of 700 gpm.

6.4.2 <u>Flow Profiles</u>

Approximately 26% of the total flow is produced from the upper screen, between 620 and 660 feet bgs (Figure 8). Approximately 60% of the flow is produced from the middle screen, between 725 and 800 feet bgs. The lower screen, from 900 to 9,020 feet bgs, produces approximately 14% of the flow.

Under static conditions; and inflections in the slope of the temperature survey at 600 and 780 feet bgs suggest that water enters the well at 600 feet bgs, flows downward through the well bore, and exits the well at 780 feet bgs (Figure 8).

6.4.3 <u>Groundwater Chemistry</u>

6.4.3.1 Total Chromium

The concentrations of total chromium in wellhead samples collected prior to and after the depthdiscrete water quality sampling were 8.7 μ g/L and 7.9 μ g/L, respectively. The average total chromium measured between 620 and 660 feet bgs, the upper screen interval, wss approximately 9 μ g/L. The average total chromium measured between 660 and 800 feet bgs, the interval containing the middle

Draft Santa Ynez Upland Groundwater Basin Well Profiling

screen, was approximately 8 μ g/L, and the total chromium concentration measured from the deep screen interval, at 900 feet bgs, was approximately 1 μ g/L. There is a downward increase in total chromium between 620 and 750 feet bgs (Figure 8) and an abrupt decrease in total chromium below 770 feet bgs (Figure 8). None of the samples collected have total chromium concentrations above 50 μ g/L, the MCL for total chromium.

The flow-adjusted concentrations indicate that the interval between 750 and 770 feet bgs contributes the highest concentrations of chromium to the well. The average flow adjusted chromium concentration in this interval is approximately 25 μ g/L, and this interval contributes approximately 30% of the total flow in the well. The average flow-adjusted concentration above 750 feet bgs is approximately 6 μ g/L, and the average flow-adjusted concentration below 770 feet bgs is approximately 1 μ g/L. None of the flow adjusted chromium concentrations exceed the MCL for total chromium.

6.4.3.2 Hexavalent Chromium

The concentration of Cr(VI) in wellhead samples collected prior to and after the depth-discrete water quality sampling was 8.9 μ g/L and 9.0 μ g/L, respectively. Cr(VI) concentrations in samples collected from well No. 28 range from 1 to 13 μ g/L. Between 620 and 770 feet bgs within the upper and upper middle screens, concentrations increase from 9 to 13 μ g/L (Figure 8). Below 790 feet bgs in the lower middle and lower screens, the measured Cr(VI) concentrations are 1 to 2 μ g/L.

As was observed in the flow-adjusted total chromium concentrations, the flow-adjusted Cr(VI) concentrations indicate that the interval between 750 and 770 feet bgs contributes the highest concentrations of Cr(VI) to the well (Figure 8). The average flow-adjusted Cr(VI) concentration in this interval is approximately 32 μ g/L. The average flow-adjusted concentration above 750 feet bgs is approximately 7 μ g/L, and the average flow adjusted concentration below 770 feet bgs is approximately 1 μ g/L.

6.4.3.3 Total Dissolved Solids

TDS concentrations in well No. 28 range from 500 to 550 mg/L. There are no apparent trends with depth in the TDS concentrations.

7 CONCLUSIONS

7.1 Well No. 15

The flow profile conducted on well No. 15 demonstrated that 80% of the production is derived from the interval between 240 and 260 feet bgs. The measured concentration of Cr(VI) in this zone is approximately 26 μ g/L, well above the newly adopted MCL for Cr(VI) of 10 μ g/L. Additionally, concentrations of Cr(VI) between 20 and 27 μ g/L were measured in at all but the deepest sample in well No. 15. All of the depth discrete samples have concentrations of Cr(VI) above the MCL.

7.2 Well No. 25

Both the measured and flow-adjusted concentrations of Cr(VI) decrease with depth in well No. 25. The highest concentration of Cr(VI), measured in the sample collected from 500 feet bgs, is 14 μ g/L. Based on the results of the flow survey, which indicate approximately 17% of the total flow in well No. 25 enters the well above 630 feet bgs, the flow-adjusted concentration at 500 feet bgs could be as high as 36 μ g/L. This flow likely derives from leaks in the welds of the blank casing above 630 feet bgs.

Between 630 and 735 feet bgs, the interval that produces approximately 74% of the total flow in the well, both the measured and flow-adjusted concentrations range from 7 to 11 μ g/L. Below 735 feet bgs, Cr(VI) was not detected in any of the three samples collected.

Both the measured and flow adjusted concentrations of Cr(VI) suggest that the water leaking through the welds in the blank casing has higher concentrations of Cr(VI) than water entering the well through the well screens. Because this water may have a concentration as high as 36 μ g/L, it likely increases the concentration of Cr(VI) measured at the wellhead.

7.3 Well No. 27

During the dynamic flow profiling of well No. 27, approximately 75% of the flow was produced from the upper screen. Measured Cr(VI) concentrations of samples collected within the upper screen interval range from 9 to 14 μ g/L. In contrast, the concentrations of Cr(VI) measured in samples collected between 1080 and 1170 feet bgs, the interval of the lower screen, range from 2 to 6 μ g/L. Therefore, it may be possible to reengineer the existing well to produce more water from the lower screen interval and reduce the blended concentration of Cr(VI) measured at the wellhead.

7.4 Well No. 28

Measured concentrations of Cr(VI) at well No. 28 increase with depth from 9 μ g/L at 620 feet bgs to 13 μ g/L at 760 feet bgs. The measured concentration at 770 feet bgs is 10 μ g/L. In contrast, the three samples collected below 770 feet bgs have concentrations of 1 to 2 μ g/L.

When adjusted for the depth, discrete flow contributions measured while the well was pumping, the average concentration of Cr(VI) above 760 feet bgs is approximately 7 μ g/L, between 760 and 780 feet bgs is approximately 32 μ g/L, and below 780 feet bgs is approximately 1 μ g/L. The interval between 760 and 780 feet bgs contributes approximately 18% of the total flow for well No. 28. Because there appears to be a discrete zone between 760 and 780 feet bgs where Cr(VI) concentrations exceed the MCL, it may be possible to reengineer the existing well to produce water at the wellhead with a blended concentration of Cr(VI) below the MCL.

8 **RECOMMENDATIONS**

The results for the well profiling project suggest that changes to the existing construction of wells No. 25, 27, and 28 have the potential to reduce wellhead concentrations of Cr(VI). Well No. 15 will likely require wellhead treatment for Cr(VI). Based on the preliminary results of the well profiling, Dudek recommends the following:

- Because the concentration of Cr(VI) is greater than the MCL at all depths in well No. 15, Dudek recommends wellhead treatment for removal of Cr(VI) at this well.
- If wellhead Cr(VI) concentrations are detected above the MCL, Dudek recommends installing an inflatable well packer immediately above the upper screen in well No. 25 to prevent water with high concentrations of Cr(VI) from entering the well via leaks in the welds of the blank casing. After installation of the inflatable packer, Dudek recommends collecting wellhead samples over the course of several days to determine the variability of the Cr(VI) concentrations with time. If wellhead concentrations of Cr(VI) decrease after the packer is installed, Dudek recommends pumping the well to the water system for several months to confirm Cr(VI) concentrations have

stabilized. If wellhead concentrations of Cr(VI) do not decrease after the packer is installed, the packer should be deflated and reinstalled at varying depths in the well and retested to determine wellhead Cr (VI) concentrations.

- Dudek recommends feasibility testing of the lower screen at well No. 27 to see if additional flow can be produced from this screen. The lower-concentration water produced from the lower screen could then be blended with water to potentially reduce the concentration of Cr(VI) at the wellhead. The feasibility testing could be accomplished by installing an inflatable well packer below the upper screen and a test pump in the blank section between the upper and lower screens. After installation of the inflatable packer and test pump, wellhead samples should be collected over several months to determine the concentration of Cr(VI) with time. If the testing of the lower screen shows that the two screen intervals could produce a blended concentration below the MCL, an engineered suction could be constructed and lowered into the well. An engineered suction is a flow control device that has been designed to distribute flow into a well throughout the vertical well screen. The blended water could then be produced from the well without requiring wellhead treatment.
- If wellhead Cr(VI) concentrations in well No. 28 are detected above the MCL, Dudek recommends use of an inflatable packer(s) or engineered suction to address the elevated concentrations of Cr(VI) measured between 760 and 780 feet bgs. Additionally, use of a swedge patch that eliminates flow contribution between 760 and 780 feet bgs should be evaluated.

Modification of wells No. 25 and No. 28 to preferentially pump from the production zones where elevated Cr(VI) concentrations were not detected may be a viable alternative to wellhead treatment. Use of inflatable packers or engineered suctions below the pump intake is likely the best option. After implementation of any well modifications, Dudek recommends initial wellhead sampling followed by monthly monitoring to evaluate variation in Cr(VI) concentration with time.

9 REFERENCES

- Dibblee, T.W. 1993. "Geologic Map of the Los Olivos Quadrangle, Santa Barbara County, California" [map]. 1:24,000. Map #DF-44. Santa Barbara: Dibblee Geological Foundation.
- Ernst, W.G. 2012. Overview of naturally occurring Earth materials and human health concerns. Journal of Asian Earth Sciences, 59, 108-126. Accessed June 2014. http://linkinghub.elsevier.com/retrieve/pii/S1367912012002489
- Helmenstine, A.M. 2014. 10 Chromium Facts. About.com Chemistry, NP, Accessed June 2014. http://chemistry.about.com/od/chromium/a/10-Chromium-Facts.htm
- Izbicki, J. A. 1999. "A Small-Diameter Sample Pump for Collection of Depth-Dependent Samples from Production Wells under Pumping Conditions." USGS Publications Warehouse. 2004. Accessed June 27, 2014. http://pubs.usgs.gov/fs/2004/3096/fs2004-3096.pdf.
- LaFreniere, G.F. and J.J. French. 1968. *Ground-Water Resources of the Santa Ynez Upland Ground-Water Basin, Santa Barbara County, California*. USGS Open-File Report.
- Oze, C., D.K. Bird, and S. Fendorf. 2007. "Genesis of Hexavalent Chromium for Natural Sources in Soil and Groundwater." *Proceedings of the National Academy of Sciences (PNAS)* 16(104): 6544-6549.

- USGS. 1999. U.S. Geological Survey Combined Well-Bore Flow and Depth Dependent Sampler. FS-196-99. October 1999.
- Wahl, A.D. 1995. The Geology of the Franciscan Complex San Rafael Mountains Melange, California. University of Santa Barbara, M.A. thesis, 121 p.
- Wahl, A.D. 1998. Cenozoic Deformation of the Franciscan Complex, Eastern Santa Maria Basin, California. USGS Bulletin 1995-W,X.

FIGURES

1	
112	
·	Latest Quaternary Faults (<15,000 years old)
~	
	····· Inferred
-	Late Quaternary Faults (<130,000 years old)
X	Well constrained
\sim	Moderately constrained
13	— Inferred
	Quaternary Faults (<1,600,000 years old)
	Well constrained
-	———Moderately constrained
\mathbf{X}	····· Inferred
\geq	Geologic Units (CGS 2010)
1	E; E-Ep = Eocene-Paleocene marine sedimentary rocks
	J; J? = Jurassic marine sedimentary and metasedimentary rocks
	KJf = Cretaceous-Jurassic marine sedimentary and metasedimentary rocks ^a
Z	KI; KI? = Lower Cretaceous marine sedimentary and metasedimentary rocks
1	Ku; Ku? = Upper Cretaceous marine sedimentary and metasedimentary rocks
	M+KJfs; M; M? = Tertiary-Cretaceous marine sedimentary and metasedimentary rocks Miocene marine sedimentary rocks
12	Mzv = Mesozoic metavolcanic rocks
1	O = Oligocene marine sedimentary rocks
	Oc; Oc? = Oligocene nonmarine (continental) sedimentary rocks
-	P = Pliocene marine sedimentary rocks
	Q = Pleistocene-Holocene marine and nonmarine (continental) sedimentary rocks
王	QPc = Pliocene-Pleistocene nonmarine (continental) sedimentary rocks
-	Qoa = Pleistocene marine and nonmarine (continental) sedimentary rocks
\sim	Tv = Tertiary volcanic rocks
	um = Mesozoic plutonic rocks ^b
Oc	 ^a Melange of fragmented and sheared Franciscan Complex rocks. ^b Ultramafic rocks, mostly serpentine. Minor peridotite, gabbro, and diabase; chiefly Mesozoic.
	FIGURE 3

Geologic Map

APPENDIX DI

BESST Inc. Report Well 15

Dynamic Flow and Chemistry Profiling Report: Santa Ynez River Water Conservation District Well 15 Santa Ynez, CA

Prepared by: Kim Miles and Debra Cerda

Reviewed by: Debra Cerda and Noah Heller

BESST, Inc., 50 Tiburon St, Ste 7, San Rafael, CA 94901 × (P) 415/453.2501 × (F) 415/453.2509 http://www.besstinc.com

Executive Summary

On February 25 – 26, 2014, BESST, Inc. performed a dynamic flow and water quality chemistry profile for **Well 15**, which is owned and operated by **Santa Ynez River Water Conservation District**.

The dynamic flow and water quality profile was performed to measure and calculate flow contribution as well as water quality concentrations and contributions from two perforated intervals measuring 310 feet in total length.

The purpose of this profiling event for Well 15 was to investigate levels of hexavalent chromium above the proposed state MCL of 10 micrograms per liter (ug/L).

The dynamic flow profile was performed using the USGS Tracer Pulse Dynamic Flow Profile method to measure flow contribution along the length of the well. Sampling depths were determined through assessment of the well completion diagram (Figure 1) and resistivity log (Figure 7).

A temperature survey and pressure survey were conducted (Figures 2 & 3). The temperature graph in Figure 2 indicates that cool water enters the well at the casing window, and moves down toward the bottom of the well.

BESST conducted dynamic water quality sampling using the HydroBooster sampling method on February 26, 2014, collecting water samples at 11 discrete depths. Sample results are shown by analyte in Figures 8 through 13.

With the exception of TDS, all tested analytes are under the maximum contaminant level (MCL) for the National Primary Drinking Water Regulations (NPDWR) as well as secondary MCLs at the wellhead.

All analytical results at all sampling points for hexavalent chromium exceeded the proposed State of California MCL of 0.010 mg/L (10 μ g/L).

12

Contents

Executive Summary Error! Bookmark not defined.
Table of Figures4
Introduction4
Flow Contribution5
Water Quality Sampling5
Conventional Chemistry5
Conventional Chemistry5
Well Information Summary6
Well Construction6
Temperature Survey7
Pressure Survey8
Dynamic Flow Profile9
Percent Contributions9
Down-hole Geophysics and Flow Contribution Comparison
Dynamic Chemistry Profile13
Results13
Conventional Chemistry13
Calculations13
Zonal Concentrations of Water Quality Parameters14
Discussion17
Water Chemistry17
Well Modification Scenario17
Recommendations Error! Bookmark not defined.
Appendix A Lab Results Summary18
Appendix B Flow Weighted Results Summary19

Table of Figures

Figure 1: Well completion diagram
Figure 2: Ambient temperature profile of Well 157
Figure 3: Normalized pressure vs. depth under ambient (non-pumping conditions)
Figure 4: Cumulative discharge for Well 1510
Figure 5: Zonal flow contribution for Well 1510
Figure 6: Zonal percent Flow contribution for Well 1511
Figure 7: Resistivity Log and Flow Contribution Comparison12
Figure 8: Zonal alkalinity concentration14
Figure 9: Zonal chloride concentration14
Figure 10: Zonal total chromium concentration15
Figure 11: Zonal hexavalent chromium concentration15
Figure 12: Zonal sulfate concentration
Figure 13: Zonal TDS concentration16
Figure 14: Well Modification Scenario17
Introduction

BESST performed a dynamic flow and water chemistry profile on February 25 - 26, 2014, for the **Santa Ynez River Water Conservation District Well 15**, located in Santa Ynez, California.

Flow Contribution

Flow contribution in **Well 15** was measured at thirteen (13) discrete depths along the well bore from **240** to **420** feet below ground surface (ft bgs). The apparent travel time collected from Well 15 was used to calculate zonal flow contribution.

Water Quality Sampling

BESST conducted dynamic water quality sampling using the HydroBooster sampling method on February 26, 2014, collecting water samples at eleven (11) discrete depths and two (2) well head samples. Sample results are shown by analyte in figures 8 through 13.

Chemical analysis was performed by Eurofins Eaton Analytical. The water quality constituents and parameters included:

Conventional Chemistry

- Alkalinity
- Chloride
- Sulfate (SO₄)

- Total Chromium
- Hexavalent Chromium
- Total Dissolved Solids

Conventional Chemistry

Each graph shows the dynamic chemical contribution of the analyte versus the sampling depth interval (ft bgs). The dynamic chemistry profile estimates geologic water (zonal) chemistry by considering dilution and mixing factors inside the steady state (pumping) water supply well.

Below the pump, water is flowing into the well casing through the screen sections and upward in the well towards the pump intake.

Well Information Summary

The following information for Santa Ynez River Water Conservation District Well 15 is based on technical information provided by DUDEK.

Well Construction

- Outer Casing: 18" inside diameter by 0.312" thick 130'-250'
- Outer Screen: 1/16" louvered openings 130'-250'
- Window: outer → inner casing 250'-280'
- Inner Casing: 14" inside diameter by 0.31" thick 0'- 490'
- Inner Casing Screen: 1/16" louvered openings 280'-470'

The pump is set at approximately 205 ft bgs with a 12" O.D. pump column diameter. Observed pumping water level is 110 ft bgs with a static water level of 95 ft bgs. The pumping rate is 1230 gpm.

Figure 1: Well completion diagram

Temperature Survey

Figure 2: Ambient temperature profile of Well 15. Data collected by BESST Inc. Interpretation courtesy DUDEK. (Data starts at static water level of 95.08 feet below top pf casing)

Pressure Survey

Under ambient conditions inside a well, groundwater flows from the highest to lowest potential (i.e., highest to lowest pressure). Normalized pressure is arithmetically defined as the difference between the theoretical pressure gradient and measured or actual gradient. The theoretical gradient is generally defined as 1 PSI/2.31 ft for pure water. Being that groundwater inside the well is not pure, we know that there is a small amount of error when using pure water to estimate the normalized pressure gradient. Therefore we cannot interpret outflow and inflow zones along the length of the well screen on the basis of an individual point but rather as a trend defined from a series of depth-dependent point measurements. The totality of these measurements is what helps in the understanding of the flow gradient inside a well.

The pressure survey was performed using a vented Level Troll 700 manufactured by In-Situ, Inc. The maximum head differential measured inside Well 15 was 350 feet, and within the accuracy and resolution range specifications stated by the manufacturer.

Dynamic Flow Profile

The dynamic flow profile was performed using the USGS Tracer Pulse Dynamic Flow Profile method to measure flow contribution along the length of the well (Figures 4 through 6). The profile was conducted at a flow rate of 1230 gallons per minute (gpm), which is the normal operating rate of the well.

Corrected discharge shows the cumulative flow profile along the length of the well. The raw cumulative flow data was corrected by a factor of 0.96 (actual pump rate over theoretical pump rate) to match the field pumping rate.

Incremental flow is calculated by finding the difference in corrected discharge (cumulative flow) depths. The incremental flow graph shows zonal flow contribution between each dye injection location.

The percent contribution graph is in principal the same information as incremental flow. Adding up all labeled values in incremental flow will give the pumping rate, and the same calculation for percent will add up to 100% of the pumping rate. Percent contribution is calculated by dividing incremental flow by the pumping rate of 1230 gpm.

Percent Contributions

Flow calculations indicate that upper screen contributes 80% towards the total pumping rate through the casing window. BESST Inc. observed no dye returns below 420 ft bgs. This means the measurable upward movement of water toward the pump intake stops just below 420 ft bgs.

Figure 4: Cumulative discharge for Well 15 at 1230 gpm.

Figure 5: Zonal flow contribution for Well 15 at 1230 gpm.

Figure 6: Zonal percent Flow contribution for Well 15 at 1230 gpm.

Down-hole Geophysics and Flow Contribution Comparison

Flow Contribution (%)

Figure 7: Resistivity Log and Flow Contribution Comparison

Resistivity data provided by DUDEK, correlates with BESST Inc. dynamic flow contribution data as seen in Figure 7. Major contributing zones under 1230 gpm pumping condition are correlated with the window at 280 ft bgs. Although BESST Inc. did not establish flow contribution below 420 ft bgs, the resistivity graph suggests there is high flow potential. Well modification could result in a shift of flow production, and pull more water from deeper high resistivity zones.

Dynamic Chemistry Profile

Results

The actual reported laboratory result for each analyte is listed in Appendix A, and includes the reported values as well as significant digits for analytes that fall below laboratory detection limit. Detected analytes are listed below.

Conventional Chemistry

- Alkalinity
- Chloride
- Sulfate (SO₄)

- Total Chromium
- Hexavalent Chromium
- Total Dissolved Solids

The measured lab result values used in the mass balance calculation are shown in Appendix A on page 18.

Calculations

In figures 8 - 13, the incremental concentration is a calculated value that has been "mass balanced" using the measured concentration and the flow contribution for each depth interval.

When working with results that are reported as "below laboratory detection limit", in order to still perform the mass balance calculation, a value of one-half of the detection limit was assigned. This adds a degree of uncertainty as to exactly how low the measured value actually was, but the calculated value is still a useful number in that it yields a relatively low incremental concentration.

Zonal Concentrations of Water Quality Parameters

Figure 8: Zonal alkalinity concentration.

Dynamic Flow and Chemistry Profiling Report: Santa Ynez River Water Conservation District Well 15, Santa Ynez, CA

Figure 10: Zonal total chromium concentration.

Figure 11: Zonal hexavalent chromium concentration. Proposed State of California MCL of 0.010 mg/L (10 ug/L) indicated by the dotted line.

BESST, Inc., 50 Tiburon St, Ste 7, San Rafael, CA 94901 × (P) 415/453.2501 × (F) 415/453.2509 http://www.besstinc.com May 12, 2014

Figure 12: Zonal sulfate concentration.

Figure 13: Zonal TDS concentration. The federal secondary MCL of 500 mg/L is indicated by the dotted line.

Discussion

Water Chemistry

The sample analysis results are used in conjunction with the flow calculations and principles of conservation of mass to determine the specific water quality of various zones along the well screen.

Well Modification Scenario

Important Points:

- BESSST Inc. estimates that roughly 80% of flow contribution originates from the screen section above the window. Eliminating the upper screen alone does not lower projected chromium wellhead concentrations.
- Lowering packers 130 ft below the window lower theoretical chromium concentrations. However, chromium concentration in the lower part of well 15 ranges from about 16-25ppb. It is unlikely that well modification alone will reduce chromium levels below 10 μg/L.

Analyte (Well 15)	Unit	MCL	Theoretical Concentration	Average Wellhead Concentration	Block Window 0'-250'	Block: 0'-380'
Maximum Production Loss	%	-	0%	0%	80%	88%
Alkalinity	mg/L	-	320	290	320	310
Chloride	mg/L	250	69	69	48	56
Total Chromium	ug/L	10	23	23	24	22
Hexavalent Chromium (Dissolved)	ug/L	10	26	25	26	20
Sulfate	mg/L	250	91	90	110	160
Total Dissolved Solids	mg/L	500	540	550	540	660

Figure 14: Well Modification Scenario

Parameter	Alkalinity	Chloride	Total Chromium	Hexavalent Chromium Dissolved	рН	Sulfate	Total Dissolved Solids		
Unit	mg/L	mg/L	ug/L	ug/L	Units	mg/L	mg/L		
Fed. MCL	-	250	100	-	-	250	500		
230	270	68	23	26	8.2	90	540		
240	280	69	23	26	8.3	91	540		
250	-	-	24	-	-	-	-		
300	320	46	23	26	8.1	110	540		
310	330	46	24	27	8.1	110	540		
330	320	47	24	26	8.2	120	560		
370	300	53	20	22	8.1	140	610		
380	310	56	22	20	8.4	160	660		
400	330	52	20	22	8.1	130	600		
410	300	53	20	21	8.1	140	600		
435	290	43	16	16	8	89	490		
WH1	280	68	23	25	8	90	550		
WH2	300	69	23	25	8	90	550		

Appendix A: Lab Results Summary

Appendix B Flow Weighted Results Summary

Sample Depth	Depth Interval	Zonal Flow Contribution	Alkalinity CaCO3	Chloride	Hexavalent Chromium Dissolved	Sulfate	Total Dissolved Solids	Sample Interval	Total Chromium
Ft BGS	Ft BGS	GPM	mg/L	mg/L	μg/L	mg/L	mg/L	ft bgs	µg/L
MCL	-	-	-	250	10	250	500	MCL	10
WH1	-	-	280	68	25	90	550.00	WH1	23
WH2	-	-	300	69	25	90	550.00	WH2	23
WH AVG	-	-	290.00	68.50	25.00	90.00	550.00	WH AVG	23.00
230	230- 240	0.00	270	68	26	90	540	230-240	23
240	240- 300	1230.00	270	75	26	86	540	240-250	23
300	300- 310	247.10	240	46	18	110	540	250-300	142
310	310- 330	219.64	388	40	33	52	423	300-310	15
330	330- 370	187.50	671	0	96	0	0	310-330	24
370	370- 380	177.40	238	34	34	15	298	330-370	94
380	380- 400	152.90	281	62	17	204	748	370-380	8
400	400- 410	91.04	453	48	26	89	600	380-400	25
410	410- 435	73.21	300	53	21	140	600	400-410	20
435	435- 470	0.00	290	43	16	89	490	410-435	20
								435-470	16

APPENDIX D2

BESST Inc. Report Well 25

Dynamic Flow and Chemistry Profiling Report: Santa Ynez River Water Conservation District Well 25 Los Olivos, CA

Prepared by: James Conrad and Kim Miles

Reviewed by: Debra Cerda and Noah Heller

BESST, Inc., 50 Tiburon St, Ste 7, San Rafael, CA 94901 × (P) 415/453.2501 × (F) 415/453.2509 http://www.besstinc.com

Executive Summary

On February 12 – 14, 2014, BESST, Inc. performed a dynamic flow and water quality chemistry profile for **Well 25**, which is owned and operated by **Santa Ynez River Water Conservation District**.

The dynamic flow and water quality profile was performed to measure and calculate flow contribution as well as water quality concentrations and contributions from three screened intervals measuring 215 feet in total length.

The purpose of this profiling event for Well 25 was to investigate levels of hexavalent chromium above the proposed state MCL of 10 micrograms per liter (ug/L). Other reported constituents of concern for this well include uranium and total dissolved solids.

The dynamic flow profile was performed using the USGS Tracer Pulse Dynamic Flow Profile method to measure flow contribution along the length of the well. Sampling depths were determined through assessment of available well information which is summarized in the Well Information Summary.

A temperature survey (Figure 2) and pressure survey were conducted. The normalized pressure curve presented in Figure 3 shows a strong positive pressure kick starting at a depth of about 750 feet below ground surface and increasing with depth, suggesting an upward gradient inside the well from the lower, middle and possibly the lower part of the upper well screens. The outflow zone appears to be within the middle to upper portions of the upper well screen. The potential benefit of such hydraulic behavior is to minimize the downward migration of higher concentrations of undesirable constituents.

BESST conducted dynamic water quality sampling using the HydroBooster sampling method on February 13, 2014, collecting water samples at six discrete depths. Sample results are shown by analyte in figures 10 through 16.

With the exception of TDS, all tested analytes are under the maximum contaminant level (MCL) for the National Primary Drinking Water Regulations (NPDWR) as well as secondary MCLs at the wellhead.

Based on the data results, it is recommended that a feasibility test be performed on Well 25. The feasibility test would consist of the placement of a packer in the cased section of the well between the upper and middle screen for the purpose of blocking groundwater production from the upper screen.

Additionally, an engineered suction should extend from the bottom of the packer and then into and through the middle and lower screen sections of the well.

Total chromium and hexavalent chromium theoretical wellhead concentration estimates decrease as the blocked length in the uppermost well screen is increased (from top to bottom).

TDS theoretical wellhead concentration is reduced below the Federal MCL when well screen is block from 500-765 feet bgs. While this scenario exhibits a maximum production loss of 94%, it is possible that installing an engineered suction between the middle and lower screens could compensate for production loss.

Contents

Executive Summary Error! Bookmark not defined.
Table of Figures4
Introduction5
Flow Contribution5
Water Quality Sampling5
Conventional Chemistry5
Conventional Chemistry5
Well Information Summary6
Well Construction6
Temperature Survey7
Pressure Survey8
Dynamic Flow Profile9
Percent Contributions9
Down-hole Geophysics and Flow Contribution Comparison
Dynamic Chemistry Profile12
Results12
Conventional Chemistry12
Calculations12
Zonal Concentrations of Water Quality Parameters13
Discussion16
Water Chemistry16
Well Modification Scenario16
Recommendations18
Appendix A Lab Results Summary19
Appendix B Flow Weighted Results Summary20

11

Table of Figures

Figure 1: Well completion diagram6
Figure 2: Ambient temperature profile of Well 257
Figure 3: Normalized pressure vs. depth under ambient (non pumping conditions)
Figure 4: Cumulative discharge for Well 25 at 966 gpm9
Figure 5: Zonal flow contribution for Well 25 at 966 gpm10
Figure 6: Zonal percent Flow contribution for Well 25 at 966 gpm10
Figure 7: Resistivity
Figure 8: Natural gamma11
Figure 9: Percent flow contribution11
Figure 10: Zonal alkalinity concentration13
Figure 11: Zonal chloride concentration13
Figure 12: Zonal total chromium concentration14
Figure 13: Zonal hexavalent chromium concentration14
Figure 14: Zonal sulfate concentration15
Figure 15: Zonal TDS concentration15
Figure 16: Uranium concentration16
Figure 17: Calculated versus actual wellhead concentrations17
Figure 18: Theoretical chromium well head concentration17

Introduction

BESST performed a dynamic flow and water chemistry profile on February 12-14, 2014, for the **Santa Ynez River Water Conservation District Well 25**, located in Los Olivos, California.

Flow Contribution

Flow contribution in **Well 25** was measured at thirteen (13) discrete depths along the well bore from **600** to **810** feet below ground surface (ft bgs). The apparent travel time collected from Well 25 was used to calculate zonal flow contribution.

Water Quality Sampling

BESST conducted dynamic water quality sampling using the HydroBooster sampling method on February 13, 2014, collecting water samples at thirteen (13) discrete depths. Sample results are shown by analyte in figures 10 through 16.

Chemical analysis was performed by Eurofins Eaton Analytical. The water quality constituents and parameters included:

Conventional Chemistry

- Alkalinity
- Chloride
- Sulfate (SO₄)
- Total Chromium

- Hexavalent Chromium
- pH
- Total Dissolved Solids
- Uranium

Conventional Chemistry

Each graph shows the dynamic chemical contribution of the analyte versus the sampling depth interval (ft bgs). The dynamic chemistry profile estimates geologic water (zonal) chemistry by considering dilution and mixing factors inside the steady state (pumping) water supply well.

Below the pump, water is flowing into the well casing through the screen sections and upward in the well towards the pump intake.

Well Information Summary

The following information for Santa Ynez River Water Conservation District Well 25 is based on technical information provided by DUDEK.

Well Construction

The well screen is a single slot louvered screen, 14.5 inches O.D. by 5/16" wall with screened intervals at the following depths (ft bgs):

• 630'- 750' • 775' - 820' • 880' - 930'

In September of 2012, Well 25 was fitted with the following patches:

• 1st patch: 117.4' - 122.5'

- 3rd patch: 197.6' 202.6'
- 2nd patch: 158.6' 163.7'
- 4th patch: 277.3' 282.3'

The pump is set at approximately 520 ft bgs with a 10" O.D. pump column diameter. Observed pumping water level is 427 ft bgs with a pumping rate of 966 gpm.

Figure 1: Well completion diagram

Temperature Survey

Figure 2: Ambient temperature profile of Well 25. Data collected by BESST Inc. Interpretation courtesy DUDEK.

Pressure Survey

Figure 3: Normalized pressure vs. depth under ambient (non-pumping conditions).

Under ambient conditions inside a well, groundwater flows from the highest to lowest potential, i.e., highest to lowest pressure. Normalized pressure is arithmetically defined as the difference between the theoretical pressure gradient and measured or actual gradient. The theoretical gradient is generally defined as 1 PSI/2.31 ft for pure water. Being that groundwater inside the well is not pure, we know that there is a small amount of error when using pure water to estimate the normalized pressure gradient. Therefore we cannot interpret outflow and inflow zones along the length of the well screen on the basis of an individual point but rather as a trend defined from a series of depth-dependent point measurements. The totality of these measurements is what helps in the understanding of the flow gradient inside a well.

The pressure survey was performed using a vented Level Troll 700 manufactured by In-Situ, Inc. The head differential measured inside Well 25 was 634 feet, and within the accuracy and resolution range specifications stated by the manufacturer.

The normalized pressure curve presented in Figure 3 shows a strong positive pressure kick starting at a depth of about 750 feet below ground surface and increasing with depth. These data suggest an upward gradient inside the well from the lower, middle and possibly the lower part of the upper well screens. The outflow zone appears to be within the middle to upper portions of the upper well screen. The potential benefit of such hydraulic behavior is to minimize the downward migration of higher concentrations of undesirable constituents.

Dynamic Flow Profile

The dynamic flow profile was performed using the USGS Tracer Pulse Dynamic Flow Profile method to measure flow contribution along the length of the well (Figures 4 through 6). The profile was conducted at a flow rate of 966 gallons per minute (gpm).

Corrected discharge shows the cumulative flow profile along the length of the well. The raw cumulative flow data was corrected by a factor of 1.01 (actual pump rate over theoretical pump rate) to match the field pumping rate.

Incremental flow is calculated by finding the difference in corrected discharge (cumulative flow) depths. The incremental flow graph shows zonal flow contribution between each dye injection location.

The percent contribution graph is in principal the same information as incremental flow. Adding up all labeled values in incremental flow will give the pumping rate, and the same calculation for percent will add up to 100% of the pumping rate. Percent contribution is calculated by dividing incremental flow by the pumping rate of 966 gpm.

Percent Contributions

Flow calculations indicate that the top two sections of screen contribute 100% towards the total pumping rate. BESST Inc. saw no dye returns below 810 ft bgs. This means the measurable upward movement of water toward the pump intake stops just below 810 ft bgs.

The two remaining zones that contribute flow include the sections from 630 ft bgs - 750 ft bgs and 775 - 820 ft bgs. The geophysical log (Figure 7) indicates that the potential for flow is highest from 600-750 ft bgs. This correlates with the 630 -750 ft well screen which contributes about 95% of the total flow. The second well screen (775-820 ft bgs) produces the remaining 5% of the total flow. The second well screen also correlates with a high resistivity spike (Figure 7).

Figure 4: Cumulative discharge for Well 25 at 966 gpm.

Figure 5: Zonal flow contribution for Well 25 at 966 gpm.

Figure 6: Zonal percent Flow contribution for Well 25 at 966 gpm.

Down-hole Geophysics and Flow Contribution Comparison

Resistivity and natural gamma data, as provided by DUDEK, correlate with BESST Inc. dynamic flow contribution data as seen in Figures 6 - 8. Major contributing zones under 966 gpm pumping condition are restricted to the upper two screen sections.

Although BESST Inc. did not establish flow contribution from the deepest screened section (880-930 ft bgs), the resistivity graph (Figure 7) suggests there is high potential for flow. Well modification could result in a shift of flow production to the lower zone.

Dynamic Chemistry Profile

Results

The actual reported laboratory result for each analyte is listed in Appendix A, and includes the reported values as well as significant digits for analytes that fall below laboratory detection limit. Detected analytes are listed below.

Conventional Chemistry

- Alkalinity
- Chloride
- Sulfate (SO₄)

- Hexavalent Chromium
- Total Dissolved Solids
- Uranium

• Total Chromium

The measures lab result values used in the mass balance calculation are shown in Appendix A on page 19.

Calculations

In figures 10 - 16, the incremental concentration is a calculated value that has been "mass balanced" using the measured concentration and the flow contribution for each depth interval.

When working with results that are reported as "below laboratory detection limit", in order to still perform the mass balance calculation, a value of one-half of the detection limit was assigned. This adds a degree of uncertainty as to exactly how low the measured value actually was, but the calculated value is still a useful number in that it yields a relatively low incremental concentration.

Zonal Concentrations of Water Quality Parameters

Figure 10: Zonal alkalinity concentration.

Dynamic Flow and Chemistry Profiling Report: Santa Ynez River Water Conservation District Well 25, Los Olivos, CA

Figure 12: Zonal total chromium concentration.

Figure 13: Zonal hexavalent chromium concentration. Proposed State of California MCL of 0.10 mg/L (10 ug/L) indicated by the dotted line.

Figure 14: Zonal sulfate concentration.

Figure 15: Zonal TDS concentration. The federal secondary MCL of 500 mg/L is indicated by the dotted line.

Figure 16: Uranium concentration.

NOTE: These values are not indicative of formational concentration. BESST Inc. does not have sufficient data at this time to conduct mass balance for Uranium. Values shown are lab results.

Discussion

Water Chemistry

The sample analysis results are used in conjunction with the flow calculations and principles of conservation of mass to determine the specific water quality of various zones along the well screen.

Well Modification Scenario

Important Points:

- All tested analytes excluding total dissolved solids (TDS) are under the maximum contaminant level (MCL) for the National Primary Drinking Water Regulations (NPDWR).
- The given scenario is based on the decreasing chromium concentration with depth. A change is observed after 690 ft bgs in total chromium and hexavalent chromium, from 10.9 and 14.1 ppb down to 4.1 and 7.8 ppb, respectively (Figure 18).
- Total chromium and hexavalent chromium theoretical wellhead concentration estimates decrease as the blocked length in the uppermost well screen is increased (from top to bottom).
- TDS theoretical wellhead concentration is reduced below the Federal MCL when well screen is block from 500-765 feet bgs. While this scenario exhibits a maximum production loss of 94%, it is possible that installing an engineered suction between the middle and lower screens could compensate for production loss.

Dynamic Flow and Chemistry Profiling Report: Santa Ynez River Water Conservation District Well 25, Los Olivos, CA

Analyte:	Unit	MCL	Average Wellhead Concentration	Theoretical Concentration:	Block: 500'- 630'	Block: 500'- 645'	Block: 500'- 675'	Block: 500'- 690'	Block: 500'- 765'
Maximum Production Loss	%	-	0%	0%	17%	53%	64%	70%	94%
Alkalinity CaCO3	mg/L	-	267	270	270	260	270	250	280
Chloride	mg/L	250	32	32	31	30	29	29	37
Total Chromium	ug/L	10	8.7	8.6	8.7	7.5	6.2	5.3	0.5
Hexavalent Chromium Dissolved	ug/L	10	9.8	9.8	9.6	8.4	7.8	6.6	0.01
Sulfate	mg/L	250	130	130	140	140	140	140	75
Total Dissolved Solids	mg/L	500	523	530	530	540	530	530	450

Figure 17: Calculated versus actual wellhead concentrations. Dissimilar values may point to data that does not fully explain actual wellhead analyte results. Dissimilar wellhead results are highlighted.

Figure 18: This graph shows the theoretical chromium well head concentration as the length of blocked off screen section is increased.

17

Recommendations

Based on the data results, it is highly recommended that a feasibility test be performed on Well 25. The feasibility test would consist of the placement of a packer in the cased section of the well between the upper and middle screen for the purpose of blocking groundwater production from the upper screen.

Additionally, an engineered suction should extend from the bottom of the packer and then into and through the middle and lower screen sections of the well. The perforations on the engineered section should coincide in depth with the middle and bottom screen intervals of the well. The distance between the bottom of the packer and the top perforations of the engineered suction should be carefully considered. Enough vertical distance is required between these two points to ensure that water from the upper screen is not pulled down through the sand pack to the middle screen. A separation distance of at least 20 feet is recommended.

The diameter of the engineered suction is of great importance. It should be between 50 to 60% of the diameter of the well.

An additional option to the packer design is to use a "pass-through packer" which is constructed with two mandrels rather than one as in standard packer construction. The inflatable elastomer is formed around the outside mandrel and a stainless steel pass-through pipe is welded between the outer and the inner mandrel. The pass-through pipe can be anywhere between 1" to 1 ½" ID and threaded on each end where it exits the packer from the top and the bottom. PVC pipe can then be threaded onto the top and/or bottom. From the top the PVC pipe can extend to the ground surface.

This design creates an accessible port through which a miniaturized camera, flow or sampling device can be inserted at a later time to perform surveys inside the well and below the packer if required. For example, the miniaturized camera can be used to inspect the condition of the well screen at some later point to determine if rehabilitation is necessary. The access port can also be used following the installation to see if the separation distance between the bottom of the packer and top perforation of the engineered suction is sufficient.

To determine whether this distance is sufficient, a tracer injection tool would be lowered into the well and placed in the annulus directly above the packer. The tracer would be released with a fluorometer plumbed into the discharge port at the ground surface. If tracer is detected, then it can be assumed that some of the water from the upper well screen is being drawn down through the sand pack. The test would only be performed if the desired result from the feasibility test is not achieved.

Lastly, feasibility tests are not performed over a short-term time frame, but rather over a 3 to 6 month time frame to prove out sustainability of the well modification. It is recommended that the Santa Ynez River Water Conservation District utilize the services of a consultant to oversee the feasibility test, including installation of the packer and engineered suction.
			ion y					
Depth Intervals	Alkalinity	Chloride	Total Chromium	Hexavalent Chromium Dissolved	рН	Sulfate	Total Dissolved Solids	Uranium
	mg/L	mg/L	ug/L	ug/L	Units	mg/L	mg/L	ug/L
Fed. MCL	-	250	100	-	-	250	500	30
500	270	49	14	14	8.4	72	480	-
600	270	32	8.6	9.8	7.9	130	530	-
630	270	31	8.7	9.6	7.8	140	530	-
645	260	30	7.5	8.4	8.5	140	540	6.5
675	270	29	6.2	7.8	7.8	140	530	-
690	250	29	5.3	6.6	8.5	140	530	-
705	240	29	5.5	6.4	8.6	140	530	-
720	270	30	4.9	5.4	8.6	140	530	-
735	260	33	2	2.2	7.9	110	480	-
765	280	37	ND	ND	8	75	450	7.1
780	260	37	ND	ND	8	76	460	-
795	220	36	ND	ND	8	73	440	-
890	270	36	ND	ND	7.9	69	410	-
WH1	270	32	8.9	9.7	7.8	130	530	6.7
WH2	270	32	8.6	9.8	7.8	130	520	-
WH3	260	32	8.5	9.8	7.8	130	520	-

Appendix A Lab Results Summary

Appendix B Flow Weighted Results Summary

Depth Interval	Flow Rate	Alkalinity	Chloride	Total Chromium	Hexavalent Chromium Dissolved	Sulfate	Total Dissolved Solids	Uranium
Ft bgs	gpm	mg/L	mg/L	ug/L	ug/L	mg/L	mg/L	ug/L
MCL	-	-	250	100	-	250	500	30
500	0	270	49	14	14	72	480	-
600-630	161	270	37	8.1	10.8	80	530	
630-645	352	282	32	10.2	11.1	140	517	-
645-675	107	228	33	11.7	10.3	140	572	6.5
675-690	55	375	29	10.9	14.1	140	530	-
690-705	39	313	29	4.1	7.8	140	530	-
705-720	127	211	28	6.1	7.4	140	530	-
720-735	51	283	26	8.9	9.8	181	599	-
735-765	21	214	24	5.4	7.2	189	548	-
765-780	16	320	37	0.5	0.0	73	430	7.1
780-795	20	284	38	0.5	0.0	78	472	-
795-890	12	220	36	0.5	0.0	73	440	-
890	0	270	36	0.5	0.0	69	410	-
WH #1	-	270	32	8.9	9.7	130	530	6.7
WH #2	-	270	32	8.6	9.8	130	520	-
WH #3	-	260	32	8.5	9.8	130	520	-

APPENDIX D3

Pacific Surveys Data Well 27

Production String 14.5 Liner	Casing Record Si Surface String Prot String		Run Number Bit F	Witnessed By	Recorded By	Location	Equipment Number	Time Logger on Bottom	Pump Rate (GPM) Time Well Readv	Max. Recorded Temp.	Density / Viscosity	Time Pumping Prior to Survey	Pump Set @	Bottom Logged Interval	Depth Logger	Depth Driller	Run Number	Date	Drilling Measured From	Log Measured From	Permanent Datum	Sec. Twp.	2121 HWY 154 GPS:N34038.573" W120005.3	Location:	County	Field		Well	18505 Company			P A C I F I O S U R V E Y S	
OD	Ze		rom	J. KUBF	ABREA	L.A.	PS-5	10:30 A	SIAIIC 10:15 A	77.6 F	N/A	NA	318'	1199'	1199'	1200'	ONE	06/20/2	N/A	Top of C	Top of Ca		76'		SANTA	SANTA		UPLAN	DUDE				
N/A	Wgt/Ft		7	RAN	C			Z	≤``									014		asing	asing	Rge.			BARBA	YNEZ		ID WELL	< ENGIN]]	臣	
			Size																	above per	Elevation				RA St			#27	EERING			TEMF	
0	Top		Weight																	m. datum			NONE	Other S	ate C,						RESIS	EMPER	
	B		From																G.L.		Ele	-		ervices:	A							JRE RATUR	i I
200'	ottom		То																		vation									Υ	ł	Ш	
All interp correct dar	old Her pretatio tness o mages,	re >>> ns are op f any inte or exper inter	pinions rpreta nses in pretati	s ba tior ncur ions	sec i, ai rec s ar	d or nd d or re a	n in we su also	ifer sha sta su	ence all ne ined bjec	es fr ot, e by t to	rom exce any Pao	ele ept /on cific	ectri in th e re : Su	cal ne c esul rve	or o case ting ys'	oth e of g fro ger	er i f gr om ner	me os ar al	easu is or iy in tern	irer wil iter ns a	nen Iful oret and	its ar negl tatior conc	nd Pacil igence n made ditions s	ic Su on ou by ar set ou	rveys ir par iy of c t in o	cann t, be bur of ur cu	not a liab ffice rrer	and le o ers, nt Pi	do not r respo agents rice Sch	guarar nsible t or emp ledule.	itee th for any loyees	e accuracy / loss, cost s. These	/ or s,
																<u> </u>		<u>mr</u>	ner	<u></u>													

Database File18505.dbDataset PathnametmpDataset CreationFri Jun 20 10:46:07 2014

Calibration Report

			Temperature	e Calibratio	on Report			
	Serial Num Tool Model Performed:	ber: 5269 : MLS Tue	Nov 19 16:37:	00 2013				
		Refe	rence	Readii	ng			
	Low Refere High Refere	ence: 46.04 ence: 146.3	4 degF 30 degF	1527.0 4253.0)0cps)0cps			
	Gain: Offset: Delta Spac	0.04 -10.1 ing 2	2					
Database Dataset P Presentat Dataset C Charted b	File 1850 Pathname tmp ion Format frtten Creation Fri Ju by Deptl	5.db np2 in 20 10:46:07 20 n in Feet scaled 1	14 :240					
	10 F	luid Resistivity (C)hm-m)	20	65	Temperatu	re (degF)	85
	-0.25 Differe	ntial Fluid Resisti	vity (Ohm-m)	0.25	-0.25	Differential Tem	perature (degF)	0.25
			(Ohm-m)				i ⊑iviP (degF)
200								
				- 0.8				- 67.4
250				20.3		Image: set of the set of th		- 67.4
			228- 2555555	- 14.7				- 67.8
			255- XXXX25- XXXX25- 	- 14.7				67.9
300				- 14.5				68.1

	1200																															
		10			Flui	id Re	esis	stivit	ty (0	Ohr	n-n	ו)		·		20	65	5			Те	mpe	erat	ure	(d	egF	-)				8	85
		-0.2	5	Diffe	erenti	ial Fl	luid	Re	sist	ivity	/ (C)hm	n-m)	(0.25	-0).25	C	Diffe	ren	tial	Ten	npe	rat	ure	(d	egF)		0.2	25
														FI	RE	3														TE	ИР	
														(Oł	ım-	m)														(de	gF)	
L																													1			

Production String Liner	Surface String Camera Tube	Casing Record	LOUVERS .(LOUVERS .(Type Slo	Pe	Witnessed By	Recorded By	Location	Equipment Number	Time Logger on Bot	Time Well Ready	Max. Recorded Len	Pumping Water Lev	Time Pumping Prior	Pump Set @	Top Log Interval	Bottom Logged Inte	Depth Logger	Depth Driller	Run Number	Date	Drilling Measured Fi	Log Measured From	Permanent Datum	Sec.	GPS:N34o38.573"	2121 HWY 154	Location:	0	File No.		5	18524 C	Job No.					2
14.5" OD		Size	1095"	940'	t Size From	rforation Record					tom		qr	e	r to Survey		ŝ	Nal					rom N,	T	T	Twp.	W120o05.376'			ounty S	ield S		/ell U	ompany D						
		_					S. DICKE	ABREAU	L.A.	PS-5	9:30 AM	9:00 AM	77.6 F	245'	24 HOUF	318'	850'	1199'	1199'	1200'	ONE	06/24/20	A/	op of Ca	op of Ca					ANTA	ANTA	[IPLAN	UDEK						
N/A		W/nt/F		040'	5		Y								S							14	1	sing	sing	Rg				BARB,	YNEZ		D WEL	ENGIN			т			
		÷			Type		J. KU	AFO											_					above	Elevat	ţ.				ARA			L #27	VEERIN			UMP	D		
0	-				Slot Si	Perfo	BRAN	-) perm. dat	tion					State				G			ING C	NMO	SPIN	
					Ze F	oration Rec													_					um			SAMPLING	SPINNER	Other Serv	CA							ÖND	RUN	NER	
12		Ro-			rom	ord																	G.L.		Elev	!	JNTS	ANALYSIS	ices:								ITION	0)		
00'		fom			То																				ation	:														
<-< F All interp correc dai	old H pretat tness mage	ere ions of a s, o	>>> any in r exp int	opi iterj ens erp	nio pre ses	ns etati s inc atic	bas ion curr	sec , ar red ; ar	l or I or e a	n in we su also	nfer sh ista su	enc all r ine bje	es f iot, d by ct to	ron exc an Pa	n el ept yor icific	ectr in 1 ne r c Si	rica the esu urv	al o ca ultir reys	r o ise ng s' g	othe of fro	er r gr om ner	me ose an al t	asu s or y in ern	irer wi nter	mer Ilful pre and	nts a neg tatio con	nd F liger n ma ditio	Pacifi nce c ade l Ins se	c Sul on ou oy ar et ou	veys ir par iy of c t in o	cann t, be l our of ur cui	ot a liab fice rer	and le o ers, a nt Pr	do no r resp agent ice So	ot gu ions s or chec	iarar ible t emp dule.	itee ti for ar loyee	ne ac y los es. Th	curac s, cos iese	cy or sts,
																				C	Sor	<u>mn</u>	ner	<u>nts</u>	3															
Data Data Pres Data	ibase iset F enta iset (e Fi Pati tior Cre	le hnan n For atior	ne ma	at	1 s s T	185 spri spii	524 14 nm e J	1.d ner un	lb rg n 24	4 1	1:4	19:	54 :	20	14																								

Depth in Feet scaled 1:240

Charted by

Production String Liner	Camera Tube	Casing Record		LOUVERS .055	LOUVERS .055	Type Slot Si	Witnessed By	Recorded By	Location	Equipment Number	Time Logger on Bottom	Time Well Ready	Max. Recorded Temp.	Pumping Water Level	Time Pumping Prior to	Pump Set @	Ton I on Interval	Dettern Logger	Depth Driller	Kun Number	Date	Drilling Measured From	Log Measured From	Permanent Datum	Sec.	2121 HWY 154 GPS:N34o38.573" W1	Location:		Cou			We	Job No. 18524 Con				SURV	PACI
14.5" OD		Size		" 1095'	" 940'	ze From	S. D	ABR	L.A.	PS-5	9:30	00.00	77.6	245'	Survey 24 H	318	- 	1199	1200	UNE	06/2	N/A	Top of	Top of	Twp.	20005.376'			Intv SAN	d SAN	- - [npany DUD				EYS	FIC
N/A		Wgt/Ft		1185'	1040'	ТоТу	ICKEY	EAU			AM	AM	П		IOURS						4/2014		Casing	Casing	Rge.				TA BARBAR	TA YNEZ		AND WELL #	EK ENGINEI	-		Ω.		
0'		Тор				/pe Slot Size	J. KUBRAN	AFOH															above perm. datum	Elevation		SA	C	2	A State		1	70	ERING			UNNER AN	-LUID VEL	SPINN
1200'		Bottom				From																G.L.	D.F.B.	Elevatio		NAMIC SPINNER MPLING	ier Services:		CA							SISA IV	OCITY	ER
All inter correc da	Fold rpreta ctnes amag	Her ationss of ges,	re >> ns a f any or e	>> y int expe inte	opir erp ens	nion: preta ses ir retat	s ba atior ncur ion:	ase n, a rrec s a	d o nd d oi re a	n in we r su also	ifero sha stai	ence all ne ned	es fi ot, e by t to	rom exce any Pa	i ele ept yon cific	ectr in t e re	ical he esu	or cas Itin	oth se c g fr	ner of g on	me pros n ar	easu is oi ny ir terr	urei r wi nter ms :	mer Illful pre and	nts al neg tatio	nd Pac ligence n made ditions	ific Si on c by a set o	urve our p any ut in	eys o part of o n ou	cann , be li ur off ır cur	ot a iabl fice ren	and le o ers, it Pi	do not r respo agents rice Sch	guara nsible or em	ntee for a ploye	the any l ees.	accu oss, c Thes	acy or costs, e
																			(Co	<u>omr</u>	me	nts	3														
Data Data Pres Data Cha	abas aset sent aset	se l Pa atio	File athr on F eat	nam Forr	ne ma	at	18 me spi Fri De	52 erg Ju	4.c e1 nei un	db rg 27 n F	14 ee	:30	:48	3 2(ed 1)14 1:2	40																						

Upland	Well	#27
--------	------	-----

SPINNER LOG ANALYSIS				Pacific Surveys
MAX FLOW RATE	557.05	GPM		
PERFS	PRODUCTION	% OF FLOW		THICKNESS
DEPTHS	GPM	ZONES	GPM/FT	ft
940-950	43.70	8%	4.37	10
950-960	0.00	0%	0.00	10
960-980	93.07	17%	4.65	20
980-1000	80.55	14%	4.03	20
1000-1020	76.70	14%	3.84	20
1020-1030	34.15	6%	3.42	10
1030-1040	90.67	16%	9.07	10
1095-1100	32.98	6%	6.60	5
1100-1120	50.21	9%	2.51	20
1120-1150	41.51	7%	1.38	30
1150-1170	6.82	1%	0.34	20
1170-1185	6.69	1%	0.45	15

Fluid Velocity of Two Down Runs Upland Well #27

APPENDIX D4

BESST Inc. Report Well 28

Dynamic Flow and Chemistry Profiling Report: Santa Ynez River Water Conservation District Well 28 Los Olivos, CA

Prepared by: Kim Miles and Debra Cerda

Reviewed by: Debra Cerda and Noah Heller

Executive Summary

On March 7 and 10, 2014, BESST, Inc. (BESST) performed a dynamic flow and water quality chemistry profile for **Well 28**, which is owned and operated by **Santa Ynez River Water Conservation District**.

The dynamic flow and water quality profile was performed to measure and calculate flow contribution as well as water quality concentrations and contributions from three screened intervals measuring 140 feet in total length.

The purpose of this profiling event for Well 28 was to investigate levels of hexavalent chromium above the proposed state MCL of 10 micrograms per liter (μ g/L).

The dynamic flow profile was performed using the USGS Tracer Pulse Dynamic Flow Profile method to measure flow contribution along the length of the well. Sampling depths were determined through assessment of available well information, which is summarized in the Well Information Summary.

A temperature survey (Figure 2) and pressure survey were conducted. The normalized pressure curve is presented in Figure 3.

BESST conducted dynamic water quality sampling using the HydroBooster sampling method on March 10, 2014, collecting water samples at 12 discrete depths. Sample results are shown by analyte in Figures 9 through 14.

There is a distinct zone of elevated chromium levels from about 750 to 790 feet below ground surface (ft bgs). Total chromium and hexavalent chromium theoretical wellhead concentration estimates decrease when the high chromium section within the middle screen is blocked.

However, the TDS theoretical wellhead concentration cannot be reduced below the federal MCL in this scenario. While this scenario exhibits a maximum production loss of 50%, it is possible that installing an engineered suction to avoid the middle section could compensate for production loss.

It is difficult to estimate the chemical production from the lower screen at this time considering it was not producing water during the dynamic flow and chemistry profile. Lab results show dramatically lower chromium concentrations in the deepest screen (non-producing) section.

Based on the data results, it is highly recommended that a feasibility test be performed on Well 28. The feasibility test would consist of the placement two packers for the purpose of blocking groundwater production from contaminated section of the middle screen.

Additionally, an engineered suction should extend from the bottom of the packer and then into and through the middle and lower screen sections of the well.

Contents Executive Summary2
Table of Figures4
Introduction5
Flow Contribution5
Water Quality Sampling5
Conventional Chemistry5
Conventional Chemistry5
Well Information Summary6
Well Construction6
Temperature Survey and Resistivity Long Well 287
Pressure Survey Well 288
Dynamic Flow Profile8
Percent Contributions9
Down-hole Geophysics and Flow Contribution Comparison 11
Dynamic Chemistry Profile12
Results12
Conventional Chemistry12
Calculations12
Zonal Concentrations of Water Quality Parameters 13
Discussion17
Water Chemistry17
Well Modification Scenario17
Recommendations18
Appendix A Lab Results Summary19
Appendix B Flow Weighted Results Summary

Dynamic Flow and Chemistry Profiling Report: Santa Ynez River Water Conservation District Well 28 Los Olivos, CA

Table of Figures
Figure 1: Well completion diagram6
Figure 2: Ambient temperature profile of Well 287
Figure 3: Normalized pressure vs. depth under ambient (non-pumping conditions)
Figure 4: Cumulative discharge for Well 28 at 750 gpm9
Figure 5: Zonal flow contribution for Well 28 at 750 gpm10
Figure 6: Zonal percent Flow contribution for Well 28 at 750 gpm
Figure 7: Resistivity11
Figure 8: Percent Flow Contribution
Figure 9: Zonal alkalinity concentration13
Figure 10: Zonal chloride concentration13
Figure 11: Zonal sulfate concentration14
Figure 12: Zonal TDS concentration14
Figure 13: Zonal total chromium concentration15
Figure 14: Zonal hexavalent chromium concentration15
Figure 15: Uranium lab results
Figure 16: Calculated versus actual wellhead concentrations and wellhead modification scenario

Introduction

BESST performed a dynamic flow and water chemistry profile on March 7 and 10, 2014, for the **Santa Ynez River Water Conservation District Well 28**, located in Los Olivos, California.

Flow Contribution

Flow contribution in **Well 28** was measured at fifteen (15) discrete depths along the well bore from **620** to **800** feet below ground surface (ft bgs). The apparent travel time collected from Well 28 was used to calculate zonal flow contribution.

Water Quality Sampling

BESST conducted dynamic water quality sampling using the HydroBooster sampling method on March 10, 2014, collecting water samples at twelve (12) discrete depths. Sample results are shown by analyte in figures 10 through 16.

Chemical analysis was performed by Eurofins Easton Analytical. The water quality constituents and parameters included:

Conventional Chemistry

- Alkalinity (CaCO₃)
- Chloride
- Sulfate (SO₄)
- Total Chromium
- Hexavalent Chromium
- Total Dissolved Solids
- Uranium

Conventional Chemistry

Each graph shows the dynamic chemical contribution of the analyte versus the sampling depth interval (ft bgs). The dynamic chemistry profile estimates geologic water (zonal) chemistry by considering dilution and mixing factors inside the steady state (pumping) water supply well.

Below the pump, water is flowing into the well casing through the screen sections and upward in the well towards the pump intake.

Well Information Summary

The following information for Santa Ynez River Water Conservation District Well 28 is based on technical information provided by DUDEK.

Well Construction

The well screen is a single slot louvered screen, 14 inches O.D. with screened intervals at the following depths (ft bgs):

- 640'-685'
- 725'-800'
- 900'-920'

The pump is set at approximately 450 ft bgs with an 8" O.D. pump column diameter. Observed pumping water level is 281 ft bgs with a pumping rate of 750 gallons per minute (gpm), which is the normal operating rate of the well.

Figure 1: Well completion diagram

Temperature Survey and Resistivity Long Well 28

Pressure Survey Well 28

Figure 3: Normalized pressure vs. depth under ambient (non-pumping conditions).

Under ambient conditions inside a well, groundwater flows from the highest to lowest potential, i.e., highest to lowest pressure. Normalized pressure is arithmetically defined as the difference between the theoretical pressure gradient and measured or actual gradient. The theoretical gradient is generally defined as 1 PSI/2.31 ft for pure water. Being that groundwater inside the well is not pure, we know that there is a small amount of error when using pure water to estimate the normalized pressure gradient. Therefore we cannot interpret outflow and inflow zones along the length of the well screen on the basis of an individual point but rather as a trend defined from a series of depth-dependent point measurements. The totality of these measurements is what helps in the understanding of the flow gradient inside a well.

The pressure survey was performed using a vented Level Troll 700 manufactured by In-Situ, Inc. The head differential measured inside Well 28 was 768 feet.

Dynamic Flow Profile

The dynamic flow profile was performed using the USGS Tracer Pulse Dynamic Flow Profile method to measure flow contribution along the length of the well (Figures 4 through 6). The profile was conducted at a flow rate of 750 gpm.

Corrected discharge shows the cumulative flow profile along the length of the well. The raw cumulative flow data was corrected by a factor of 1.07 (actual pump rate over theoretical pump rate) to match the field pumping rate.

Incremental flow is calculated by finding the difference in corrected discharge (cumulative flow) depths. The incremental flow graph shows zonal flow contribution between each dye injection location.

The percent contribution graph is in principal the same information as incremental flow. Adding up all labeled values in incremental flow will give the pumping rate, and the same calculation for percent will add up to 100% of the pumping rate. Percent contribution is calculated by dividing incremental flow by the pumping rate of 750 gpm.

Percent Contributions

Flow calculations indicate that the top two sections of screen contribute 100% towards the total pumping rate. BESST observed no dye returns starting at 850 ft bgs. This means the measurable upward movement of water toward the pump intake stops just below 800 ft bgs.

The two remaining zones that contribute flow include the sections from 640 ft bgs - 685 ft bgs and 725 - 800 ft bgs. The geophysical log (Figure 7) correlates with relative high flow production zones in the two upper well screens.

Figure 6: Zonal percent Flow contribution for Well 28 at 750 gpm.

Down-hole Geophysics and Flow Contribution Comparison

Figure 7: Resistivity

Figure 8: Percent Flow Contribution

Resistivity data provided by DUDEK, correlates with BESST dynamic flow contribution data as seen in Figures 7 - 8. Major contributing zones under 750 gpm pumping condition are restricted to the upper two screen sections.

Although BESST did not establish flow contribution from the deepest screened section (900-920 ft bgs), the resistivity graph (Figure 7) suggests there is high potential for flow. Well modification could result in a shift of flow production to the lower zone.

Dynamic Chemistry Profile

Results

The actual reported laboratory result for each analyte is listed in Appendix A, and includes the reported values as well as significant digits for analytes that fall below laboratory detection limit. Detected analytes are listed below.

Conventional Chemistry

- Alkalinity
- Chloride
- Sulfate (SO₄)
- Total Chromium

- Hexavalent Chromium
- Total Dissolved Solids
- Uranium
- pH

The measures lab result values used in the mass balance calculation are shown in Appendix A on page 19.

Calculations

In figures 9 - 15, the incremental concentration is a calculated value that has been "mass balanced" using the measured concentration and the flow contribution for each depth interval.

When working with results that are reported as "below laboratory detection limit", in order to still perform the mass balance calculation, a value of one-half of the detection limit was assigned. This adds a degree of uncertainty as to exactly how low the measured value actually was, but the calculated value is still a useful number in that it yields a relatively low incremental concentration.

Zonal Concentrations of Water Quality Parameters

Dynamic Flow and Chemistry Profiling Report: Santa Ynez River Water Conservation District Well 28 Los Olivos, CA

Figure 12: Zonal TDS concentration. The federal secondary MCL of 500 mg/L is indicated by the dashed line.
Dynamic Flow and Chemistry Profiling Report: Santa Ynez River Water Conservation District Well 28 Los Olivos, CA

Figure 13: Zonal total chromium concentration. The MCL for total chromium is 50 ug/L.

Figure 15: Uranium lab results. These values are not indicative of formation concentration. BESST does not have sufficient data at this time to conduct mass balance for uranium.

Discussion

Water Chemistry

The sample analysis results are used in conjunction with the flow calculations and principles of conservation of mass to determine the specific water quality of various zones along the well screen.

Well Modification Scenario

Important Points:

- The given scenario is based on a spike in chromium concentration from 750-790 ft bgs.
- Total chromium and hexavalent chromium theoretical wellhead concentration estimates decrease when the high chromium section within the middle screen is blocked.
- TDS theoretical wellhead concentration cannot be reduced below the federal MCL in this scenario.
- While this scenario exhibits a maximum production loss of 50%, it is possible that installing an engineered suction to avoid the middle section could compensate for production loss.
- It is difficult to estimate the chemical production from the lower screen at this time considering it was not producing water during the dynamic flow and chemistry profile. Lab results show dramatically lower chromium concentrations in the deepest screen (non-producing) section.

Analyte:	Unit	MCL	AVG WH	THEOR. WH	Block: 620'-685'	Block: 760'-790'	Block: 750'-790'	Block: 760'-770'
Maximum Production Loss	%	-	0%	0%	28%	21%	50%	3%
Alkalinity CaCO3	mg/L	-	245	228	230	226	218	230
Chloride	mg/L	250	36	36	34	38	40	36
Total Chromium	μg/L	10	8.30	9.23	10.00	7.31	5.87	8.64
Hexavalent Chromium Dissolved	µg/L	10	8.95	10.33	11.00	7.82	6.10	9.2
Sulfate	mg/L	250	140	140	130	141	148	140
Total Dissolved Solids	mg/L	500	560	528	520	528	539	533

Figure 16: Calculated versus actual wellhead concentrations and wellhead modification scenario. Dissimilar values may point to data that does not fully explain actual wellhead analyte results. Analyte values that exceed the MCL are highlighted in red.

Recommendations

Based on the data results, it is highly recommended that a feasibility test be performed on Well 28. The feasibility test would consist of the placement two packers for the purpose of blocking groundwater production from contaminated section of the middle screen. There is a distinct zone of elevated chromium levels from about 750 to 790 ft bgs. Maximum production loss versus chromium reduction can be compared in figure 16.

Additionally, an engineered suction should extend from the bottom of the packer and then into and through the middle and lower screen sections of the well. The perforations on the engineered section should coincide in depth with the middle and bottom screen intervals of the well. The distance between the bottom of the packer and the top perforations of the engineered suction should be carefully considered. Enough vertical distance is required between these two points to ensure that water from the blocked portion of the middle screen is not pulled through the sand pack. A separation distance of at least 20 feet is recommended.

The diameter of the engineered suction is of great importance. It should be between 50 to 60% of the diameter of the well.

An additional option to the packer design is to use a "pass-through packer" which is constructed with two mandrels rather than one as in standard packer construction. The inflatable elastomer is formed around the outside mandrel and a stainless steel pass-through pipe is welded between the outer and the inner mandrel. The pass-through pipe can be anywhere between 1" to 1 ½" ID and threaded on each end where it exits the packer from the top and the bottom. PVC pipe can then be threaded onto the top and/or bottom. From the top the PVC pipe can extend to the ground surface.

This design creates an accessible port through which a miniaturized camera, flow or sampling device can be inserted at a later time to perform surveys inside the well and below the packer if required. For example, the miniaturized camera can be used to inspect the condition of the well screen at some later point to determine if rehabilitation is necessary. The access port can also be used following the installation to see if the separation distance between the bottom of the packer and top perforation of the engineered suction is sufficient.

To determine whether this distance is sufficient, a tracer injection tool would be lowered into the well and placed in the annulus directly above the packer. The tracer would be released with a fluorometer plumbed into the discharge port at the ground surface. If tracer is detected, then it can be assumed that some of the water from the upper well screen is being drawn down through the sand pack. The test would only be performed if the desired result from the feasibility test is not achieved.

Lastly, feasibility tests are not performed over a short-term time frame, but rather over a 3 to 6 month time frame to prove out sustainability of the well modification. It is recommended that the Santa Ynez River Water Conservation District utilize the services of a consultant to oversee the feasibility test, including installation of the packer and engineered suction.

Well 28 Analytical Results	Alkalinity CaCO3	Chloride	Total Chromium	Hexavalent Chromium Dissolved	pН	Sulfate	Total Dissolved Solids	Uranium
Units	mg/L	mg/L	ug/L	ug/L	Units	mg/L	mg/L	ug/L
Fed. MCL	-	250	100	-	-	250	500	30
620	260	36	8.6	9.1	8.2	140	550	-
640	230	36	8.4	9.2	7.8	140	530	6.2
660	240	34	9.3	9.4	7.8	130	530	-
685	230	34	8.6	9.5	7.9	130	520	-
705	240	34	8.9	10	7.8	130	530	-
725	230	34	10	11	8.5	130	520	6.4
750	240	33	11	12	7.8	130	520	-
760	240	32	12	13	7.8	130	530	-
770	240	33	9.7	9.7	7.7	130	540	-
790	230	37	2.1	0.75	7.7	120	520	-
800	230	37	1	1.4	7.8	120	500	-
900	240	38	1.1	1.6	7.8	120	500	-
WH1	250	36	8.7	8.9	7.8	140	550	-
WH2	240	36	7.9	9	7.7	140	570	-

Appendix A Lab Results Summary

Appendix B Flow Weighted Results Summary

Sample Depth	Incremental Flow	Alkalinity CaCO3	Chloride	Total Chromium	Hexavalent Chromium Dissolved	Sulfate	Total Dissolved Solids	Uranium
Ft BGS	GPM	mg/L	mg/L	ug/L	ug/L	mg/L	mg/L	ug/L
Fed. MCL	-	-	250	100	-	250	500	30
620-640	0.00	-	-	-	-	-	-	-
640-660	0.00	206.61	42.35	6.04	8.83	170.95	540.83	6.2
660-685	0.11	652.56	21.44	40.95	0.92	81.97	835.43	-
685-705	0.19	-	-	-	-	-	-	-
705-725	0.03	-	-	-	-	-	-	-
725-750	0.28	176.99	39.30	4.70	5.70	130.00	520.00	6.4
750-760	0.11	240.00	34.14	9.86	10.86	130.00	508.59	-
760-770	0.00	240.00	21.50	36.15	47.65	130.00	425.00	-
770-790	0.00	245.95	30.62	14.22	15.02	135.95	551.90	-
790-800	0.01	230.00	37.00	2.10	0.75	120.00	520.00	-
800-900	0.27	-	-	-	-	-	-	-
900	0.00	240.00	38.00	1.10	1.60	120.00	500.00	-
WH1	-	250	36	8.7	8.90	140	550	-
WH2	-	240	36	7.9	9.00	140	570	-
AVG WH	-	245	36	8.3	8.95	140	560	-
Theor, WH	-	230	36	9.4	10.3	140	530	-

```
20
```

APPENDIX D5

Eaton Analytical Laboratory Reports

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Laboratory Report

for

Santa Ynez River WCD Post Office Box 157 Santa Ynez, CA 93460 Attention: Eric Tambini Fax: 805-688-3078

FWH: Fred Haley

Project Manager

Report: 470833 Project: CHROMIUM Group: well sampling

* Accredited in accordance with NELAP.

^{*} Laboratory certifies that the test results meet all TNI NELAP requirements unless noted under the individual analysis.

^{*} Following the cover page are State Certification List, ISO 17025 Accredited Method List, Acknowledgement of Samples Received, Comments, Hits Report, Data Report, QC Summary, QC Report and Regulatory Forms, as applicable.

^{*} Test results relate only to the sample(s) tested.

^{*} This report shall not be reproduced except in full, without the written approval of the laboratory.

STATE CERTIFICATION LIST

State	Certification Number	State	Certification Number
Alabama	41060	Mississippi	Certified
Alaska	CA00006	Montana	Cert 0035
Arizona	AZ0778	Nebraska	Certified
Arkansas	Certified	Nevada	CA00006-2012-1
California-Monrovia- ELAP	2813	New Hampshire *	2959
California-Colton- ELAP	2812	New Jersey *	CA 008
California-Folsom- ELAP	2820	New Mexico	Certified
Colorado	Certified	New York *	11320
Connecticut	PH-0107	North Carolina	06701
Delaware	CA 006	North Dakota	R-009
Florida *	E871024	Oregon (Primary AB) *	ORELAP 4034
Georgia	947	Pennsylvania *	68-565
Guam	13-004r	Rhode Island	LAO00326
Hawaii	Certified	South Carolina	87016
Idaho	Certified	South Dakota	Certified
Illinois *	200033	Tennessee	TN02839
Indiana	C-CA-01	Texas *	T104704230-14-6
Kansas *	E-10268	Utah *	CA000062014-6
Kentucky	90107	Vermont	VT0114
Louisiana *	LA140009	Virginia *	00210
Maine	CA0006	Washington	C838
Maryland	224	West Virginia	9943 C
Commonwealth of Northern Marianas Is.	MP0004	Wisconsin	998316660
Massachusetts	M-CA006	Wyoming	8TMS-L
Michigan	9906	EPA Region 5	Certified
Los Angeles County Sanitation Districts	10264		

* NELAP/TNI Recognized Accreditation Bodies

750 Royal Oaks Drive, Suite 100 Monrovia, CA 91016-3629

T | 626-386-1100 F | 626-386-1101 www.EatonAnalytical.com

The tests listed below are accredited and meet the requirements of ISO 17025 as verified by the ANSI-ASQ National Accreditation Board/ACLASS. Refer to Certificate and scope of accreditation (AT 1807) found at: http://www.eatonanalytical.com

14-Directors PPA 52 x x x s PPA 53 x	SPECIFIC TESTS	METHOD OR TECHNIQUE USED	Drinking Water	Food & Beverage	Waste Water	SPECIFIC TESTS	METHOD OR TECHNIQUE USED	Drinking Water	Food & Beverage	Waste Water
2.5.7.8 (TOD) Moding EPA (6130 *	1,4-Dioxane	EPA 522	х	х		Hormones	EPA 539	х	х	
Acquanted Interac Mendad s x Key Key S x </td <td>2,3,7,8-TCDD</td> <td>Modified EPA 1613B</td> <td>х</td> <td>х</td> <td></td> <td>Hydroxide as OH Calc.</td> <td>SM 2330B</td> <td>х</td> <td>х</td> <td></td>	2,3,7,8-TCDD	Modified EPA 1613B	х	х		Hydroxide as OH Calc.	SM 2330B	х	х	
Alkalany BM 21501 *	Acrylamide	In House Method	х	х		Kjeldahl Nitrogen	EPA 351.2			х
Administa BPA 291 11100 x x Act x Media DPA 207 7 200.8 x x x Adminestar UBEN by C. EPA 300.1 x x x Names and DBN by C. EPA 300.1 x x x Adminest DDP by C. EPA 300.1 x x x Names and DBN by C. EPA 300.1 x x x Biendboard RABMIN 20 SM 2330.0 x x x Names and DBN by C. EPA 301.1 x x x Biorboard RABMIN 20 SM 2330.0 x x x x x Biorboard 2000 SM 5210.8 x	Alkalinity	SM 2320B	x	х	х	Mercury	EPA 245.1	х	х	х
Amman Difference Difference </td <td>Ammonia</td> <td>EPA 350.1</td> <td></td> <td>х</td> <td>х</td> <td>Metals</td> <td>EPA 200.7 / 200.8</td> <td>х</td> <td>х</td> <td>х</td>	Ammonia	EPA 350.1		х	х	Metals	EPA 200.7 / 200.8	х	х	х
Anom and Diffy by IC 107A Bill s s Non-Xiana Diffy by IC 107A S12 s s s Biolando Diffy by IC 107A Bill s <td>Ammonia</td> <td>SM 4500-NH3 H (18th)</td> <td></td> <td>х</td> <td>х</td> <td>Microcystin LR</td> <td>ELISA</td> <td>x</td> <td>x</td> <td></td>	Ammonia	SM 4500-NH3 H (18th)		х	х	Microcystin LR	ELISA	x	x	
Jama and July by [C DPA 40:1 x </td <td>Anions and DBPs by IC</td> <td>EPA 300.0</td> <td>x</td> <td>х</td> <td>х</td> <td>NDMA</td> <td>EPA 521</td> <td>x</td> <td>x</td> <td></td>	Anions and DBPs by IC	EPA 300.0	x	х	х	NDMA	EPA 521	x	x	
Addebia EPA 100.2 x x x x x AGO S SM 52106 x x x Colorate 1000 PPA 355.1 x x AGO S SM 52106 x x x Colorate 1000 PPA 351.2 x x x Colorate 1000 PPA 531.2 x x x Percharate EPA 357.0 x x x Colorate 1000 PPA 531.2 x x x Percharate EPA 351.0 x x x Colorate 1000 PPA 531.0 x x Percharate EPA 310.0 x x x Colorate 1000 NM 5300 CI G x x X PPI EPA 130.1 x x Colorate 1000 NM 5300 CI G x x X PPI EPA 130.1 x x X Colorate 1000 NM 5300 CI G X X PPI EPA 130.1 X X X Colorate 1000 NM 5300 CI G X X X Colo	Anions and DBPs by IC	EPA 300.1	х	х		Nitrate/Nitrite Nitrogen	EPA 353.2	х	x	х
Distrochem SM 2330B x x x x bits Description Description Description Section x x x RDD / CGDD SM 5210B - x x Chron Propherons SM 4500 P E x x x Chron Propherons SM 4500 P E x x x x Chron Propherons SM 4500 P E x x x Chron Propherons SM 4500 C P E x x x Chron Propherons SM 4500 C P E x x x X <td< td=""><td>Asbestos</td><td>EPA 100.2</td><td>x</td><td></td><td></td><td>OCL, Pesticides/PCB</td><td>EPA 505</td><td>х</td><td>х</td><td></td></td<>	Asbestos	EPA 100.2	x			OCL, Pesticides/PCB	EPA 505	х	х	
NDD / CDOD SM 52108 v x x x x x linemate In Honse Method x x x x x cabroaties IPA 361, JAN 4500P II x x x x Cabroaties CD7 SM 22080 x x x x x Cabroaties CD7 SM 52080 x x x x x x x CD0 IPA 401, X5M 5200 x <td< td=""><td>HCO3</td><td>SM 2330B</td><td>х</td><td>x</td><td>x</td><td>Ortho Phosphate</td><td>EPA 365.1</td><td>x</td><td>x</td><td></td></td<>	HCO3	SM 2330B	х	x	x	Ortho Phosphate	EPA 365.1	x	x	
Intrace Introduce Method x	BOD / CBOD	SM 5210B		x	x	Ortho Phosphate and Total Phosphorous	EPA 365.1/SM 4500-P E			x
Carbonate as CO3 EPA 511.2 x <td>Bromate</td> <td>In House Method</td> <td>х</td> <td>х</td> <td></td> <td>Ortho Phosphorous</td> <td>SM 4500P E</td> <td>х</td> <td>х</td> <td></td>	Bromate	In House Method	х	х		Ortho Phosphorous	SM 4500P E	х	х	
Carbonie EPA 2130B x x x Perchiorate EPA 31.0 x x Carbonyh EPA 410.4 / SM 5200 x Perchiorate EPA 31.0 x x COD EPA 410.4 / SM 5200 x Perchiorate EPA 31.0 x x Chorinated Acids EPA 35.1 x x Perchiorate EPA 31.0 x x Chorinated Acids EPA 35.5 X x Perchiorate EPA 31.0 x x x Chorinated Acids SM 4500-C1Q D x x x Perchiorate EPA 31.0 x x x Chorinate Dicals SM 4500-C1Q D x x x Relation-226 RA 223 60.4 x x x x Conductity SM 2510B x x x Relation-226 SM 2520C x x x Conductity SM 450CN F x x x x x x	Carbamates	EPA 531.2	x	x		Oxyhalides Disinfection Byproducts	EPA 317.0	x	x	
Carbonyk EPA 356 x x N Perchlorate EPA 310.0 x x CDO PPA 410/4.58/35200 Image: State 100 and 100	Carbonate as CO3	SM 2330B	x	х	х	Perchlorate	EPA 331.0	х	х	
CDD EPA 410.47 SM 5200 v x s Perfleminate Ads/s EPA 515. x x x perfleminate Ads/s EPA 515. x x x perfleminate Ads/s EPA 515. x x x x perfleminate Ads/s EPA 515. x x x x x perfleminate Ads/s EPA 515. x x x x x perfleminate Ads/s EPA 515. x <t< td=""><td>Carbonyls</td><td>EPA 556</td><td>x</td><td>х</td><td></td><td>Perchlorate</td><td>EPA 314.0</td><td>х</td><td>х</td><td></td></t<>	Carbonyls	EPA 556	x	х		Perchlorate	EPA 314.0	х	х	
Chormaines SM 4500-C1 x x x x pH Dep 15.1 x x x Chorinad Acids EPA 555 x x x Preprint Pecicites' In House Method x x x Chorinad Acids EPA 555 x x x Preprint Pecicites' In House Method x x x Chorinad Acids SM 4500-C1G x x x Readomnana IDEXX Pseudient x x Conductivity SM 2510B x x x Readom-222 SN 7500RN x x x Conductivity SM 2500C X x x Residue, Filterable SM 2500C x x x Cyanide, froat EPA 592.2 x<	COD	EPA 410.4 / SM 5220D			x	Perfluorinated Alkyl Acids	EPA 537	x	x	
Chlorinad Acids EPA 515.4 x x x pH M 4500-11-B x	Chloramines	SM 4500-CL G	х	х	х	pН	EPA 150.1	х		
Choinane Acids EPA 555 x x x Program Positives' In House Method x x x Chiorine Toolife'' SM 4500-C1G x x x Radonnoise IDEXN Pendieter x x x Conducting Uniteriating BFA 120.1 x x Radium-226 RA-226 GA x x x Conducting Uniteriating SM 2510B x x x Radium-227 SM 7500RN x	Chlorinated Acids	EPA 515.4	х	х		pH	SM 4500-H+B	х	х	х
$ \begin{array}{c} \mboxide SM 4500-CLO D x x x \\ \mbox{Combined Residual} \\ \mbox{SM 42500C1 G} x x x \\ \mbox{SM 4230B8} x x x \\ \mbox{SM 4230B8} x x x \\ \mbox{Combined Residual} \\ \mbox{Combined Residual} \\ \mbox{Combined Residual} \\ \mbox{SM 4230B8} x x x \\ \mbox{Combined Residuel} \\ \mbox{SM 4200-CN G} x & x \\ \mbox{Combined Residue, Non-filterable} \\ \mbox{SM 4200CN G} x & x \\ \mbox{Combined Residue, Non-filterable} \\ \mbox{SM 4200D N F} x x x x \\ \mbox{Combined Residue, Non-filterable} \\ \mbox{SM 4200D N F} x & x & x \\ \mbox{Combined Residue, Non-filterable} \\ \mbox{SM 4200D N F} x & x & x \\ \mbox{Combined Residue, Non-filterable} \\ \mbox{SM 4200D N F} x & x & x \\ \mbox{Combined Residue, Non-filterable} \\ \mbox{SM 4200D N F} x & x & x \\ \mbox{Combined Residue, Non-filterable} \\ \mbox{SM 4200B N F} x & x & x \\ \mbox{Combined Residue, Non-filterable} \\ \mbox{SM 4200B N F} x & x & x \\ \mbox{Combined Residue, Non-filterable} \\ \mbox{SM 4200B N F} x & x & x \\ \mbox{Combined Residue, Non-filterable} \\ \mbox{SM 4200B N F} x & x & x \\ \mbox{Combox} x & x & x \\ \mbox} x & x & x \\ \mbox{Combox} x & x & x \\ \mbox} x & x \\ \mbox} x & x & x \\ \mbox} x & x & x \\ \mbox} x & x \\ \$	Chlorinated Acids	EPA 555	x	x		Phenylurea Pesticides/ Herbicides	In House Method	x	x	
Choines SM 4500-C1 G x x x x Radium-226 RA-226 GA x x x Conductivity EFA 120.1 - - x Radium-226 RA-226 GA x x x Conductivity SM 4500-CNG x x x Radium-22.2 SM 7500RN x x x Cyande, free SM 4500-CNG x x x x Radium-22.0 SM 7500RN x x x Cyande, free SM 4500-CNG x x x x Residue, fold SM 2540D x x Cyande, free SM 4500-CN x x x Residue, fold SM 2540D x x Coning Chroing MA 6551B x x x Residue, fold SM 4500-S1D x x x E Coli CFR 1412(10)(6)(C x x X Silica SM 4500-S1D x x E Coli fammeration) SM 9221B.	Chlorine Dioxide	SM 4500-CLO2 D	х	x		Pseudomonas	IDEXX Pseudalert	x	x	
	Chlorine -Total/Free/ Combined Residual	SM 4500-Cl G	x	x	x	Radium-226	RA-226 GA	x	x	
Conductivity SM 2510B x x Readue, Filterable SM 7500RN x x Corrowity (Langeler Inde) SM 2330B x x Residue, Filterable SM 2540C x x Cynnice, Teal FPA 355.4 x x Residue, Non-filterable SM 2540B x x Cynnice, Teal FPA 335.4 x x Residue, Non-filterable SM 2540B x x Cynnice, Teal FPA 335.4 x x Residue, Non-filterable SM 2540B x x Cynnice, Teal FPA 354.1 x x Residue, Non-filterable SM 2540C x x Diguat and Paraquat FPA 549.2 x x Semi-VOC EPA 552.2 x x x Disolved Oxygen SM 4500.6 G x x Suffactants SM 540C x x E Coli CMTFEC+MUG) x x Total Coliform SM 4500.8 G x x E Coli Gummeration) <	Conductivity	EPA 120.1			х	Radium-228	RA-228 GA	х	x	
Corrosity (Langeher Index) SM 2330B x x x Cyanide, Amenable SM 4500CN G x x x Cyanide, Total EPA 353.4 x x x Cyanoga (Linder) In House Method x x x Cyanoga (Linder) In House Method x x x Digutating Parayangi EPA 459.2 x x x Digutating Parayangi EPA 459.2 x x x Digutating Parayangi SM 5500 FG x x x Digutating Parayangi SM 4500-2G x x x E. Coli (MTFEC: MUG) x x x E. Coli CFR 141.21 (V060) x x x E. Coli (Eaumeration) SM 92218 x x x E. Coli (Eaumeration) SM 92218 x x x EDB/DCBP EPA 551.1 x x x EDB/DCBP EPA 551.1 x x x Feal Coliform SM 92218 x x x Total Coliform / E-coil Colisare x x Total Coliform / E-coil SM 92218 x x	Conductivity	SM 2510B	х	х	х	Radon-222	SM 7500RN	х	х	
Cyanide, Amenable SM 4500-CN G x x x Cyanide, Free SM 4500-CN F x x x Cyanide, Total EPA 355.4 x x x Cyanide, Total PPA 355.4 x x x Serie, VOC EPA 549.2 x x x Disolved Oxygen SM 4500-0 x x x E. Coli CPTFEC-MUG) x x x E. Coli CPTFEC-MUG) x x x E. Coli (Cammeration) SM 9223 x x x E. Coli (Cammeration) SM 9223B x x Total Coliform SM 921 A, B, C x x EDB/DEP EPA 541.1 x x Total Coliform / E.coli SM 9221 B x	Corrosivity (Langelier Index)	SM 2330B	x	x		Residue, Filterable	SM 2540C	х	x	x
Cyanide, Free SM 4500CN F x	Cvanide Amenable	SM 4500-CN G	x		x	Residue Non-filterable	SM 2540D			x
Cyanade, Total EPA 335.4 x	Cyanide, Free	SM 4500CN F	x	x	x	Residue, Total	SM 2540B		x	x
	Cvanide, Total	EPA 335.4	x	х	х	Residue, Volatile	EPA 160.4			х
Diput and Paraquat EPA 549.2 x x x Diput and Paraquat EPA 549.2 x x Silica SM 4500-Si D x x Disolved Oxygen SM 4500-O x x Silica SM 4500-Si D x x E. Coli (MTF/EC-WUG) x x Suffactants SM 4500-Si D x x E. Coli SM 9223 x x Suffactants SM 5540C x x E. Coli SM 9221B.1/SM 9221F x x Total Coliform SM 9221 A, B x x E. Coli (Enumeration) SM 9223B x x Total Coliform SM 9221 A, B x x EDP/DCP EPA 548.1 x x Total Coliform SM 9221 B, D x X Endorbail EPA 548.1 x x Total Coliform SM 9221 B, D x X Fecal Coliform SM 9221 C, C (MTF/EC) x X Total Coliform with SM 9221 C, C (MTF/EC) x	Cyanogen Chloride	In House Method	x	x		Semi-VOC	EPA 525.2	x	x	
DBPHAA SM 4500.0 G x x x Disolved Oxygen SM 4500.0 G x x x E. Coli (MTFEC-MUG) x x x E. Coli CFR 141.21(f)(6)(i) x x x x E. Coli SM 92218 x x x x x E. Coli SM 92218 x x x x x x E. Coli (Enumeration) SM 92218 x x Total Coliform SM 9221 A, B, C x x E. Coli (Enumeration) SM 9223B x x Total Coliform SM 9221 A, B, C x x EDB/DE/P EPA 504.1 x x Total Coliform SM 9221 A, B, C x x EDFDCBP EPA 551.1 x x Total Coliform / E coli Colisure x x Endotall EPA 551.1 x x Total Coliform with SM 9221 B x x Fecal Coliform SM 9221 E, (MTF/EC) x x Total Coliform with SM 9221 E, (MTF/EC) x	Diquat and Paraquat	EPA 549.2	х	х		Semi-VOC	EPA 625	x	x	x
Dissolved Oxygen SM 4500-0 G x x x E. Coli (MTFEC-MUG) x x Silica SM 4500-SiO2 C x x E. Coli (MTFEC-MUG) x x Suffactants SM 4500-SiO2 C x x E. Coli SM 9221 B.1/SM 9221F x x X Suffactants SM 4500-SiO2 C x x E. Coli SM 9221 B.1/SM 9221F x x X Taste and Odor Analytes SM 6040E x x X E. Coli (Enumeration) SM 9221B.1/SM 9221F x x Total Coliform SM 9221 A, B, C x x EDB/DCBP EPA 504.1 x x Total Coliform SM 9221 A, B, C x x Endothall House Method x x Total Coliform SM 9221 B x x Fecal Coliform SM 9221 E (MTF/EC) x x x Total Phenols EPA 420.4 x x Fecal Coliform with Choine Present SM 9221E (MTF/EC	DBP/HAA	SM 6251B	х	х		Silica	SM 4500-Si D	х	х	х
E. Coli (MTF/EC+MUG) x x E. Coli CFR 141.21(f)(6)(i) x x E. Coli SM 92218 x x E. Coli SM 9221B.//SM 9221F x x E. Coli (Enumeration) SM 9221B.//SM 9221F x x EDB/DCDP EPA 551.1 x x EDTA and NTA In House Method x x Endothall EPA 548.1 x x Fecal Coliform SM 9221C, E (MTF/EC) x x Fecal Coliform SM 9221C, E (MTF/EC) x x Fecal Coliform with Choine Present SM 9221E (MTF/EC) x x Fecal Coliform with Choine Present SM 9230B x x Fecal Coliform with Choine Present SM 9230B x x Fecal Schpaced EPA 420.1 x x Total Phenols EPA 420	Dissolved Oxygen	SM 4500-O G		х	х	Silica	SM 4500-SiO2 C	х		х
E. ColiCFR 141.21(f)(6)(i)xxxE. Coli (Enumeration)SM 9223xxE. Coli (Enumeration)SM 9221B.1/SM 9221FxxTotal ColiformSM 9221A, BxxE. Coli (Enumeration)SM 9223BxxE. Coli (Enumeration)SM 9223BxxE. Coli (Enumeration)SM 9223BxxE. Coli (Enumeration)SM 9223BxxEDB/DECPEPA 551.1xxEDB/DECP and DBPEPA 551.1xxEndothallEPA 548.1xxEndothallEPA 548.1xxEndotoriomSM 9230BxxFecal ColiformSM 9221C, E (MTF/EC)xxFecal Coliform with Choirne PresentSM 9221E (MTF/EC)xFecal StreptococciSM 9230BxxFolal StreptococciSM 9230BxxFolal StreptococciSM 9230BxxFolal StreptococciSM 9230BxxFolal StreptococciSM 4500-FCxxFardersSM 230BxxFardersSM 230BxxFolal PhenolsEPA 420.4xxTotal PhenolsEPA 420.4xxTotal PhenolsEPA 420.4xxTotal PhenolsEPA 420.4xxTotal PhenolsEPA 420.4xxTotal PhosphorousSM 4500 FCxx	E. Coli	(MTF/EC+MUG)	х			Sulfide	SM 4500-S ⁼ D			х
L. ColiCIR (Fil-121()(0,0)XXXXXXE. ColiSM 9223xxTaste and Odor AnalytesSM 6040ExxXE. Coli (Enumeration)SM 9221B, I/SM 9221FxxTaste and Odor AnalytesSM 9221 A, B, CxxxE. Coli (Enumeration)SM 9223BxxxTotal ColiformSM 9221 A, B, CxxxEDB/DCBPEPA 504.1xxTotal Coliform /E. coliColisurexxxEDTA and NTAIn House MethodxxxTotal Coliform /E. coliSM 9221BxxEnterococciSM 9230BxxxTotal Coliform with Chlorine PresentSM 9221 E (MTF/EC)xxTotal Coliform /E. coliSM 92233xxFecal ColiformSM 9221 E (MTF/EC)xxTotal Coliform /E. coliSM 92233xxxFecal Coliform with Chlorine PresentSM 9221 E (MTF/EC)xxTotal Coliform /E. coliSM 92233xxxFecal Coliform with Chlorine PresentSM 9221 E (MTF/EC)xxTotal PhenolsEPA 420.1xxTotal PhenolsEPA 420.1xXFecal Coliform with Chlorine PresentSM 9230BxxXTotal PhenolsEPA 420.1xXTotal PhenolsEPA 420.1X <t< td=""><td>E Coli</td><td>CEP 141 21(f)(6)(j)</td><td></td><td>v</td><td>v</td><td>Surfactants</td><td>SM 5540C</td><td>×</td><td>v</td><td>v</td></t<>	E Coli	CEP 141 21(f)(6)(j)		v	v	Surfactants	SM 5540C	×	v	v
L. ColiSM 9223xxE. Coli (Enumeration)SM 9221B.1/SM 9221FxxTotal ColiformSM 9221 A, BxxE. Coli (Enumeration)SM 9223BxxTotal ColiformSM 9221 A, B, CxxEDB/DCBPEPA 504.1xxTotal ColiformSM 9221 A, B, CxxxEDB/DCP and DBPEPA 551.1xxxTotal Coliform / E, coliColisurexxxEDD/DCP and DBPEPA 548.1xxxTotal Coliform with Coliorim / E, coliSM 9221 BxxEndothallEPA 548.1xxxTotal Coliform / E, coliSM 9221 BxxEndothallEPA 548.1xxxTotal Coliform / E, coliSM 9221 BxxFecal ColiformSM 9221 E (MTF/EC)xxTotal Coliform / E, coliSM 9223xxFecal ColiformSM 9221 E (MTF/EC)xxTotal PhenolsEPA 420.1xxFecal ColiformSM 9221 E (MTF/EC)xxTotal PhenolsEPA 420.1xxFecal ColiformSM 9230 BxxxTotal PhenolsEPA 420.4xxxFecal ColiformSM 9230 BxxxTotal PhenolsEPA 420.4xxxFecal ColiformSM 9230 BxxxTotal PhenolsEPA 420.4xxxGipybosateEPA 547	E. Coli	CI K 141.21(1)(0)(1)		^	^	Tests and Oden Analytes	SM 6040E	^	^	^
E. Coli (Enumeration)SM 9221B.1/ SM 9221FxxxTotal ColiformSM 9221 A, BxxE. Coli (Enumeration)SM 9223BxxxTotal ColiformSM 9221 A, B, CxxxEDB/DCBPEPA 504.1xxxTotal ColiformSM 9221 A, B, CxxxEDB/DCBPEPA 551.1xxxTotal ColiformSM 9221 BxxxEDTA and NTAIn House MethodxxxTotal Coliform vithSM 9221 BxxxEndothallEPA 548.1xxxTotal Coliform vithSM 9221 BxxxFecal ColiformSM 9221 E, (MTF/EC)xxxTOCSM 5310CxxxFecal Coliform withSM 9221 E, (MTF/EC)xxTOXSM 5320BxxxFecal Coliform withSM 9221 E, (MTF/EC)xxxTotal PhenolsEPA 420.1xxFecal Coliform withSM 9221 E, (MTF/EC)xxxTotal PhenolsEPA 420.4xxxFecal Coliform withSM 920BxxxXTotal PhenolsEPA 420.4xxxChorine PresentSM 920BxxxXTotal PhenolsEPA 420.4xxxGross Alpha/BetaEPA 900.0xxxXTurbidityEPA 180.1xxxHardn	E. Coll	SIVI 9225			X	Taste and Odor Analytes	SM 6040E	x	x	
E. Coli (Enumeration)SM 9223BxxxssssxxsEDB/DCBPEPA 504.1xxxTotal ColiformColisurexxxEDB/DCBPEPA 51.1xxxTotal Coliform /E. coliColisurexxxEDTA and NTAIn House MethodxxxTotal ColiformSM 9221BxxxEndothallEPA 548.1xxxTotal Coliform with Chlorine PresentSM 9221BxxxFecal ColiformSM 9221 E (MTF/EC)xxTotal Coliform /E.coliSM 9223xxxFecal ColiformSM 9221 E (MTF/EC)xxTotal Coliform /E.coliSM 9230BxxFecal Coliform with Chlorine PresentSM 9221E (MTF/EC)xxTotal PhenolsEPA 420.1xxFecal StreptococciSM 9221BxxxTotal PhenolsEPA 420.4xxxFecal StreptococciSM 4500-F CxxxTotal PhenolsEPA 200.8xxxGross Alpha/BetaEPA 52.3xxxTotal PhenolsEPA 200.8xxxHeterotrophic BacteriaIn House MethodxxxXYOCEPA 524.2/EPA 524.3xxXVOCEPA 524.2/EPA 524.3xxXYOCEPA 624xxXHeterotrophic Bacte	E. Coli (Enumeration)	SM 9221B.1/ SM 9221F	x	x		Total Coliform	SM 9221 A, B	x	x	
LDB/DGPLPA 504.1xxTotal Coliform / E. coliColisurexxxEDB/DBCP and DBPEPA 551.1xxxTotal ColiformSM 9221BxxEDTA and NTAIn House MethodxxxTotal Coliform with Chlorine PresentSM 9221BxxEndothallEPA 548.1xxxTotal Coliform with Chlorine PresentSM 9221BxxxFecal ColiformSM 9221 E (MTF/EC)xxTOC/DOCSM 5310CxxxFecal ColiformSM 9221 C, E (MTF/EC)xxTOC/DOCSM 5300BxxxFecal Coliform with Chlorine PresentSM 9221E (MTF/EC)xxTotal PhenolsEPA 420.1xxFecal Coliform with Chlorine PresentSM 9221BxxxxxxFecal Coliform with Chlorine PresentSM 920BxxxxxxFecal StreptococciSM 920BxxxxxxxxxFluorideSM 4500-F CxxxxxxxxxxGlyphosateEPA 524.3xxxxxxxxxxHardnessSM 2340BxxxxxxxxxxxHeterotrophic BacteriaSM 9215 Bxxxxx <t< td=""><td>E. Coli (Enumeration)</td><td>SM 9223B</td><td>х</td><td>x</td><td></td><td>(Enumeration)</td><td>SM 9221 A, B, C</td><td>x</td><td>x</td><td></td></t<>	E. Coli (Enumeration)	SM 9223B	х	x		(Enumeration)	SM 9221 A, B, C	x	x	
LDB/DBCP and DBPEPA S51.1xxxEDTA and NTAIn House MethodxxxEDTA and NTAIn House MethodxxxEndothallEPA 548.1xxxEnterococciSM 9230BxxxFecal ColiformSM 9221 E (MTF/EC)xxTOC/DCCSM 5310CxxFecal ColiformSM 9221 E (MTF/EC)xxTOC/DCCSM 5310CxxFecal Coliform with Chlorine PresentSM 9221 E (MTF/EC)xxTOXSM 5320BxxFecal Coliform with Chlorine PresentSM 9221 ExxTotal PhenolsEPA 420.1xxFecal SteptococciSM 9230BxxxTotal PhenolsEPA 420.4xxxFluorideSM 4500-F CxxxTotal PhenolsEPA 420.4xxxGlyphosateEPA 547xxTurbidityEPA 180.1xxxHardnessSM 2340BxxxWCCEPA 524.2 EPA 524.3xxHeterotrophic BacteriaSM 9215 BxxXVOCEPA 524.2 EPA 524.4xxVOCEPA SW 846 8260xxxVOCEPA SW 846 8260xxXVOCEPA SW 846 8260xxXYYYYYHardnessSM 9215 BxxXYY <td>EDB/DCBP</td> <td>EPA 504.1</td> <td>х</td> <td></td> <td></td> <td>Total Coliform / E. coli</td> <td>Colisure</td> <td>х</td> <td>х</td> <td></td>	EDB/DCBP	EPA 504.1	х			Total Coliform / E. coli	Colisure	х	х	
EndotationInterfaceInterfaceInterfaceInterfaceEndothallEPA 548.1xxEndothallEPA 548.1xxEnterococciSM 9230BxxFecal ColiformSM 9221 E (MTF/EC)xxFecal ColiformSM 9221 E (MTF/EC)xxFecal Coliform withSM 9221 E (MTF/EC)xxFecal Coliform withSM 9221 ExxFecal Coliform withSM 9221 ExxFecal StreptococciSM 9230BxxFecal StreptococciSM 9230BxxFecal StreptococciSM 9230BxxFecal StreptococciSM 9230BxxFecal StreptococciSM 9230BxxFluorideSM 4500-F CxxHAAs/ DalaponEPA 547xxHeterotrophic BacteriaIn House MethodxxHeterotrophic BacteriaIn House MethodxxHexavalent ChromiumEPA 218.6xxHexavalent ChromiumEPA 218.6xxHexavalent ChromiumSM 3200-Cr B or C (20th)x	EDB/DBCP and DBP EDTA and NTA	EPA 551.1 In House Method	x	x		Total Coliform Total Coliform with	SM 9221B SM 9221B			x
EnuonanEPA 348.1xxxxEnterococciSM 9230BxxxFecal ColiformSM 921E (MTF/EC)xxTOCSM 5310CxxFecal ColiformSM 9221C, E (MTF/EC)xxTOC/DOCSM 5310CxxFecal Coliform (Enumeration)SM 9221E (MTF/EC)xxTOC/DOCSM 5320BxxFecal Coliform with Chlorine PresentSM 9221ExxTotal PhenolsEPA 420.1xxFecal StreptococciSM 9230BxxxTotal PhenolsEPA 420.4xxxFecal StreptococciSM 9230BxxxTotal PhenolsEPA 420.4xxxGlyphosateEPA 547xxxTurbidityEPA 180.1xxxHachossSM 2340BxxxWOCEPA 542.2FA 524.3xxxHeterotrophic BacteriaIn House MethodxxxXVOCEPA 624xxxVOCEPA 624xxxXVOCEPA 624xxxHexavalent ChromiumEPA 218.7xxXVOCIn House MethodxxYeast and MoldSM 9610xX	Endethall	EDA 549.1				Chlorine Present	SM 0000			
EntercorectSM 9230BxxxFecal ColiformSM 9221 E (MTF/EC)xxTOC/DOCSM 5310CxxFecal ColiformSM 9221 C, E (MTF/EC)xxTOC/DOCSM 5310CxxFecal ColiformSM 9221 E (MTF/EC)xxxTOC/DOCSM 5320BxxFecal Coliform with Chlorine PresentSM 9221 ExxTotal PhenolsEPA 420.1xxFecal StreptococciSM 9230BxxxTotal PhenolsEPA 420.4xxxFluorideSM 4500-F CxxxTotal PhenolsEPA 420.4xxxFluorideSM 4500-F CxxxTotal PhenolsEPA 480.1xxxGross Alpha/BetaEPA 900.0xxxTurbidityEPA 180.1xxxHardnessSM 2340BxxxUV 254SM 5910BxxxVOCEPA 524.2/EPA 524.3xxxVOCEPA 624xxxHeterotrophic BacteriaIn House MethodxxxVOCEPA 624xxxVOCEPA 518.7xxVOCEPA 624xxxXVOCEPA 624xxxVOCEPA 624xxxHexavalent ChromiumEPA 218.7xxVOCEPA 624xxx	Endothall	EPA 548.1	x	x		Total Coliform / E.coli	SM 9223	x	X	
Feed ConformSM 9221 E (MTF/EC)xx10C/DOCSM 930CxxFeed ColiformSM 9221C, E (MTF/EC)xxxTOXSM 5320BxxFeed Coliform (Enumeration)SM 9221E (MTF/EC)xxxTotal PhenolsEPA 420.1xxFeed StreptococciSM 9221BxxxTotal PhenolsEPA 420.4xxxFeed StreptococciSM 9230BxxxTotal PhenolsEPA 420.4xxxFuorideSM 4500-F CxxxTotal PhenolsEPA 480.1xxxGross Alpha/BetaEPA 590.0xxxTurbiditySM 2130BxxxHardnessSM 2340BxxxVOCEPA 524.2 (EPA 524.3)xxxHeterotrophic BacteriaIn House MethodxxxVOCEPA 624xxxHexavalent ChromiumEPA 218.7xxxVOCIn House MethodxxHexavalent ChromiumSM 350-Cr B or C (20th)xxxYeast and MoldSM 9610xx	Enterococci	SM 9230B	x		x	TOCIDOC	SM 5310C		X	x
Fecal Coliform (Enumeration)SM 9221E (MTF/EC)xxxFecal Coliform with Chlorine PresentSM 9221ExxTotal PhenolsEPA 420.1xFecal StreptococciSM 9230BxxxFecal StreptococciSM 4500-FCxxxFluorideSM 4500-FCxxxGlyphosateEPA 547xxTotal PhenolsSM 2130BxxHAAs/ DalaponEPA 552.3xxxTurbiditySM 5100BxxHeterotrophic BacteriaIn House MethodxxxVOCEPA 524.2/EPA 524.3xxVoCEPA 524.2/EPA 524.3xxxVOCEPA 624xxxVoCEPA 524.2/EPA 524.3xxxVOCEPA 624xxxVoCEPA 524.2/EPA 524.3xxxVOCEPA 524.2/EPA 524.3xxxHexavalent ChromiumEPA 218.7xxxVOCEPA 524.2/EPA 524.3xxxVoCEPA SW 846 8260xxxVOCEPA 524.2/EPA 524.3xxXVoCEPA SW 846 8260xxxVOCVOCIn House MethodxxVoCEPA SW 846 8260xxxVOCYeast and MoldSM 9610xXVeast and MoldSM 9610xxXYeast and MoldSM 9610x <td>Fecal Coliform</td> <td>SM 9221 E (MTF/EC)</td> <td>X</td> <td></td> <td>x</td> <td>тох</td> <td>SM 5310C</td> <td>x</td> <td>x</td> <td>x</td>	Fecal Coliform	SM 9221 E (MTF/EC)	X		x	тох	SM 5310C	x	x	x
CharacteriaSM 9221ExxFecal Coliform with Chlorine PresentSM 9230BxxFluorideSM 9230BxxxFluorideSM 4500-F CxxxGlyphosateEPA 547xxxGross Alpha/BetaEPA 900.0xxxHAAs/ DalaponEPA 552.3xxxHardnessSM 2340BxxxHeterotrophic BacteriaIn House MethodxxHexavalent ChromiumEPA 218.6xxHexavalent ChromiumSM 3500-Cr B or C (20th)x	Fecal Coliform	SM 9221E (MTF/EC)	x	x		Total Phenols	EPA 420.1			x
Chlorine PresentChlorine PresentChlorine PresentChlorine PresentChlorine PresentChlorine PresentFecal StreptococciSM 9230BxxTotal PhosphorousSM 4500 P FxFluorideSM 4500-F CxxxTurbidityEPA 180.1xxGross Alpha/BetaEPA 900.0xxxTurbiditySM 2130BxxxHAAs/ DalaponEPA 552.3xxxUranium by ICP/MSEPA 200.8xxxHardnessSM 2340BxxxVOCEPA 524.2/EPA 524.3xxxHeterotrophic BacteriaIn House MethodxxXVOCEPA 624xxxVocEPA 518.6xxxVOCEPA SW 846 8260xxxVocIn House MethodxxVOCIn House MethodxxYeast and MoldSM 9610xx	Fecal Coliform with	SM 9221E			x	Total Phenols	EPA 420.4	x	x	x
New SubjectionSite J200xxxFluorideSM 4500-FCxxxGlyphosateEPA 547xxxGross Alpha/BetaEPA 900.0xxxHAAs/ DalaponEPA 552.3xxxHardnessSM 2340BxxxHeterotrophic BacteriaIn House MethodxxxHeterotrophic BacteriaSM 9215 BxxxHexavalent ChromiumEPA 218.6xxxHexavalent ChromiumSM 3500-Cr B or C (20th)xx	Fecal Streptococci	SM 9230B	v		~	Total Phosphorous	SM 4500 P F			v
AnswerDiff root icxxIndiantyDiff root icxxGlyphosateEPA 547xxxTurbiditySM 2130BxxGross Alpha/BetaEPA 900.0xxxxTurbiditySM 2130BxxHAAs/ DalaponEPA 552.3xxxUranium by ICP/MSEPA 200.8xxxHardnessSM 2340BxxxVOCEPA 524.2/EPA 524.3xxHeterotrophic BacteriaIn House MethodxxVOCEPA 624xxVocEPA SW 846 8260xxxHexavalent ChromiumEPA 218.7xxVOCIn House MethodxxYeast and MoldSM 9610xxX	Fluoride	SM 4500-F C	×	Y	× ×	Turbidity	EPA 180 1	¥	¥	×
CorporationCorporatio	Glyphosate	EPA 547	×	× ×	^	Turbidity	SM 2130B	× ×	^	×
HAAs/ DalaponEPA 552.3xxVHardnessSM 2340BxxVHeterotrophic BacteriaIn House MethodxxHeterotrophic BacteriaSM 9215 BxxHexavalent ChromiumEPA 218.6xxHexavalent ChromiumEPA 218.7xxHexavalent ChromiumSM 3500-Cr B or C (20th)xx	Gross Alpha/Beta	EPA 900 0	x	x	×	Uranium by ICP/MS	EPA 200 8	x	×	^
HardnessSM 2340BxxxHeterotrophic BacteriaIn House MethodxxHeterotrophic BacteriaSM 9215 BxxHexavalent ChromiumEPA 218.6xxHexavalent ChromiumSM 3500-Cr B or C (20th)x	HAAs/ Dalanon	EPA 552 3	×	x	^	UV 254	SM 5910B	×	^	
Heterotrophic Bacteria In House Method x x Heterotrophic Bacteria SM 9215 B x x Hexavalent Chromium EPA 218.6 x x Hexavalent Chromium SM 3500-Cr B or C (20th) x x	Hardness	SM 2340B	×	×	×	VOC	EPA 524.2/EPA 524 3	×	×	
Heterotrophic Bacteria SM 9215 B x x Hexavalent Chromium EPA 218.6 x x Hexavalent Chromium EPA 218.7 x x Hexavalent Chromium SM 3500-Cr B or C (20th) x x	Heterotrophic Bacteria	In House Method	x	x		VOC	EPA 624	x	x	×
Hexavalent Chromium EPA 218.6 x x x Hexavalent Chromium EPA 218.7 x x Hexavalent Chromium SM 3500-Cr B or C (20th) x	Heterotrophic Bacteria	SM 9215 B	x	x		VOC	EPA SW 846 8260	x	x	
Hexavalent Chromium EPA 218.7 x x Hexavalent Chromium SM 3500-Cr B or C (20th) x	Hexavalent Chromium	EPA 218.6	×	x	x	VOC	In House Method	×	×	
Hexavalent Chromium SM 3500-Cr B or C (20th) x	Hexavalent Chromium	EPA 218 7	x	x	^	Yeast and Mold	SM 9610	x	x	
	Hexavalent Chromium	SM 3500-Cr B or C (20th)	~	~	x	- cust and more	511 7010			

🛟 eurofins	1 martine			
_	Eaton Analytical	knowledgement of Semples	Pagaiwad	
	A	cknowledgement of Samples	Received	
Addr:	Santa Ynez River WCD		Client ID: SANTA	YNEZWD-CA
	Post Office Box 157 Santa Ynez, CA, 93460		Project: CHRON	
		S	Sample Group: well sar	mpling
Attn:	Eric Tambini	Pro	piect Manager: Fred Ha	alev
Phone:	805-688-6015		Phone: (626) 3	86-1127
The follo below ea Eurofins	wing samples were received from ach sample. If this information is in Eaton Analytical.	you on February 28, 2014 . They hand a contract your service	ave been scheduled fo e representative. Than	r the tests listed k you for using
Sample #	Sample ID			Sample Date
201402280442	W15-230			02/26/2014 1315
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICA	P/MS
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate	
	Total Dissolved Solid (TDS)			
201402280443	W15-240			02/26/2014 1345
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICA	P/MS
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate	
	Total Dissolved Solid (TDS)			
201402280444	W15-250			02/26/2014 1415
Chromium Total ICAP/MS				
201402280445	W15-300	02/26/2014 1500		
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICA	P/MS
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate	
	Total Dissolved Solid (TDS)			
201402280446	W15-310			02/26/2014 1545
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICA	P/MS
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate	
	Total Dissolved Solid (TDS)			
201402280447	W15-330			02/26/2014 1605
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICA	P/MS
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate	
	Total Dissolved Solid (TDS)			
201402280448	W15-370			02/26/2014 1630
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICA	P/MS
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate	
	Total Dissolved Solid (TDS)			
201402280449	W15-380			02/26/2014 1710
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICA	P/MS
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate	
	Total Dissolved Solid (TDS)	,		
201402280450	W15-400			02/26/2014 1740

Reported: 03/12/2014 750 Royal Oaks Drive, Suite 100, Monrovia, CA 91016 Tel (626) 386-1100 Fax (626) 386-1101 http://www.EatonAnalytical.com Page 1 of 2

_		knowledgement of Samples	Received		
		knowledgement of Samples	Kecewed		
Addr:	Santa Ynez River WCD		Client ID: SANTAYNEZWD-CA		
	Post Office Box 157		Folder #: 470833 Project: CHROMILIM		
	Santa filez, CA 95400	S	Sample Group: well sampling		
Attn:	Eric Tambini	Pro	oject Manager: Fred Haley		
Phone:	805-688-6015		Phone: (626) 386-1127		
The follo below ea Eurofins	owing samples were received from ach sample. If this information is in Eaton Analytical.	you on February 28, 2014 . They h ncorrect, please contact your service	ave been scheduled for the tests listed e representative. Thank you for using		
Sample #	Sample ID		Sample Date		
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/MS		
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate		
	Total Dissolved Solid (TDS)				
01402280451	W15-410		02/26/2014 1800		
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/MS		
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate		
	Total Dissolved Solid (TDS)		Suirate		
01402280452	W15-435		02/26/2014 1820		
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/MS		
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate		
	Total Dissolved Solid (TDS)				
01402280453	WH15-1		02/26/2014 1250		
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/MS		
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate		
	Total Dissolved Solid (TDS)				
	WH15-2		02/26/2014 1835		
01402280454					
<u>01402280454</u>	Alkalinity in CaCO3 unite	Chloride	Chromium Total ICAP/MS		
<u>01402280454</u>	Alkalinity in CaCO3 units	Chloride PH (H3=past HT not compliant)	Chromium Total ICAP/MS Sulfate		

🐝 eurofins		CHAIN	N OI	= CUS	STOD	Y RECORD	-	Ĺ	L'ID -
Eaton Analytical	EUROFINS EATON ANALY	TICAL USE ON	ILY:						um :
750 Royal Oaks Drive, Suite 100	LOGIN COMMENTS:					SAMPLES CHI	ECKED AGAIN SAMPLES LOO	IST COC BY: /	R
Phone: 626 386 1100 Fax: 626 386 1100 Fax: 626 386 1101	SAMPLE TEMP RECEIV Cotton / No. California	ED AT: a / Arizona	30	°C (Co	mpliance: 4 mpliance: 4	±2 ℃) ±2 ℃)	EC'D DAY OF C	OLLECTION?	check for yes)
Website: www.EatonAnalytical.com	CONDITION OF BLU METHOD OF SHIP	JE ICE: Frozen MENT: Pick-U	p / Wal	k-In / Fedt	Frozen	Thawed V DHL / Area Fast / Top	Vet Ice	No Ice	
TO BE COMPLETED BY SAMPLER:			÷			(check for yes)		(cl	teck for yes)
COMPANY/AGENCY NAME: A Thez Dudek / Santa Thez	PROJECT CODE:	w	- 74	Tvpe of sar	- Requir	CE SAMPLES es state forms one): ROUTINE SPÉCIA	NON-COMPL REGULATION	IANCE SAMPLE: I INVOLVED: ON (ea. SDWA. Phase	s ×
EEA CLIENT CODE: COC ID:	SAMPLE GROUP:			SEE ATT list ANA	ACHED B	OTTLE ORDER FOR	ANAL YSES of bottles sent	for each test for	r yes), <u>OR</u> each sample)
TAT requested: rush by adv notice only	STD_1 wk_3 day_	2 day1 d	day	Pf3Y	553	51,			-
SAMPLE ID SAMPLE TIME SAMPLE	CLIENT LAB ID	* XIRTAM ATAO OJER	ATAO DATA	He AK PH	a-22-297	/Ltho IA		ω Ω	AMPLER
366 1315 W15 - 230		Rew		XX	XXX				
246 1345 NIG- 240		BGW		XX	C X X				
766 MIS WIS - 250		RGW		X X	XXX	1		CR-H	S Only
2/26 1500 WI5- 300		RGW		XX	XXX				1
726 1545 W15 - 310		RGW		XX	XXX				
726 1605 W15- 330		RGW		XX	XXX				
7/26 1630 W15 - 370		Rew		XX	XX				
766 1710 WIS - 380		RGW		2	XXX				
3/25 1740 W 15 - 400		RGW		XX	× × ×		-		
01/1 - S/N 10981/96/4		RGW		8 8	XXV				
* MATRIX TYPES: RSW = Raw Surface Wate RGW = Raw Ground Water	er CFW = Chlor(am)inat er FW = Other Finished	ted Finished Water	ater	SEAW = Se WW = Was	te Water	BW = Bottled Water SW = Storm Water	SO = Soil SL = Slud	0 = Other	- Please Identify
SIGNATURE		PRINT N	IAME			COMPANY/TITLE		DATE	TIME
SAMPLED BY: JEFF Kubran, Kim Mike, Sta RELINQUISHED BY:	teve Dickey 2	Jul -				Dudek/BESS		41/10/0	1121
RECEIVED BY:	DV.	82 43	Var			VALAN		11 0	
RELINQUISHED BY:	0-0	privil						11.80%	h. 1/
RECEIVED BY:									
								PAG	at t or 2

CHAIN OF CUSTODY RECORD

🐝 eurofins Eaton Analytical	CHAIN CHAIN CHAIN	DF CUSTOD	Y RECORD	
750 Royal Oaks Drive, Suite 100 Monrovia CA 01016-3620	LOGIN COMMENTS:		SAMPLES CHECKE SAM	ED AGAINST COC BY:
Molitovia, CA 91010-3029 Phone: 626 386 1100 Fax: 626 386 1101	SAMPLE TEMP RECEIVED AT:	°C (Compliance: 4	±2°C) samples rec'd	DAY OF COLLECTION?
800 566 LABS (800 566 5227)	CONDITION OF BLUE ICE: Frozen METHOD OF SHIPMENT: Pick-Up /	V (Compliance: 4 Partially Frozen Walk-In / FedÊx) / UPS /	Thawed Wet Ic DHL / Area Fast / Top Line	eeNo Ice
TO BE COMPLETED BY SAMPLER:)	(check for yes)	(check for yes)
COMPANYIAGENCY NAME: Soute the 2 Dude/ / W.D CA	PROJECT CODE: Chromiaum	- Requi	CE SAMPLES NON es state forms REG	N-COMPLIANCE SAMPLES
EEA CLIENT CODE: COC ID:	SAMPLE GROUP:	SEE ATTACHED E	OTTLE ORDER FOR AN	ALYSES (check for yes), OR
		IISTANALYSES RE	QUIRED (enter number of bot	ttles sent for each test for each sample
TAT requested: rush by adv notice only	STD1 wk3 day2 day1 day	51 5510 31'5 41		
SAMPLE ID SAMPLE TIME SAMPLE ID	CLIENT LAB ID MATRIX *	4-60-100 1902 1903 1904 1904 1904 1904 1904 1904 1904 1904		COMMENTS
3/26 1830 W15-435	Rew	XXXXX		
2/26 1250 WH15-1	Rew	XXXXX		
2/26 1835 WHIG-2	RCW	XXXXX		
* MATRIX TYPES: RSW = Raw Surface Water RGW = Raw Ground Water	CFW = Chlor(am)inated Finished Water FW = Other Finished Water	SEAW = Sea Water WW = Waste Water	BW = Bottled Water SW = Storm Water	SO = Soil O = Other - Please Ider SL = Sludge
SIGNATURE	PRINT NAME		COMPANY/TITLE	DATE TIME
SAMPLED BY:	Jeff Kubrar	-	Judek	15:11 M/rdz
	Jeff Avony	FI	DEX	
	4 march		CA	2.23.14 HIVER
RECEIVED BY:				
QA FO 0029 (06/26/2013)	X			PAGE > OF

Page 7 of 22 pages

lager	amples		Billing Address Santa Ynez River WCD Post Office Box 157 Santa Ynez, CA 93460	Attr. Eric Tambini Phone: 805-688-6015 Fax: 805-688-3078	e if ai UN DOT #			UN2031								
iley is your Eurofins Eaton Analytical Project Mar	npler Please return this paper with your s	Client ID: SANTAYNEZWD-CA Project Code: CHROMIUM Bottle Orders Group Name: well profile sampling PO#/JOB#:	Send Report to Santa Ynez River WCD Post Office Box 157 Santa Ynez, CA 93460	Attri: Eric Tambini Phone: 805-688-6015 Fax: 805-688-3078	Bottles - Qty for each sample, type & preservativ	30 250ml poly no preservative	30 125ml poly no preservative	38 500mi acid poly 2ml HNO3 (18%)	12 125ml poly 1.25 ml NH4SO4/NH4OH buffer	30 500ml poly TDS - no preservative						
Eaton Analytical Fred Hale	Royal Oaks Drive, Suite 100 rrovia, California 91016-3629 5) 386-1100 FAX (626) 386-1101	Kit #: 85470 Created By: FWH Deliver By: 02/18/2014 STG: Bottle Orders Ice Type: W	Ship Sample Kits to Santa Ynez River WCD 3622 Sagunto Street Santa Ynez, CA 93460	Attn: District Office Phone: 805-688-6015 Fax: 805-688-3078	sts	(alinity in CaCO3 units, PH (H3=past HT not compliant)	iloride, Sulfate	Iromium Total ICAP/MS, Uranium ICAP/MS	xavalent Chromium (Dissolved)	tal Dissolved Solid (TDS)	S	DLERS "well profile sampling"	olers	ω	ice packing instructions	
	750 Moi (62)				# of Sample Te	1 A	1	-	1 H	1 Tc	Commen	LABEL CO	Ship two cc	no gel pack	provide wet	

Kit Order for Santa Ynez River WCD

Eaton Analytical

🐝 eurofins

Prepared By

of Coolers

Tracking #

Via

Date Shipped

Status

Code

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Comments Report: 470833

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Hits Report: 470833

Analyzed	Analyte Sample ID	Result	Federal MCL	Units	MRL
	201402280442 <u>W15-230</u>				
03/04/2014 17:15	Alkalinity in CaCO3 units	270		mg/L	2
03/01/2014 23:48	Chloride	68	250	mg/L	5
03/04/2014 11:32	Chromium Total ICAP/MS	23	100	ug/L	1
03/03/2014 11:20	Hexavalent chromium(Dissolved)	26		ug/L	0.04
03/04/2014 17:15	PH (H3=past HT not compliant)	8.2		Units	0.1
03/01/2014 23:48	Sulfate	90	250	mg/L	2.5
03/04/2014 16:16	Total Dissolved Solids (TDS)	540	500	mg/L	10
	201402280443 <u>W15-240</u>				
03/04/2014 17:42	Alkalinity in CaCO3 units	280		mg/L	2
03/02/2014 00:01	Chloride	69	250	mg/L	5
03/04/2014 11:42	Chromium Total ICAP/MS	23	100	ug/L	1
03/03/2014 13:00	Hexavalent chromium(Dissolved)	26		ug/L	0.04
03/04/2014 17:42	PH (H3=past HT not compliant)	8.3		Units	0.1
03/02/2014 00:01	Sulfate	91	250	mg/L	2.5
03/04/2014 16:18	Total Dissolved Solids (TDS)	540	500	mg/L	10
	201402280444 <u>W15-250</u>				
03/07/2014 18:09	Chromium Total ICAP/MS	24	100	ug/L	1
	201402280445 <u>W15-300</u>				
03/04/2014 17:55	Alkalinity in CaCO3 units	320		mg/L	2
03/02/2014 00:26	Chloride	46	250	mg/L	5
03/04/2014 12:04	Chromium Total ICAP/MS	23	100	ug/L	1
03/03/2014 12:30	Hexavalent chromium(Dissolved)	26		ug/L	0.04
03/04/2014 17:55	PH (H3=past HT not compliant)	8.1		Units	0.1
03/02/2014 00:26	Sulfate	110	250	mg/L	2.5
03/04/2014 16:19	Total Dissolved Solids (TDS)	540	500	mg/L	10
	201402280446 <u>W15-310</u>				
03/04/2014 18:04	Alkalinity in CaCO3 units	330		mg/L	2
03/02/2014 00:39	Chloride	46	250	mg/L	5
03/04/2014 12:10	Chromium Total ICAP/MS	24	100	ug/L	1
03/03/2014 12:00	Hexavalent chromium(Dissolved)	27		ug/L	0.04
03/04/2014 18:04	PH (H3=past HT not compliant)	8.1		Units	0.1
03/02/2014 00:39	Sulfate	110	250	mg/L	2.5
03/04/2014 16:20	Total Dissolved Solids (TDS)	540	500	mg/L	10
	201402280447 <u>W15-330</u>				

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Hits Report: 470833

Analyzed	Analyte Sample ID	Result	Federal MCL	Units	MRL
03/04/2014 18:13	Alkalinity in CaCO3 units	320		mg/L	2
03/02/2014 00:52	Chloride	47	250	mg/L	5
03/04/2014 11:39	Chromium Total ICAP/MS	24	100	ug/L	1
03/03/2014 12:10	Hexavalent chromium(Dissolved)	26		ug/L	0.04
03/04/2014 18:13	PH (H3=past HT not compliant)	8.2		Units	0.1
03/02/2014 00:52	Sulfate	120	250	mg/L	2.5
03/04/2014 16:21	Total Dissolved Solids (TDS)	560	500	mg/L	10
	201402280448 <u>W15-370</u>				
03/04/2014 18:21	Alkalinity in CaCO3 units	300		mg/L	2
03/02/2014 01:05	Chloride	53	250	mg/L	5
03/04/2014 12:07	Chromium Total ICAP/MS	20	100	ug/L	1
03/03/2014 11:50	Hexavalent chromium(Dissolved)	22		ug/L	0.04
03/04/2014 18:21	PH (H3=past HT not compliant)	8.1		Units	0.1
03/02/2014 01:05	Sulfate	140	250	mg/L	2.5
03/04/2014 16:22	Total Dissolved Solids (TDS)	610	500	mg/L	10
	201402280449 <u>W15-380</u>				
03/04/2014 18:30	Alkalinity in CaCO3 units	310		mg/L	2
03/02/2014 01:18	Chloride	56	250	mg/L	5
03/04/2014 11:45	Chromium Total ICAP/MS	22	100	ug/L	1
03/03/2014 13:40	Hexavalent chromium(Dissolved)	20		ug/L	0.04
03/04/2014 18:30	PH (H3=past HT not compliant)	8.4		Units	0.1
03/02/2014 01:18	Sulfate	160	250	mg/L	2.5
03/04/2014 16:23	Total Dissolved Solids (TDS)	660	500	mg/L	10
	201402280450 <u>W15-400</u>				
03/04/2014 18:38	Alkalinity in CaCO3 units	330		mg/L	2
03/03/2014 16:06	Chloride	52	250	mg/L	5
03/04/2014 11:48	Chromium Total ICAP/MS	20	100	ug/L	1
03/03/2014 12:20	Hexavalent chromium(Dissolved)	22		ug/L	0.04
03/04/2014 18:38	PH (H3=past HT not compliant)	8.1		Units	0.1
03/03/2014 16:06	Sulfate	130	250	mg/L	2.5
03/04/2014 17:34	Total Dissolved Solids (TDS)	600	500	mg/L	10
	201402280451 <u>W15-410</u>				
03/04/2014 18:47	Alkalinity in CaCO3 units	300		mg/L	2
03/03/2014 16:19	Chloride	53	250	mg/L	5
03/04/2014 11:51	Chromium Total ICAP/MS	20	100	ug/L	1
03/03/2014 12:40	Hexavalent chromium(Dissolved)	21		ug/L	0.04

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Hits Report: 470833

Analyzed		Analyte	Sample ID	Result	Federal MCL	Units	MRL
03/04/2014	18:47	PH (H3=past HT not com	pliant)	8.1		Units	0.1
03/03/2014	16:19	Sulfate		140	250	mg/L	2.5
03/04/2014	17:35	Total Dissolved Solids (T	DS)	600	500	mg/L	10
		201402280452	<u>W15-435</u>				
03/04/2014	18:55	Alkalinity in CaCO3 units		290		mg/L	2
03/03/2014	17:10	Chloride		43	250	mg/L	5
03/04/2014	11:29	Chromium Total ICAP/MS	S	16	100	ug/L	1
02/28/2014	18:39	Hexavalent chromium(Dis	ssolved)	16		ug/L	0.02
03/04/2014	18:55	PH (H3=past HT not com	ipliant)	8.0		Units	0.1
03/03/2014	17:10	Sulfate		89	250	mg/L	2.5
03/04/2014	17:36	Total Dissolved Solids (T	DS)	490	500	mg/L	10
		201402280453	<u>WH15-1</u>				
03/04/2014	16:29	Alkalinity in CaCO3 units		280		mg/L	2
03/03/2014	17:23	Chloride		68	250	mg/L	5
03/04/2014	11:36	Chromium Total ICAP/MS	S	23	100	ug/L	1
03/03/2014	13:10	Hexavalent chromium(Dis	ssolved)	25		ug/L	0.04
03/04/2014	16:29	PH (H3=past HT not com	ipliant)	8.0		Units	0.1
03/03/2014	17:23	Sulfate		90	250	mg/L	2.5
03/04/2014	17:38	Total Dissolved Solids (T	DS)	550	500	mg/L	10
		201402280454	<u>WH15-2</u>				
03/04/2014	16:37	Alkalinity in CaCO3 units		300		mg/L	2
03/03/2014	17:36	Chloride		69	250	mg/L	5
03/04/2014	12:13	Chromium Total ICAP/MS	S	23	100	ug/L	1
03/03/2014	12:50	Hexavalent chromium(Dis	ssolved)	25		ug/L	0.04
03/04/2014	16:37	PH (H3=past HT not com	ipliant)	8.0		Units	0.1
03/03/2014	17:36	Sulfate		90	250	mg/L	2.5
03/04/2014	17:39	Total Dissolved Solids (T	DS)	550	500	mg/L	10

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Data Report: 470833

Samples Received on: 02/28/2014

Prepared	Analyzed	QC Ref #	Method	Analyte	Result	Units	MRL	Dilution
<u>W15-230</u>	(20140228	<u>0442)</u>				Sampled	on 02/26/201	4 1315
		FPA 200.8 - IC	CPMS Metals					
3/3/2014	03/04/2014	11:32 755058	(EPA 200.8)	Chromium Total ICAP/MS	23	ug/L	1	1
		EPA 218.6 - H	exavalent chro	mium(Dissolved)				
	03/03/2014	11:20 754995	(EPA 218.6)	Hexavalent chromium(Dissolved)	26	ug/L	0.04	2
		EPA 300.0 - C	hloride, Sulfate	by EPA 300.0				
	03/01/2014	23:48 754886	(EPA 300.0)	Chloride	68	mg/L	5	5
	03/01/2014	23:48 754886	(EPA 300.0)	Sulfate	90	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaC	O3 units				
	03/04/2014	17:15 755306	(SM 2320B)	Alkalinity in CaCO3 units	270	mg/L	2	1
		E160.1/SM254	IOC - Total Diss	olved Solids (TDS)				
3/3/2014	03/04/2014	16:16 755144	(E160.1/SM2540C	C) Total Dissolved Solids (TDS)	540	mg/L	10	1
		SM4500-HB -	PH (H3=past H	Γ not compliant)				
	03/04/2014	17:15 755353	(SM4500-HB)	PH (H3=past HT not compliant)	8.2	Units	0.1	1
<u>W15-240</u>	(20140228	<u>0443)</u>				Sampled	on 02/26/201	4 1345
		EPA 200.8 - IO	CPMS Metals					
3/3/2014	03/04/2014	11:42 755058	(EPA 200.8)	Chromium Total ICAP/MS	23	ug/L	1	1
		EPA 218.6 - H	exavalent chro	mium(Dissolved)				
	03/03/2014	13:00 754995	(EPA 218.6)	Hexavalent chromium(Dissolved)	26	ug/L	0.04	2
		EPA 300.0 - C	hloride, Sulfate	by EPA 300.0				
	03/02/2014	00:01 754886	(EPA 300.0)	Chloride	69	mg/L	5	5
	03/02/2014	00:01 754886	(EPA 300.0)	Sulfate	91	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaC	O3 units				
	03/04/2014	17:42 755306	(SM 2320B)	Alkalinity in CaCO3 units	280	mg/L	2	1
		E160.1/SM254	IOC - Total Diss	olved Solids (TDS)				
3/3/2014	03/04/2014	16:18 755144	(E160.1/SM2540C	C) Total Dissolved Solids (TDS)	540	mg/L	10	1
		SM4500-HB -	PH (H3=past H	Γ not compliant)				
	03/04/2014	17:42 755353	(SM4500-HB)	PH (H3=past HT not compliant)	8.3	Units	0.1	1
<u>W15-250</u>	(20140228)	<u>0444)</u>				Sampled	on 02/26/201	4 1415
		EPA 200.8 - IO	CPMS Metals					
3/3/2014	03/07/2014	18:09 755975	(EPA 200.8)	Chromium Total ICAP/MS	24	ug/L	1	1
<u>W15-300</u>	(20140228)	<u>0445)</u>				Sampled	on 02/26/201	4 1500
		EPA 200.8 - IC	CPMS Metals					
3/3/2014	03/04/2014	12:04 755058	(EPA 200.8)	Chromium Total ICAP/MS	23	ug/L	1	1

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Data Report: 470833

Samples Received on: 02/28/2014

Prepared	Analyzed	QC Ref #	Method	Analyte	Result	Units	MRL	Dilution
		EPA 218.6 - H	lexavalent chromi	um(Dissolved)				
	03/03/2014	12:30 754995	(EPA 218.6)	Hexavalent chromium(Dissolved)	26	ug/L	0.04	2
		EPA 300.0 - C	hloride, Sulfate by	/ EPA 300.0				
	03/02/2014	00:26 754886	(EPA 300.0)	Chloride	46	mg/L	5	5
	03/02/2014	00:26 754886	(EPA 300.0)	Sulfate	110	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO3	units				
	03/04/2014	17:55 755306	(SM 2320B)	Alkalinity in CaCO3 units	320	mg/L	2	1
		E160.1/SM254	40C - Total Dissolv	ved Solids (TDS)				
3/3/2014	03/04/2014	16:19 755144	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	540	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	03/04/2014	17:55 755353	(SM4500-HB)	PH (H3=past HT not compliant)	8.1	Units	0.1	1
<u>W15-310</u>	(20140228	<u>0446)</u>				Sampled o	n 02/26/2014	4 1545
		EPA 200.8 - IO	CPMS Metals					
3/3/2014	03/04/2014	12:10 755058	(EPA 200.8)	Chromium Total ICAP/MS	24	ug/L	1	1
		EPA 218.6 - H	lexavalent chromi	um(Dissolved)				
	03/03/2014	12:00 754995	(EPA 218.6)	Hexavalent chromium(Dissolved)	27	ug/L	0.04	2
		EPA 300.0 - C	hloride, Sulfate by	/ EPA 300.0				
	03/02/2014	00:39 754886	(EPA 300.0)	Chloride	46	mg/L	5	5
	03/02/2014	00:39 754886	(EPA 300.0)	Sulfate	110	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO3	units				
	03/04/2014	18:04 755306	(SM 2320B)	Alkalinity in CaCO3 units	330	mg/L	2	1
		E160.1/SM254	40C - Total Dissolv	ved Solids (TDS)				
3/3/2014	03/04/2014	16:20 755144	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	540	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	03/04/2014	18:04 755353	(SM4500-HB)	PH (H3=past HT not compliant)	8.1	Units	0.1	1
<u>W15-330</u>	(20140228	<u>0447)</u>				Sampled o	n 02/26/201	4 1605
		EPA 200.8 - IO	CPMS Metals					
3/3/2014	03/04/2014	11:39 755058	(EPA 200.8)	Chromium Total ICAP/MS	24	ug/L	1	1
		EPA 218.6 - H	lexavalent chromi	um(Dissolved)				
	03/03/2014	12:10 754995	(EPA 218.6)	Hexavalent chromium(Dissolved)	26	ug/L	0.04	2
		EPA 300.0 - C	hloride, Sulfate by	/ EPA 300.0				
	03/02/2014	00:52 754886	(EPA 300.0)	Chloride	47	mg/L	5	5
	03/02/2014	00:52 754886	(EPA 300.0)	Sulfate	120	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO3	units				
	03/04/2014	18:13 755306	(SM 2320B)	Alkalinity in CaCO3 units	320	mg/L	2	1
		E160.1/SM254	40C - Total Dissolv	ved Solids (TDS)				

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Data Report: 470833

Samples Received on: 02/28/2014

Prepared	Analyzed	QC Ref #	[±] Method	Analyte	Result	Units	MRL	Dilution
3/3/2014	03/04/2014	16:21 755144	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	560	mg/L	10	1
		SM4500-HB -	PH (H3=past HT r	not compliant)				
	03/04/2014	18:13 755353	(SM4500-HB)	PH (H3=past HT not compliant)	8.2	Units	0.1	1
<u>W15-370</u>	0 (20140228	<u>0448)</u>				Sampled	on 02/26/201	4 1630
		EPA 200 8 - I	CPMS Motals					
3/3/2014	03/04/2014	12:07 755058	(EPA 200.8)	Chromium Total ICAP/MS	20	ug/L	1	1
		EPA 218.6 - H	lexavalent chrom	um(Dissolved)		Ū		
	03/03/2014	11:50 754995	(EPA 218.6)	Hexavalent chromium(Dissolved)	22	ug/L	0.04	2
		EPA 300.0 - 0	Chloride, Sulfate b	y EPA 300.0				
	03/02/2014	01:05 754886	(EPA 300.0)	Chloride	53	mg/L	5	5
	03/02/2014	01:05 754886	(EPA 300.0)	Sulfate	140	mg/L	2.5	5
		SM 2320B - A	Alkalinity in CaCO	3 units				
	03/04/2014	18:21 755306	(SM 2320B)	Alkalinity in CaCO3 units	300	mg/L	2	1
		E160.1/SM25	40C - Total Dissol	ved Solids (TDS)				
3/3/2014	03/04/2014	16:22 755144	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	610	mg/L	10	1
		SM4500-HB -	PH (H3=past HT r	not compliant)				
	03/04/2014	18:21 755353	(SM4500-HB)	PH (H3=past H1 not compliant)	8.1	Units	0.1	1
<u>W15-380</u>	0 (20140228	<u>0449)</u>				Sampled	on 02/26/201	4 1710
		EPA 200.8 - I	CPMS Metals					
3/3/2014	03/04/2014	11:45 755058	(EPA 200.8)	Chromium Total ICAP/MS	22	ug/L	1	1
		EPA 218.6 - H	lexavalent chromi	um(Dissolved)				
	03/03/2014	13:40 754995	(EPA 218.6)	Hexavalent chromium(Dissolved)	20	ug/L	0.04	2
		EPA 300.0 - 0	Chloride, Sulfate b	y EPA 300.0				
	03/02/2014	01:18 754886	(EPA 300.0)	Chloride	56	mg/L	5	5
	03/02/2014	01:18 754886	(EPA 300.0)	Sulfate	160	mg/L	2.5	5
		SM 2320B - A	Alkalinity in CaCO	3 units				
	03/04/2014	18:30 755306	(SM 2320B)	Alkalinity in CaCO3 units	310	mg/L	2	1
0.00.0044		E160.1/SM25	40C - Total Dissol	ved Solids (TDS)			10	
3/3/2014	03/04/2014	16:23 755144	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	660	mg/L	10	1
	02/04/2014	SM4500-HB -	PH (H3=past HT I	DEL (H2=paget HT pot compliant)	9.4	Lipito	0.1	1
WAE 400	(204 40229	18.30 733333 04E0)	(304300-116)		0.4	Compled	on 02/26/201	4 4740
<u>vv15-40(</u>	20140228	<u>0490)</u>				Sampled	011 02/26/201	4 1/40
		EPA 200.8 - I	CPMS Metals					
3/3/2014	03/04/2014	11:48 755058	(EPA 200.8)	Chromium Total ICAP/MS	20	ug/L	1	1
		EPA 218.6 - H	lexavalent chromi	ium(Dissolved)				

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Samples Received on: 02/28/2014

Prepared	Analyzed	QC Ref #	Method	Analyte	Result	Units	MRL	Dilution
	03/03/2014	12:20 754995	(EPA 218.6)	Hexavalent chromium(Dissolved)	22	ug/L	0.04	2
		EPA 300.0 - C	hloride, Sulfate b	v EPA 300.0				
	03/03/2014	16:06 755207	(EPA 300.0)	Chloride	52	mg/L	5	5
	03/03/2014	16:06 755207	(EPA 300.0)	Sulfate	130	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO3	8 units				
	03/04/2014	18:38 755306	(SM 2320B)	Alkalinity in CaCO3 units	330	mg/L	2	1
		E160.1/SM254	OC - Total Dissol	ved Solids (TDS)				
3/4/2014	03/04/2014	17:34 755147	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	600	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	03/04/2014	18:38 755353	(SM4500-HB)	PH (H3=past HT not compliant)	8.1	Units	0.1	1
<u>W15-410</u>) (20140228	<u>0451)</u>				Sampled	on 02/26/201	4 1800
		EPA 200.8 - IC	CPMS Metals					
3/3/2014	03/04/2014	11:51 755058	(EPA 200.8)	Chromium Total ICAP/MS	20	ug/L	1	1
		EPA 218.6 - H	exavalent chromi	um(Dissolved)				
	03/03/2014	12:40 754995	(EPA 218.6)	Hexavalent chromium(Dissolved)	21	ug/L	0.04	2
		EPA 300.0 - C	hloride, Sulfate b	y EPA 300.0				
	03/03/2014	16:19 755207	(EPA 300.0)	Chloride	53	mg/L	5	5
	03/03/2014	16:19 755207	(EPA 300.0)	Sulfate	140	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO3	8 units				
	03/04/2014	18:47 755306	(SM 2320B)	Alkalinity in CaCO3 units	300	mg/L	2	1
		E160.1/SM254	OC - Total Dissol	ved Solids (TDS)				
3/4/2014	03/04/2014	17:35 755147	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	600	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	03/04/2014	18:47 755353	(SM4500-HB)	PH (H3=past HT not compliant)	8.1	Units	0.1	1
<u>W15-435</u>	<u>5 (20140228</u>	<u>0452)</u>				Sampled	on 02/26/201	4 1820
		EPA 200.8 - IC	PMS Metals					
3/3/2014	03/04/2014	11:29 755058	(EPA 200.8)	Chromium Total ICAP/MS	16	ug/L	1	1
		EPA 218.6 - H	exavalent chromi	um(Dissolved)				
	02/28/2014	18:39 754707	(EPA 218.6)	Hexavalent chromium(Dissolved)	16	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate b	y EPA 300.0				
	03/03/2014	17:10 755207	(EPA 300.0)	Chloride	43	mg/L	5	5
	03/03/2014	17:10 755207	(EPA 300.0)	Sulfate	89	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO3	3 units				
	03/04/2014	18:55 755306	(SM 2320B)	Alkalinity in CaCO3 units	290	mg/L	2	1
		E160.1/SM254	IOC - Total Dissol	ved Solids (TDS)				
3/4/2014	03/04/2014	17:36 755147	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	490	mg/L	10	1

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Data Report: 470833

Prepared	Analyzed	QC Ref #	Method	Analyte	Result	Units	MRL	Dilution
		SM4500-HB -	PH (H3=past HT r	ot compliant)				
	03/04/2014	18:55 755353	(SM4500-HB)	PH (H3=past HT not compliant)	8.0	Units	0.1	1
<u>WH15-1</u>	(201402280	<u>453)</u>				Sampled	on 02/26/201	4 1250
		EPA 200.8 - I	CPMS Metals					
3/3/2014	03/04/2014	11:36 755058	(EPA 200.8)	Chromium Total ICAP/MS	23	ug/L	1	1
		EPA 218.6 - H	lexavalent chromi	um(Dissolved)				
	03/03/2014	13:10 754995	(EPA 218.6)	Hexavalent chromium(Dissolved)	25	ug/L	0.04	2
		EPA 300.0 - 0	Chloride, Sulfate b	y EPA 300.0				
	03/03/2014	17:23 755207	(EPA 300.0)	Chloride	68	mg/L	5	5
	03/03/2014	17:23 755207	(EPA 300.0)	Sulfate	90	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO	8 units				
	03/04/2014	16:29 755306	(SM 2320B)	Alkalinity in CaCO3 units	280	mg/L	2	1
		E160.1/SM25	40C - Total Dissol	ved Solids (TDS)				
3/4/2014	03/04/2014	17:38 755147	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	550	mg/L	10	1
		SM4500-HB -	PH (H3=past HT r	iot compliant)				
	03/04/2014	16:29 755353	(SM4500-HB)	PH (H3=past HT not compliant)	8.0	Units	0.1	1
<u>WH15-2</u>	(201402280	<u>454)</u>				Sampled	on 02/26/201	4 1835
		EPA 200.8 - I	CPMS Metals					
3/3/2014	03/04/2014	12:13 755058	(EPA 200.8)	Chromium Total ICAP/MS	23	ug/L	1	1
		EPA 218.6 - H	lexavalent chromi	um(Dissolved)				
	03/03/2014	12:50 754995	(EPA 218.6)	Hexavalent chromium(Dissolved)	25	ug/L	0.04	2
		EPA 300.0 - C	Chloride, Sulfate b	y EPA 300.0				
	03/03/2014	17:36 755207	(EPA 300.0)	Chloride	69	mg/L	5	5
	03/03/2014	17:36 755207	(EPA 300.0)	Sulfate	90	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO	8 units				
	03/04/2014	16:37 755306	(SM 2320B)	Alkalinity in CaCO3 units	300	mg/L	2	1
		E160.1/SM25	40C - Total Dissol	ved Solids (TDS)				
3/4/2014	03/04/2014	17:39 755147	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	550	mg/L	10	1
		SM4500-HB -	PH (H3=past HT r	iot compliant)				
	03/04/2014	16:37 755353	(SM4500-HB)	PH (H3=past HT not compliant)	8.0	Units	0.1	1

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

201402280447

201402280448

201402280449

W15-330

W15-370

W15-380

QC Ref # 754707 - Hexav	alent chromium(Dissolved)	Analysis Date: 02/28/2014
201402280452	W15-435	Analyzed by: TLH
QC Ref # 754886 - Chlori	de, Sulfate by EPA 300.0	Analysis Date: 03/01/2014
201402280442	W15-230	Analyzed by: CYP
201402280443	W15-240	Analyzed by: CYP
201402280445	W15-300	Analyzed by: CYP
201402280446	W15-310	Analyzed by: CYP
201402280447	W15-330	Analyzed by: CYP
201402280448	W15-370	Analyzed by: CYP
201402280449	W15-380	Analyzed by: CYP
QC Ref # 754995 - Hexav	alent chromium(Dissolved)	Analysis Date: 03/03/2014
201402280442	W15-230	Analyzed by: TLH
201402280443	W15-240	Analyzed by: TLH
201402280445	W15-300	Analyzed by: TLH
201402280446	W15-310	Analyzed by: TLH
201402280447	W15-330	Analyzed by: TLH
201402280448	W15-370	Analyzed by: TLH
201402280449	W15-380	Analyzed by: TLH
201402280450	W15-400	Analyzed by: TLH
201402280451	W15-410	Analyzed by: TLH
201402280453	WH15-1	Analyzed by: TLH
201402280454	WH15-2	Analyzed by: TLH
QC Ref # 755058 - ICPMS	Metals	Analysis Date: 03/04/2014
201402280442	W15-230	Analyzed by: SXK
201402280443	W15-240	Analyzed by: SXK
201402280445	W15-300	Analyzed by: SXK
201402280446	W15-310	Analyzed by: SXK
201402280447	W15-330	Analyzed by: SXK
201402280448	W15-370	Analyzed by: SXK
201402280449	W15-380	Analyzed by: SXK
201402280450	W15-400	Analyzed by: SXK
201402280451	W15-410	Analyzed by: SXK
201402280452	W15-435	Analyzed by: SXK
201402280453	WH15-1	Analyzed by: SXK
201402280454	WH15-2	Analyzed by: SXK
QC Ref # 755144 - Total I	Dissolved Solids (TDS)	Analysis Date: 03/04/2014
201402280442	W15-230	Analyzed by: JRF
201402280443	W15-240	Analyzed by: JRF
201402280445	W15-300	Analyzed by: JRF
201402280446	W15-310	Analyzed by: JRF

Analyzed by: JRF

Analyzed by: JRF

Analyzed by: JRF

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

QC Ref # 755147 - Total D	Dissolved Solids (TDS)	Analysis Date: 03/04/2014
201402280450	W15-400	Analyzed by: JRF
201402280451	W15-410	Analyzed by: JRF
201402280452	W15-435	Analyzed by: JRF
201402280453	WH15-1	Analyzed by: JRF
201402280454	WH15-2	Analyzed by: JRF
QC Ref # 755207 - Chlorid	de, Sulfate by EPA 300.0	Analysis Date: 03/03/2014
201402280450	W15-400	Analyzed by: CYP
201402280451	W15-410	Analyzed by: CYP
201402280452	W15-435	Analyzed by: CYP
201402280453	WH15-1	Analyzed by: CYP
201402280454	WH15-2	Analyzed by: CYP
QC Ref # 755306 - Alkalin	nity in CaCO3 units	Analysis Date: 03/04/2014
201402280442	W15-230	Analyzed by: JMO
201402280443	W15-240	Analyzed by: JMO
201402280445	W15-300	Analyzed by: JMO
201402280446	W15-310	Analyzed by: JMO
201402280447	W15-330	Analyzed by: JMO
201402280448	W15-370	Analyzed by: JMO
201402280449	W15-380	Analyzed by: JMO
201402280450	W15-400	Analyzed by: JMO
201402280451	W15-410	Analyzed by: JMO
201402280452	W15-435	Analyzed by: JMO
201402280453	WH15-1	Analyzed by: JMO
201402280454	WH15-2	Analyzed by: JMO
QC Ref # 755353 - PH (H3	=past HT not compliant)	Analysis Date: 03/04/2014
201402280442	W15-230	Analyzed by: JMO
201402280443	W15-240	Analyzed by: JMO
201402280445	W15-300	Analyzed by: JMO
201402280446	W15-310	Analyzed by: JMO
201402280447	W15-330	Analyzed by: JMO
201402280448	W15-370	Analyzed by: JMO
201402280449	W15-380	Analyzed by: JMO
201402280450	W15-400	Analyzed by: JMO
201402280451	W15-410	Analyzed by: JMO
201402280452	W15-435	Analyzed by: JMO
201402280453	WH15-1	Analyzed by: JMO
201402280454	WH15-2	Analyzed by: JMO
QC Ref # 755975 - ICPMS	Metals	Analysis Date: 03/07/2014
201402280444	W15-250	Analyzed by: SXK

Laboratory QC Report: 470833

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

QC Type	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
QC Ref# 754707 -	Hexavalent chromium(Dissolved)	by EPA 218.6				Analysis I	Date: 02/28/	2014	
LCS1	Hexavalent chromium(Dissolved)		2.0	2.00	ug/L	100	(90-110)		
LCS2	Hexavalent chromium(Dissolved)		2.0	2.01	ug/L	100	(90-110)		
MBLK	Hexavalent chromium(Dissolved)			<0.020	ug/L				
MRL_CHK	Hexavalent chromium(Dissolved)		0.02	0.0201	ug/L	100	(50-150)		
MS_201402260722	Hexavalent chromium(Dissolved)	0.14	2.0	2.18	ug/L	102	(90-110)		
MS_201402280357	Hexavalent chromium(Dissolved)	ND	2.0	2.09	ug/L	103	(90-110)		
MSD_201402260722	Hexavalent chromium(Dissolved)	0.14	2.0	2.19	ug/L	103	(90-110)	20	0.46
MSD_201402280357	Hexavalent chromium(Dissolved)	ND	2.0	2.03	ug/L	100	(90-110)	20	2.9
QC Ref# 754886 -	Chloride, Sulfate by EPA 300.0 by	EPA 300.0				Analysis I	Date: 03/01/	2014	
LCS1	Chloride		25	25.3	mg/L	101	(90-110)		
LCS2	Chloride		25	25.4	mg/L	102	(90-110)	20	0.79
MBLK	Chloride			<0.5	mg/L				
MRL_CHK	Chloride		0.5	0.428	mg/L	86	(50-150)		
MS_201403010112	Chloride	59	13	83.8	mg/L	98	(80-120)		
MS_201403010129	Chloride	59	13	83.4	mg/L	96	(80-120)		
MSD_201403010112	Chloride	59	13	82.5	mg/L	92	(80-120)	20	1.6
MSD_201403010129	Chloride	59	13	84.0	mg/L	99	(80-120)	20	0.60
LCS1	Sulfate		50	49.7	mg/L	99	(90-110)		
LCS2	Sulfate		50	50.0	mg/L	100	(90-110)	20	0.60
MBLK	Sulfate			<0.25	mg/L				
MRL_CHK	Sulfate		1.0	0.928	mg/L	93	(50-150)		
MRLLW	Sulfate		0.25	0.246	mg/L	98	(50-150)		
MS_201403010112	Sulfate	7.6	25	56.8	mg/L	99	(80-120)		
MS_201403010129	Sulfate	130	25	179	mg/L	93	(80-120)		
MSD_201403010112	Sulfate	7.6	25	54.5	mg/L	94	(80-120)	20	4.1
MSD_201403010129	Sulfate	130	25	180	mg/L	96	(80-120)	20	0.56
QC Ref# 754995 -	Hexavalent chromium(Dissolved)	by EPA 218.6				Analysis I	Date: 03/03/	2014	
LCS1	Hexavalent chromium(Dissolved)		2.0	2.00	ug/L	100	(90-110)		
LCS2	Hexavalent chromium(Dissolved)		2.0	1.99	ug/L	99	(90-110)		
MBLK	Hexavalent chromium(Dissolved)			<0.020	ug/L				
MRL_CHK	Hexavalent chromium(Dissolved)		0.02	0.0165	ug/L	83	(50-150)		
MS_201402280442	Hexavalent chromium(Dissolved)	26	2.0	29.4	ug/L	97	(90-110)		
MS_201403010009	Hexavalent chromium(Dissolved)	5.4	2.0	7.40	ug/L	102	(90-110)		
MSD_201402280442	Hexavalent chromium(Dissolved)	26	2.0	29.6	ug/L	102	(90-110)	20	0.68
MSD_201403010009	Hexavalent chromium(Dissolved)	5.4	2.0	7.40	ug/L	102	(90-110)	20	0.0

Spike recovery is already corrected for native results. Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u> Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level).

(S) - Indicates surrogate compound.
(I) - Indicates internal standard compound.

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

QC Type	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
QC Ref# 755058 - I	CPMS Metals by EPA 200.8					Analysis [Date: 03/04/2	2014	
LCS1	Chromium Total ICAP/MS		100	101	ug/L	101	(85-115)		
LCS2	Chromium Total ICAP/MS		100	101	ug/L	101	(85-115)	20	0.0
MBLK	Chromium Total ICAP/MS			<1	ug/L				
MRL_CHK	Chromium Total ICAP/MS		1.0	1.02	ug/L	102	(50-150)		
MS_201402280359	Chromium Total ICAP/MS	ND	100	96.7	ug/L	97	(70-130)		
MS2_201402260735	Chromium Total ICAP/MS	ND	100	97.6	ug/L	98	(70-130)		
MSD_201402280359	Chromium Total ICAP/MS	ND	100	110	ug/L	110	(70-130)	20	13
MSD2_201402260735	Chromium Total ICAP/MS	ND	100	104	ug/L	104	(70-130)	20	6.3
QC Ref# 755144 - 1	Fotal Dissolved Solids (TDS) by E160.1	/SM2540	C			Analysis D	Date: 03/04/2	2014	
DUP_201402280442	Total Dissolved Solid (TDS)	540		546	mg/L		(0-20)	20	0.37
DUP_201403030300	Total Dissolved Solid (TDS)	290		294	mg/L		(0-20)	20	0.68
LCS1	Total Dissolved Solid (TDS)		175	166	mg/L	95	(80-114)		
LCS2	Total Dissolved Solid (TDS)		700	668	mg/L	95	(80-114)		
MBLK	Total Dissolved Solid (TDS)			<10	mg/L				
MRL_CHK	Total Dissolved Solid (TDS)		10	9.00	mg/L	90	(50-150)		
QC Ref# 755147 - 1	Fotal Dissolved Solids (TDS) by E160.1	/SM2540	C			Analysis D	Date: 03/04/2	2014	
DUP_201402260738	Total Dissolved Solid (TDS)	740		736	mg/L		(0-20)		
DUP_201402261005	Total Dissolved Solid (TDS)	660		670	mg/L		(0-20)	20	1.5
LCS1	Total Dissolved Solid (TDS)		175	154	mg/L	88	(80-114)		
LCS2	Total Dissolved Solid (TDS)		700	670	mg/L	96	(80-114)		
MBLK	Total Dissolved Solid (TDS)			<10	mg/L				
MRL_CHK	Total Dissolved Solid (TDS)		10	9.00	mg/L	90	(50-150)		
QC Ref# 755207 - 0	Chloride, Sulfate by EPA 300.0 by EPA	300.0				Analysis D	Date: 03/03/2	2014	
LCS1	Chloride		25	25.3	mg/L	101	(90-110)		
LCS2	Chloride		25	25.5	mg/L	102	(90-110)	20	0.79
MBLK	Chloride			<0.5	mg/L				
MRL_CHK	Chloride		0.5	0.428	mg/L	86	(50-150)		
MS_201402280073	Chloride	15	13	28.6	mg/L	106	(80-120)		
MS_201403030142	Chloride	15	13	28.2	mg/L	107	(80-120)		
MSD_201402280073	Chloride	15	13	28.5	mg/L	106	(80-120)	20	0.35
MSD_201403030142	Chloride	15	13	28.3	mg/L	108	(80-120)	20	0.35
LCS1	Sulfate		50	49.8	mg/L	100	(90-110)		
LCS2	Sulfate		50	50.2	mg/L	100	(90-110)	20	0.60
MBLK	Sulfate			<0.25	mg/L				
MRL_CHK	Sulfate		1.0	0.930	mg/L	93	(50-150)		

Spike recovery is already corrected for native results. Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u> Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level).

(S) - Indicates surrogate compound.
(I) - Indicates internal standard compound.

Laboratory QC Report: 470833

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

QC Туре	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
MRLLW	Sulfate		0.25	0.253	mg/L	101	(50-150)		
MS_201402280073	Sulfate	7.9	25	33.6	mg/L	103	(80-120)		
MS_201403030142	Sulfate	14	25	39.8	mg/L	104	(80-120)		
MSD_201402280073	Sulfate	7.9	25	33.6	mg/L	103	(80-120)	20	0.0
MSD_201403030142	Sulfate	14	25	39.9	mg/L	105	(80-120)	20	0.25
QC Ref# 755306 - A	Alkalinity in CaCO3 units by SM 2320B					Analysis D	ate: 03/04/2	014	
LCS1	Alkalinity in CaCO3 units		100	101	mg/L	101	(90-110)		
LCS2	Alkalinity in CaCO3 units		100	100	mg/L	100	(90-110)	20	0.0
MBLK	Alkalinity in CaCO3 units			<2	mg/L				
MRL_CHK	Alkalinity in CaCO3 units		2.0	2.56	mg/L	128	(50-150)		
MS_201402270384	Alkalinity in CaCO3 units	110	100	173	mg/L	<u>61</u>	(80-120)		
MS_201402280442	Alkalinity in CaCO3 units	270	100	361	mg/L	94	(80-120)		
MSD_201402270384	Alkalinity in CaCO3 units	110	100	169	mg/L	<u>57</u>	(80-120)	20	2.3
MSD_201402280442	Alkalinity in CaCO3 units	270	100	348	mg/L	81	(80-120)	20	3.7
QC Ref# 755353 - F	PH (H3=past HT not compliant) by SM45	600-HB				Analysis D	ate: 03/04/2	014	
DUP_201402270386	PH (H3=past HT not compliant)	9.6		9.61	Units		(0-20)	20	0.21
DUP_201402280443	PH (H3=past HT not compliant)	8.3		8.28	Units		(0-20)	20	0.0
LCS1	PH (H3=past HT not compliant)		6.0	6.00	Units	100	(98-102)		
LCS2	PH (H3=past HT not compliant)		6.0	6.00	Units	100	(98-102)	20	0.0
QC Ref# 755975 - I	CPMS Metals by EPA 200.8					Analysis D	ate: 03/07/2	014	
LCS1	Chromium Total ICAP/MS		100	100	ug/L	100	(85-115)		
LCS2	Chromium Total ICAP/MS		100	105	ug/L	105	(85-115)	20	4.9
MBLK	Chromium Total ICAP/MS			<1	ug/L				
MRL_CHK	Chromium Total ICAP/MS		1.0	0.968	ug/L	97	(50-150)		
MS_201403030098	Chromium Total ICAP/MS	ND	100	105	ug/L	105	(70-130)		
MS2_201403030066	Chromium Total ICAP/MS	ND	100	103	ug/L	102	(70-130)		
MSD_201403030098	Chromium Total ICAP/MS	ND	100	104	ug/L	104	(70-130)	20	0.96
MSD2_201403030066	Chromium Total ICAP/MS	ND	100	114	ug/L	113	(70-130)	20	10

Spike recovery is already corrected for native results. Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u> Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level).

(S) - Indicates surrogate compound.
(I) - Indicates internal standard compound.

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Laboratory Report

for

Santa Ynez River WCD Post Office Box 157 Santa Ynez, CA 93460 Attention: Eric Tambini Fax: 805-688-3078

FWH: Fred Haley

Project Manager

Report: 470148 Project: CHROMIUM Group: well sampling

* Accredited in accordance with NELAP.

^{*} Laboratory certifies that the test results meet all TNI NELAP requirements unless noted under the individual analysis.

^{*} Following the cover page are State Certification List, ISO 17025 Accredited Method List, Acknowledgement of Samples Received, Comments, Hits Report, Data Report, QC Summary, QC Report and Regulatory Forms, as applicable.

^{*} Test results relate only to the sample(s) tested.

^{*} This report shall not be reproduced except in full, without the written approval of the laboratory.

STATE CERTIFICATION LIST

State	Certification Number	State	Certification Number
Alabama	41060	Mississippi	Certified
Alaska	CA00006	Montana	Cert 0035
Arizona	AZ0778	Nebraska	Certified
Arkansas	Certified	Nevada	CA00006-2012-1
California-Monrovia- ELAP	2813	New Hampshire *	2959
California-Colton- ELAP	2812	New Jersey *	CA 008
California-Folsom- ELAP	2820	New Mexico	Certified
Colorado	Certified	New York *	11320
Connecticut	PH-0107	North Carolina	06701
Delaware	CA 006	North Dakota	R-009
Florida *	E871024	Oregon (Primary AB) *	ORELAP 4034
Georgia	947	Pennsylvania *	68-565
Guam	13-004r	Rhode Island	LAO00326
Hawaii	Certified	South Carolina	87016
Idaho	Certified	South Dakota	Certified
Illinois *	200033	Tennessee	TN02839
Indiana	C-CA-01	Texas *	T104704230-14-6
Kansas *	E-10268	Utah *	CA000062014-6
Kentucky	90107	Vermont	VT0114
Louisiana *	LA140009	Virginia *	00210
Maine	CA0006	Washington	C838
Maryland	224	West Virginia	9943 C
Commonwealth of Northern Marianas Is.	MP0004	Wisconsin	998316660
Massachusetts	M-CA006	Wyoming	8TMS-L
Michigan	9906	EPA Region 5	Certified
Los Angeles County Sanitation Districts	10264		

* NELAP/TNI Recognized Accreditation Bodies

750 Royal Oaks Drive, Suite 100 Monrovia, CA 91016-3629

T | 626-386-1100 F | 626-386-1101 www.EatonAnalytical.com

The tests listed below are accredited and meet the requirements of ISO 17025 as verified by the ANSI-ASQ National Accreditation Board/ACLASS. Refer to Certificate and scope of accreditation (AT 1807) found at: http://www.eatonanalytical.com

SPECIFIC TESTS	METHOD OR TECHNIQUE USED	Drinking Water	Food & Beverage	Waste Water	SPECIFIC TESTS	METHOD OR TECHNIQUE USED	Drinking Water	Food & Beverage	Waste Water
1,4-Dioxane	EPA 522	х	х		Hormones	EPA 539	х	х	
2,3,7,8-TCDD	Modified EPA 1613B	х	х		Hydroxide as OH Calc.	SM 2330B	x	х	
Acrylamide	In House Method	x	х		Kjeldahl Nitrogen	EPA 351.2			х
Alkalinity	SM 2320B	х	х	х	Mercury	EPA 245.1	x	X	х
Ammonia	EPA 350.1		x	x	Metals	EPA 200.7 / 200.8	x	X	х
Ammonia Anions and DBPs by IC	EPA 200 0	v	X	x	NDMA	ELISA EDA 521	X	X	
Anions and DBPs by IC	EPA 300.0	×	X	X	Nitrate/Nitrite Nitrogen	EFA 321 EDA 353 2	x	X	×
Ashestos	EFA 100.2	×	^		OCL Pesticides/PCB	EFPA 505	×	×	^
Ricarbonate Alkalinity as	EI 11 100.2	~			oce, resteració reb	LIN 505	~	~	
HCO3	SM 2330B	x	x	x	Ortho Phosphate	EPA 365.1	x	x	
BOD / CBOD	SM 5210B		x	x	Phosphorous	EPA 365.1/SM 4500-P E			x
Bromate	In House Method	х	х		Ortho Phosphorous	SM 4500P E	х	х	
Carbamates	EPA 531.2	x	x		Oxyhalides Disinfection Byproducts	EPA 317.0	x	x	
Carbonate as CO3	SM 2330B	х	х	х	Perchlorate	EPA 331.0	x	х	
Carbonyls	EPA 556	х	х		Perchlorate	EPA 314.0	x	х	
COD	EPA 410.4 / SM 5220D			x	Perfluorinated Alkyl Acids	EPA 537	x	x	
Chloramines	SM 4500-CL G	x	х	х	рН	EPA 150.1	x		
Chlorinated Acids	EPA 515.4	х	х		pH	SM 4500-H+B	х	х	х
Chlorinated Acids	EPA 555	х	x		Phenylurea Pesticides/ Herbicides	In House Method	x	x	
Chlorine Dioxide	SM 4500-CLO2 D	х	x		Pseudomonas	IDEXX Pseudalert	x	x	
Chlorine -Total/Free/ Combined Residual	SM 4500-Cl G	х	x	x	Radium-226	RA-226 GA	x	x	
Conductivity	EPA 120.1			х	Radium-228	RA-228 GA	х	х	
Conductivity	SM 2510B	х	х	х	Radon-222	SM 7500RN	х	х	
Corrosivity (Langelier Index)	SM 2330B	x	x		Residue, Filterable	SM 2540C	x	x	x
Cyanide, Amenable	SM 4500-CN G	х		х	Residue, Non-filterable	SM 2540D			х
Cyanide, Free	SM 4500CN F	х	х	х	Residue, Total	SM 2540B		х	х
Cyanide, Total	EPA 335.4	х	х	х	Residue, Volatile	EPA 160.4			х
Cyanogen Chloride (screen)	In House Method	x	x		Semi-VOC	EPA 525.2	x	x	
Diquat and Paraquat	EPA 549.2	х	x		Semi-VOC	EPA 625	х	х	x
DBP/HAA	SM 6251B	х	х		Silica	SM 4500-Si D	x	х	х
Dissolved Oxygen	SM 4500-O G		х	х	Silica	SM 4500-SiO2 C	x		х
E. Coli	(MTF/EC+MUG)	x			Sulfide	SM 4500-S ⁼ D			х
E. Coli	CFR 141.21(f)(6)(i)		х	х	Surfactants	SM 5540C	х	х	х
E. Coli	SM 9223			x	Taste and Odor Analytes	SM 6040E	x	x	
	SM 0221D 1/SM 0221E			~		SM 00101			
E. Coli (Enumeration)	SM 9221B.1/ SM 9221F	×	x		Total Coliform	SM 9221 A, B	×	X	
E. Con (Enumeration)	FPA 504 1	x	×		(Enumeration) Total Coliform / F. coli	Colisure	×	x	
EDB/DECP and DBP	EPA 551 1	x	x		Total Coliform	SM 9221B	~	~	x
EDTA and NTA	In House Method	x	x		Total Coliform with Chlorine Present	SM 9221B			x
Endothall	EPA 548 1	×	×		Total Coliform / E coli	SM 9223	×	×	L
Enterococci	SM 9230B	x	~	x	TOC	SM 5310C	~	x	x
Fecal Coliform	SM 9221 E (MTF/EC)	x		~	TOC/DOC	SM 5310C	x	x	~
Fecal Coliform	SM 9221C, E (MTF/EC)			x	тох	SM 5320B			x
Fecal Coliform (Enumeration)	SM 9221E (MTF/EC)	x	x		Total Phenols	EPA 420.1			x
Fecal Coliform with	SM 9221E			x	Total Phenols	EPA 420.4	x	x	x
Fecal Streptococci	SM 9230B	x		x	Total Phosphorous	SM 4500 P F			x
Fluoride	SM 4500-F C	x	x	x	Turbidity	EPA 180.1	x	x	x
Glyphosate	EPA 547	x	x		Turbidity	SM 2130B	x		x
Gross Alpha/Beta	EPA 900.0	x	x	x	Uranium by ICP/MS	EPA 200.8	x	x	
HAAs/ Dalapon	EPA 552.3	x	x		UV 254	SM 5910B	x		
Hardness	SM 2340B	х	х	х	VOC	EPA 524.2/EPA 524.3	х	х	
Heterotrophic Bacteria	In House Method	х	х		VOC	EPA 624	х	х	х
Heterotrophic Bacteria	SM 9215 B	х	х		VOC	EPA SW 846 8260	х	х	
Hexavalent Chromium	EPA 218.6	х	х	х	VOC	In House Method	х	х	
Hexavalent Chromium	EPA 218.7	х	х		Yeast and Mold	SM 9610	х	х	
Hexavalent Chromium	SM 3500-Cr B or C (20th)			x					

🔅 eurofins						
_	Eaton Analytical	knowledgement of Samples	Received			
Addr:	Santa Ynez River WCD Post Office Box 157 Santa Ynez, CA 93460		Client ID: SANTAYN Folder #: 470148 Project: CHROMIL Sample Group: well samp	IEZWD-CA JM ling		
Attn: Eric Tambini Phone: 805-688-6015		Project Manager: Fred Haley Phone: (626) 386-1127				
The follo below ea Eurofins	wing samples were received from ach sample. If this information is in Eaton Analytical.	you on February 25, 2014 . They h ncorrect, please contact your service	ave been scheduled for the representative. Thank y	ne tests listed ou for using		
Sample #	Sample ID			Sample Date		
201402250585	WH25-1			02/22/2014 1000		
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/M	IS		
	Hexavalent chromium(Dissolved) Total Dissolved Solid (TDS)	PH (H3=past HT not compliant) Uranium ICAP/MS	Sulfate	-		
<u>201402250586</u>	W25-500			02/22/2014 1339		
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/M	IS		
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate			
	Total Dissolved Solid (TDS)					
201402250587	W25-600			02/22/2014 1500		
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/M	IS		
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate			
	Total Dissolved Solid (TDS)					
201402250588	W25-630			02/22/2014 1525		
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/M	S		
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate	-		
	Total Dissolved Solid (TDS)	(- F				
201402250589	W25-645			02/22/2014 1555		
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/M	IS		
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate			
	Total Dissolved Solid (TDS)	Uranium ICAP/MS				
201402250590	W25-675			02/22/2014 1615		
	· · · · · · · · · · · · · · · · · · ·					
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/M	IS		
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate			
	Total Dissolved Solid (TDS)					
<u>201402250591</u>	W25-690			02/22/2014 1640		
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/M	S		
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate			
	Total Dissolved Solid (TDS)					
201402250592	W25-705			02/22/2014 1710		
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/M	S		
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate	-		
	Total Dissolved Solid (TDS)					

Reported: 03/11/2014

Page 1 of 3

750 Royal Oaks Drive, Suite 100, Monrovia, CA 91016 Tel (626) 386-1100 Fax (626) 386-1101 http://www.EatonAnalytical.com

🛟 eurofins					
_	Eaton Analytical	knowledgement of Samples	Received		
۵ ما ما ما		cknowledgement of odmples			
Addr:	Santa Ynez River WCD Post Office Box 157		Folder #: 470148	NEZWD-CA	
	Santa Ynez, CA 93460	Project: CHROMIUM			
		S	Sample Group: well sam	pling	
Attn:	Eric Tambini	Pro	oject Manager: Fred Hal	ey	
Phone:	805-688-6015		Phone: (626) 38	6-1127	
The follo below ea Eurofins	wing samples were received from ach sample. If this information is in Eaton Analytical.	you on February 25, 2014 . They h ncorrect, please contact your service	ave been scheduled for e representative. Thank	the tests listed you for using	
Sample #	Sample ID			Sample Date	
201402250593	W25-720			02/22/2014 1735	
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/	MS	
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate		
	Total Dissolved Solid (TDS)				
201402250594	W25-735			02/24/2014 1015	
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/	MS	
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate		
	Total Dissolved Solid (TDS)		Cunato		
201402250505	W/25_765			02/24/2014 1055	
201402230395	VV20-700			02/24/2014 1000	
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/	MS	
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate		
	Total Dissolved Solid (TDS)	Uranium ICAP/MS			
201402250596	W25-780			02/24/2014 1115	
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/	MS	
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate		
	Total Dissolved Solid (TDS)				
201402250597	W25-795			02/24/2014 1150	
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/	MS	
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate		
	Total Dissolved Solid (TDS)				
201402250598	W25-890			02/24/2014 1220	
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/	MS	
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate		
	Total Dissolved Solid (TDS)				
201402250599	WH25-2			02/24/2014 1255	
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/	MS	
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate		
	Total Dissolved Solid (TDS)	· · · · · · · · · · · · · · · · · · ·			
201402250600	WH25-3			02/24/2014 1300	
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/	MS	
	Hexavalent chromium(Dissolved)	PH (H3=past H1 not compliant)	Sulfate		
	Total Dissolved Solid (TDS)				

Reported: 03/11/2014

Page 2 of 3

750 Royal Oaks Drive, Suite 100, Monrovia, CA 91016 Tel (626) 386-1100 Fax (626) 386-1101 http://www.EatonAnalytical.com

s euronn:	Eaton Analytical			
	Acknowled	gement of Samples Received		
Add	r: Santa Ynez River WCD	Client ID: SANTAYNEZWD-CA		
Post Office Box 157		Folder #: 470148		
Santa Ynez, CA 93460		Project: CHROMIUM		
		Sample Group: well sampling		
Attr	n: Eric Tambini	Project Manager: Fred Haley		
Phone	2: 805-688-6015	Phone: (626) 386-1127		
The fol	lowing samples were received from you on Fe	oruary 25, 2014. They have been scheduled for the tests listed		
Eurofin	is Eaton Analytical.			
	Sample ID	Sample Date		
🐝 eurofins Eaton Analytical	CHAIN	N OF CUSTODY RECORD 470148		
---	---	---	--------	
	EUROFINS EATON ANALYTICAL USE ON	SAMPLES CHECKED AGAINST COC BY: $V \in V$		
750 Royal Oaks Drive, Suite 100		SAMPLES LOGGED IN BY: 10		
Montovia, CA 91010-3029 Phone: 626 386 1100	SAMPLE TEMP RECEIVED AT:	SAMPLES REC'D DAY OF COLLECTION? (check for yes)		
Fax: 626 386 1101	Colton / No. California / Arizona	\mathcal{C} (Compliance: 4 ± 2 °C)		
800 566 LABS (800 566 5227)		n Partially Erozen Thawed Wet Ice V No Ice		
Website: www.EatonAnalytical.com	METHOD OF SHIPMENT: Pick-U	Jp / Walk-In / redEx / JPS / DHL / Area Fast / Top Line / Other:		
L L BE COMPLETED BY SAMPLER:		(check for yes) (check for yes)		
DUDER/SANTA YNEZ RIVE	R PROJECT CODE:	COMPLIANCE SAMPLES NON-COMPLIANCE SAMPLES REGULATION INVOLVED:		
WATER CONSERVATION DI	ST	Type of samples (circle one): ROUTINE SPECIAL CONFIRMATION (eg. SDWA, Phase V, NPDES, FDA)		
EEA CLIENT CODE: COC ID:	SAMPLE GROUP:	UNDEFENTIACHED BOTTLE ORDER FOR ANALYSES (check for yes), <u>OR</u> Ist ANALYSES REQUIRED (enter number of bottles sent for each test for each sample)		
AT requested: rush by adv notice only	STD 1 wk 3 day 2 day 1			
ETAMPLE DATE DATE SAMPLE SAMPLE SAMPLE D	CLIENT LAB ID	COMMENTS		
222 an WH25-1	RGW	XXXXX X Cooler A		
7/221339 W.25 - 500				
7/22 1500 W 25-600				
722 (5:25 W25-630				
2/22/15/55 W25- 645				
1/22 16:15 W25- 075				
722 16:40 W25 - 690	×.	Cooler S		
722 7110 W25- 705				
75m 17:35 W 25 - 720	*	V V V V		
		I DAY TAT 6W	415 14	
* MATRIX TYPES: RSW = Raw Surface Watt RGW = Raw Ground Watt	er CFW = Chlor(am)inated Finished W er FW = Other Finished Water	Nater SEAW = Sea Water BW = Bottled Water SO = Soil O = Other - Please Identity WW = Waste Water SW = Storm Water SL = Sludge		
SIGNATURE	PRINT	NAME COMPANY/TITLE DATE TIME	_	
SAMPLED BY: They Dive	many Jox from	W Trey Drived Dudek/Hydrogoologist 2/22/14 18 00		
RECEIVED BY: NACH WAY	W Laker W	Entrementer 2 25/14 1230		
RECEIVED BY:	>		_	

;

CHAIN OF CUSTODY RECORD

👬 eurofins

.

Faton Analytical Eaton Analytical Foyal Oaks Drive, Suite 100 LUPOFINS Ex Inovia, CA 91016-3629 Sample Tem i: 626 386 1101 Sample Tem i: 626 386 1101 Monrovia 566 LABS (800 566 5227) Sample Tem 566 LABS (800 566 5227) Monrovia 566 LABS (800 566 5227) Monrovia 566 LABS (800 566 5227) Sample Tem 566 LABS (800 566 5227) Monrovia 566 LABS (800 566 5227) Sample 5 566 LABS (800 566 5227) Sample 6 566 LABS (800 566 5227) Sample 7 60 FEV 100 DCF Sample 7 60 FEV 100 DCF Sample 7 61 FEV 100 DCF Sample 7 61 FEV 100 DCF Sample 7 61	ON ANAL YTICAL USE ONLY: Anizona P RECEIVED AT: D. California / Arizona N OF BLUE ICE: Frozen O OF SHIPMENT: Pick-Up / We D OF SHIPMENT: Pick-Up / We P ROUP:	C Compliance: 4 ± C Compliance: 4 ± C Compliance: 4 ± Partially Frozen - alk-in / compliance: 4 ± - Partially Frozen - alk-in / compliance: 4 ± - Partially Frozen - alk-in / compliance: 4 ± - Type of samples (circle of the first of the	SAMPLES CHECKED AGAINST COC BY: SAMPLES LOGGGED IN BY: SAMPLES RECD DAY OF COLLECTION? SAMPLES RECD DAY OF COLLECTION? 2 °C) Vet loe Vet loe 7 Thawed Wet loe No loe 7 Hawed Wet loe No loe 7 Hawed Wet loe No loe 7 HL / Area Fast / Top Line / Other: On-CompLance SamPLES 7 HL / Area Fast / Top Line / Other: Incleck for yes) (check for yes) 7 (check for yes) Non-CompLance SamPLES REGULATION INVOLVED: 7 No REGULATION INVOLVED: Intext for each test	(check for yes) (check for yes) (ck for yes)
UISHED BY: Jund Mineral	Trey Drisco		Judek / Hydrog ecloist 2 24 14	00:41
	Kris Files		12/2 HA 12/22	1227
)
)
UISHED BY:)
)
)
)
UISHED BY:)
UISHED BY: YYYY)
)
)
		•		
			いい こう こう こう	1 2 2 1
			「 デ デ デ イ レ し 一 し し し し こ し こ こ し こ こ こ こ こ こ こ こ こ こ こ こ こ	11 61
				i L L L L L
UNDER ANIN TANIN			Nidpr I H (MUBA POLOST 7-174 114	1 ~ · c o
	4	1		11-02
Marrow X Norv /2	「 こう	EN LA ISCOL	March 11 1/Wrode of 1/2/ 2-1 642.1	
			Nok IHindianananant - 174/14	
DIGINALOUL		(
SIGNATURE	PRINT NAME		COMPANY/TITLE	TIME
			Þ	
RGW = Raw Ground Water FW = Othe	er Finished Water	WW = Waste Water	SW = Storm Water SL = Sludge	
	וטו (מווו)ווומובת ד ווווטווכת דיגנטי			
	lor/om)inated Einiched Mater	SEAW - Cas Water	BW - Rottlad Water SO - Soil O = Other -	Please Identify
				•
	-			
				ind o hill
				•
				btal
				レイタイ
12 M M M M M M				5
				đ
				L L
14-14 A A A A A A A A A A A A A A A A A A A				
11-10 11 - Q40			> 	
11:50W25 - 745				
111- MJ 5 - 780				
04-N-20- HOU /				
)
10:El N25 - 435 /	Rew	XXXXX		Ľ,
		イレンション	210	
		₩ <u>~</u> ~~)?/		AMENTS
	* AT AT	州く 加 ド 2		
			v0	
quested: rush by adv notice only (STD) 1 wk		۲ (>		
				(a
	0	I list ANAI VSFS REGI	IIRED /anter number of hottles sent for each test for e	ach sample)
LIENT CODE: COC ID: SAMPLE G	ROUP:	 SEE ATTACHED BO	TTLE ORDER FOR ANALYSES (check for)	es), OR
)			
THE BRAKKEN DOL	٩C	Type of samples (circle o	ne): ROUTINE SPECIAL CONFIRMATION (eg. SDWA, Phase	V, NPDES, FDA,)
	5			
ノー	יול	Ll - Requires	s state forms REGULATION INVOLVED:	
]
ANY/AGENCY NAME:	CODE:	COMPLIANCI	E SAMPLES NON-COMPLIANCE SAMPLES	
OUNILETED DI ONIVILEO.				
COMPLETED BY SAMPLER			(check for ves)	ck for ves)
		aik-iii /reuch / Dro / L		
	OC SHIDMENT: Dick-110 / We)HI / Area Eact / Ton Line / Other	
soite: unur Eaten Analytical com				
	N OF BLIE ICE. Erozon	Dartially Erozan	Thawad Watina V Nn Ina	
566 LABS (800 566 5227)				
W Monrovia	2.0	℃ (Compliance: 4 ±	2 °C)	
: 626 386 1101	<u>11</u>			
. EDE DOE 1101). California / Arizona	℃ (Compliance: 4 ±	2 C)	
ne: 626 386 1100		:		
SAMDI E TEMI	D RECEIVED AT.		SAMPIES REC'N NAV OF COI I ECTION?	(check for ves)
1rovia, CA 91016-3629				
			SAMPLES LOGGED IN BY:	
Boyal Oake Drive Suite 100				
	JENTS.		SAMPLES CHECKED AGAINST COC BY: K^{V}	
EUNUFINS EA	UN AINALY I ICAL USE UNLY:		4/1	
Eaton Analytical	-ONI ANIAI VTICAL LISE ONIL V.			
Exten Auxlinian				

ار م

PAGE

Santa Ynez River WCD Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Comments Report: 470148

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Hits Report: 470148

Analyzed	Analyte Sample ID	Result	Federal MCL	Units	MRL	
	201402250585 <u>WH25-1</u>					
02/28/2014 16:03	Alkalinity in CaCO3 units	270		mg/L	2	
02/28/2014 05:32	Chloride	32	250	mg/L	5	
02/26/2014 12:47	Chromium Total ICAP/MS	8.9	100	ug/L	1	
02/26/2014 11:33	Hexavalent chromium(Dissolved)	9.7		ug/L	0.02	
02/28/2014 16:03	PH (H3=past HT not compliant)	7.8		Units	0.1	
02/28/2014 05:32	Sulfate	130	250	mg/L	2.5	
02/27/2014 16:16	Total Dissolved Solids (TDS)	530	500	mg/L	10	
02/26/2014 12:47	Uranium ICAP/MS	6.7	30	ug/L	1	
	201402250586 <u>W25-500</u>					
02/28/2014 16:11	Alkalinity in CaCO3 units	270		mg/L	2	
02/28/2014 05:45	Chloride	49	250	mg/L	5	
02/26/2014 12:50	Chromium Total ICAP/MS	14	100	ug/L	1	
02/26/2014 10:33	Hexavalent chromium(Dissolved)	14		ug/L	0.02	
02/28/2014 16:11	PH (H3=past HT not compliant)	8.4		Units	0.1	
02/28/2014 05:45	Sulfate	72	250	mg/L	2.5	
02/27/2014 16:19	Total Dissolved Solids (TDS)	480	500	mg/L	10	
	201402250587 <u>W25-600</u>					
02/28/2014 16:19	Alkalinity in CaCO3 units	270		mg/L	2	
02/28/2014 05:58	Chloride	32	250	mg/L	5	
02/26/2014 12:53	Chromium Total ICAP/MS	8.6	100	ug/L	1	
02/26/2014 11:43	Hexavalent chromium(Dissolved)	9.8		ug/L	0.02	
02/28/2014 16:19	PH (H3=past HT not compliant)	7.9		Units	0.1	
02/28/2014 05:58	Sulfate	130	250	mg/L	2.5	
02/27/2014 16:20	Total Dissolved Solids (TDS)	530	500	mg/L	10	
	201402250588 <u>W25-630</u>					
02/28/2014 16:27	Alkalinity in CaCO3 units	270		mg/L	2	
02/28/2014 06:10	Chloride	31	250	mg/L	5	
03/11/2014 12:05	Chromium Total ICAP/MS	8.7	100	ug/L	1	
02/26/2014 11:13	Hexavalent chromium(Dissolved)	9.6		ug/L	0.02	
02/28/2014 16:27	PH (H3=past HT not compliant)	7.8		Units	0.1	
02/28/2014 06:10	Sulfate	140	250	mg/L	2.5	
02/27/2014 16:21	Total Dissolved Solids (TDS)	530	500	mg/L	10	
	201402250589 <u>W25-645</u>					
02/28/2014 16:35	Alkalinity in CaCO3 units	260		mg/L	2	

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Hits Report: 470148

Analyzed	Analyte Sample ID	Result	Federal MCL	Units	MRL
02/28/2014 06:23	Chloride	30	250	mg/L	5
02/26/2014 12:58	Chromium Total ICAP/MS	7.5	100	ug/L	1
02/26/2014 11:23	Hexavalent chromium(Dissolved)	8.4		ug/L	0.02
02/28/2014 16:35	PH (H3=past HT not compliant)	8.5		Units	0.1
02/28/2014 06:23	Sulfate	140	250	mg/L	2.5
02/27/2014 16:22	Total Dissolved Solids (TDS)	540	500	mg/L	10
02/26/2014 12:58	Uranium ICAP/MS	6.5	30	ug/L	1
	201402250590 <u>W25-675</u>				
02/28/2014 16:43	Alkalinity in CaCO3 units	270		mg/L	2
02/28/2014 07:02	Chloride	29	250	mg/L	5
02/26/2014 13:01	Chromium Total ICAP/MS	6.2	100	ug/L	1
02/25/2014 23:55	Hexavalent chromium(Dissolved)	7.8		ug/L	0.02
02/28/2014 16:43	PH (H3=past HT not compliant)	7.8		Units	0.1
02/28/2014 07:02	Sulfate	140	250	mg/L	2.5
02/27/2014 16:23	Total Dissolved Solids (TDS)	530	500	mg/L	10
	201402250591 <u>W25-690</u>				
02/28/2014 18:09	Alkalinity in CaCO3 units	250		mg/L	2
02/28/2014 07:41	Chloride	29	250	mg/L	5
02/26/2014 13:04	Chromium Total ICAP/MS	5.3	100	ug/L	1
02/26/2014 12:13	Hexavalent chromium(Dissolved)	6.6		ug/L	0.02
02/28/2014 18:09	PH (H3=past HT not compliant)	8.5		Units	0.1
02/28/2014 07:41	Sulfate	140	250	mg/L	2.5
03/01/2014 16:33	Total Dissolved Solids (TDS)	530	500	mg/L	10
	201402250592 <u>W25-705</u>				
02/28/2014 18:18	Alkalinity in CaCO3 units	240		mg/L	2
02/28/2014 07:54	Chloride	29	250	mg/L	5
02/26/2014 13:13	Chromium Total ICAP/MS	5.5	100	ug/L	1
02/26/2014 12:03	Hexavalent chromium(Dissolved)	6.4		ug/L	0.02
02/28/2014 18:18	PH (H3=past HT not compliant)	8.6		Units	0.1
02/28/2014 07:54	Sulfate	140	250	mg/L	2.5
03/01/2014 16:34	Total Dissolved Solids (TDS)	530	500	mg/L	10
	201402250593 <u>W25-720</u>				
02/28/2014 18:26	Alkalinity in CaCO3 units	270		mg/L	2
02/28/2014 08:07	Chloride	30	250	mg/L	5
02/26/2014 13:16	Chromium Total ICAP/MS	4.9	100	ug/L	1
02/25/2014 23:25	Hexavalent chromium(Dissolved)	5.4		ug/L	0.02

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Hits Report: 470148

Analyzed	Analyte Sample ID	Result	Federal MCL	Units	MRL
02/28/2014 18:26	PH (H3=past HT not compliant)	8.6		Units	0.1
02/28/2014 08:07	Sulfate	140	250	mg/L	2.5
03/01/2014 16:35	Total Dissolved Solids (TDS)	530	500	mg/L	10
	201402250594 <u>W25-735</u>				
02/28/2014 18:35	Alkalinity in CaCO3 units	260		mg/L	2
02/28/2014 08:20	Chloride	33	250	mg/L	5
02/26/2014 13:19	Chromium Total ICAP/MS	2.0	100	ug/L	1
02/26/2014 00:25	Hexavalent chromium(Dissolved)	2.2		ug/L	0.02
02/28/2014 18:35	PH (H3=past HT not compliant)	7.9		Units	0.1
02/28/2014 08:20	Sulfate	110	250	mg/L	2.5
03/01/2014 16:40	Total Dissolved Solids (TDS)	480	500	mg/L	10
	201402250595 <u>W25-765</u>				
02/28/2014 18:44	Alkalinity in CaCO3 units	280		mg/L	2
02/28/2014 08:32	Chloride	37	250	mg/L	5
02/28/2014 18:44	PH (H3=past HT not compliant)	8.0		Units	0.1
02/28/2014 08:32	Sulfate	75	250	mg/L	2.5
03/01/2014 16:43	Total Dissolved Solids (TDS)	450	500	mg/L	10
02/26/2014 13:22	Uranium ICAP/MS	7.1	30	ug/L	1
	201402250596 <u>W25-780</u>				
02/28/2014 18:52	Alkalinity in CaCO3 units	260		mg/L	2
02/28/2014 09:10	Chloride	37	250	mg/L	5
02/28/2014 18:52	PH (H3=past HT not compliant)	8.0		Units	0.1
02/28/2014 09:10	Sulfate	76	250	mg/L	2.5
03/01/2014 16:44	Total Dissolved Solids (TDS)	460	500	mg/L	10
	201402250597 <u>W25-795</u>				
02/28/2014 19:00	Alkalinity in CaCO3 units	220		mg/L	2
02/28/2014 09:23	Chloride	36	250	mg/L	5
02/28/2014 19:00	PH (H3=past HT not compliant)	8.0		Units	0.1
02/28/2014 09:23	Sulfate	73	250	mg/L	2.5
03/01/2014 16:45	Total Dissolved Solids (TDS)	440	500	mg/L	10
	201402250598 <u>W25-890</u>				
02/28/2014 19:08	Alkalinity in CaCO3 units	270		mg/L	2
02/28/2014 09:35	Chloride	36	250	mg/L	5
02/28/2014 19:08	PH (H3=past HT not compliant)	7.9		Units	0.1
02/28/2014 09:35	Sulfate	69	250	mg/L	2.5

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Hits Report: 470148

Analyzed		Analyte	Sample ID	Result	Federal MCL	Units	MRL
03/01/2014	16:46	Total Dissolved Solids (T	DS)	410	500	mg/L	10
		201402250599	<u>WH25-2</u>				
02/28/2014	20:48	Alkalinity in CaCO3 units		270		mg/L	2
02/28/2014	09:48	Chloride		32	250	mg/L	5
02/26/2014	13:33	Chromium Total ICAP/MS	3	8.6	100	ug/L	1
02/25/2014	23:45	Hexavalent chromium(Dis	ssolved)	9.8		ug/L	0.02
02/28/2014	20:48	PH (H3=past HT not com	pliant)	7.8		Units	0.1
02/28/2014	09:48	Sulfate		130	250	mg/L	2.5
03/01/2014	16:47	Total Dissolved Solids (T	DS)	520	500	mg/L	10
		201402250600	<u>WH25-3</u>				
02/28/2014	20:56	Alkalinity in CaCO3 units		260		mg/L	2
03/01/2014	01:56	Chloride		32	250	mg/L	5
02/26/2014	13:48	Chromium Total ICAP/MS	3	8.5	100	ug/L	1
02/26/2014	11:53	Hexavalent chromium(Dis	ssolved)	9.8		ug/L	0.02
02/28/2014	20:56	PH (H3=past HT not com	pliant)	7.8		Units	0.1
03/01/2014	01:56	Sulfate		130	250	mg/L	2.5
03/01/2014	16:48	Total Dissolved Solids (T	DS)	520	500	mg/L	10

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Data Report: 470148

Prepared	Analyzed	QC Ref #	Method	Analyte	Result	Units	MRL	Dilution
WH25-1	(201402250	<u>585)</u>				Sampled	on 02/22/201	4 1000
		EPA 200.8 - I	CPMS Metals					
2/26/2014	02/26/2014	12:47 754053	(EPA 200.8)	Chromium Total ICAP/MS	8.9	ug/L	1	1
2/26/2014	02/26/2014	12:47 754053	(EPA 200.8)	Uranium ICAP/MS	6.7	ug/L	1	1
		EPA 218.6 - H	lexavalent chromi	ium(Dissolved)				
	02/26/2014	11:33 754283	(EPA 218.6)	Hexavalent chromium(Dissolved)	9.7	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate b	y EPA 300.0				
	02/28/2014	05:32 754599	(EPA 300.0)	Chloride	32	mg/L	5	5
	02/28/2014	05:32 754599	(EPA 300.0)	Sulfate	130	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO	3 units				
	02/28/2014	16:03 754549	(SM 2320B)	Alkalinity in CaCO3 units	270	mg/L	2	1
		E160.1/SM25	40C - Total Dissol	ved Solids (TDS)				
2/26/2014	02/27/2014	16:16 754309	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	530	mg/L	10	1
		SM4500-HB -	PH (H3=past HT r	not compliant)				
	02/28/2014	16:03 754564	(SM4500-HB)	PH (H3=past HT not compliant)	7.8	Units	0.1	1
<u>W25-500</u>	(20140225	<u>0586)</u>				Sampled	on 02/22/201	4 1339
		EPA 200.8 - I	CPMS Metals					
2/26/2014	02/26/2014	12:50 754053	(EPA 200.8)	Chromium Total ICAP/MS	14	ug/L	1	1
		EPA 218.6 - H	lexavalent chromi	ium(Dissolved)				
	02/26/2014	10:33 754283	(EPA 218.6)	Hexavalent chromium(Dissolved)	14	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate b	y EPA 300.0				
	02/28/2014	05:45 754599	(EPA 300.0)	Chloride	49	mg/L	5	5
	02/28/2014	05:45 754599	(EPA 300.0)	Sulfate	72	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO	3 units				
	02/28/2014	16:11 754549	(SM 2320B)	Alkalinity in CaCO3 units	270	mg/L	2	1
		E160.1/SM25	40C - Total Dissol	ved Solids (TDS)				
2/26/2014	02/27/2014	16:19 754309	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	480	mg/L	10	1
		SM4500-HB -	PH (H3=past HT r	not compliant)				
	02/28/2014	16:11 754564	(SM4500-HB)	PH (H3=past H1 not compliant)	8.4	Units	0.1	1
<u>W25-600</u>	(20140225)	<u>0587)</u>				Sampled	on 02/22/201	4 1500
		EPA 200.8 - I	CPMS Metals					
2/26/2014	02/26/2014	12:53 754053	(EPA 200.8)	Chromium Total ICAP/MS	8.6	ug/L	1	1
		EPA 218.6 - H	lexavalent chromi	ium(Dissolved)				
	02/26/2014	11:43 754283	(EPA 218.6)	Hexavalent chromium(Dissolved)	9.8	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate b	y EPA 300.0				

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Samples Received on: 02/25/2014

Prepared	Analyzed	QC Ref #	Method	Analyte	Result	Units	MRL	Dilution
	02/28/2014	05:58 754599	(EPA 300.0)	Chloride	32	mg/L	5	5
	02/28/2014	05:58 754599	(EPA 300.0)	Sulfate	130	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO3	units				
	02/28/2014	16:19 754549	(SM 2320B)	Alkalinity in CaCO3 units	270	mg/L	2	1
		E160.1/SM254	40C - Total Dissolv	ved Solids (TDS)				
2/26/2014	02/27/2014	16:20 754309	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	530	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	02/28/2014	16:19 754564	(SM4500-HB)	PH (H3=past HT not compliant)	7.9	Units	0.1	1
<u>W25-630</u>	Epided Allaryce Constrain method Privative 02/28/2014 05:58 754599 (EPA 300.0) Chloride 02/28/2014 05:58 754599 (EPA 300.0) Sulfate 02/28/2014 05:58 754599 (EPA 300.0) Sulfate 02/28/2014 16:19 754549 (SM 2320B) Alkalinity in CaCO3 units 02/28/2014 16:19 754549 (SM 2320B) Total Dissolved Solids (TDS) 26/2014 02/27/2014 16:19 754564 (SM4500-HB) PH (H3=past HT not compliant) 02/28/2014 16:19 754564 (SM4500-HB) PH (H3=past HT not compliant) 02/28/2014 16:19 754564 (SM4500-HB) PH (H3=past HT not compliant) 02/26/2014 11:13 754283 (EPA 218.6) Hexavalent chromium(Dissolved) 02/28/2014 06:10 754599 (EPA 300.0) Chloride 02/28/2014 06:10 754599 (EPA 300.0) Sulfate SM 2320B Alkalinity in CaCO3 units EEO 1/SM2540C Total Dissol					Sampled	on 02/22/201	4 1525
		EPA 200.8 - IO	CPMS Metals					
2/26/2014	03/11/2014	12:05 756492	(EPA 200.8)	Chromium Total ICAP/MS	8.7	ug/L	1	1
		EPA 218.6 - H	exavalent chromi	um(Dissolved)				
	02/26/2014	11:13 754283	(EPA 218.6)	Hexavalent chromium(Dissolved)	9.6	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate by	/ EPA 300.0				
	02/28/2014	06:10 754599	(EPA 300.0)	Chloride	31	mg/L	5	5
	02/28/2014	06:10 754599	(EPA 300.0)	Sulfate	140	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO3	units				
	02/28/2014	16:27 754549	(SM 2320B)	Alkalinity in CaCO3 units	270	mg/L	2	1
		E160.1/SM254	40C - Total Dissolv	ved Solids (TDS)		_		
2/26/2014	02/27/2014	16:21 754309	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	530	mg/L	10	1
	00/00/0044	SM4500-HB -	PH (H3=past HT n	ot compliant)	7.0	11-24-	0.4	
	02/28/2014	16:27 754564	(SM4500-HB)	PH (H3=past H1 not compliant)	7.8	ug/L 1 ug/L 0.02 mg/L 5 mg/L 2.5 mg/L 10 Units 0.1 Sampled on 02/22/2014 ug/L 1 ug/L 1 ug/L 5 mg/L 2,5		1
<u>W25-645</u>	6 (20140225	<u>0589)</u>				Sampled	4 1555	
		EPA 200.8 - IC	CPMS Metals					
2/26/2014	02/26/2014	12:58 754053	(EPA 200.8)	Chromium Total ICAP/MS	7.5	ug/L	1	1
2/26/2014	02/26/2014	12:58 754053	(EPA 200.8)	Uranium ICAP/MS	6.5	ug/L	1	1
		EPA 218.6 - H	exavalent chromi	um(Dissolved)				
	02/26/2014	11:23 754283	(EPA 218.6)	Hexavalent chromium(Dissolved)	8.4	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate by	/ EPA 300.0				
	02/28/2014	06:23 754599	(EPA 300.0)	Chloride	30	mg/L	5	5
	02/28/2014	06:23 754599	(EPA 300.0)	Sulfate	140	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO3	units				
	02/28/2014	16:35 754549	(SM 2320B)	Alkalinity in CaCO3 units	260	mg/L	2	1
0/00/004	00/07/00/	E160.1/SM254	10C - Total Dissolv	ved Solids (TDS)	540		40	4
2/26/2014	02/27/2014	16:22 754309	(E160.1/SM2540C)	I otal Dissolved Solids (IDS)	540	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Data Report: 470148

Prepared	Analyzed	QC Ref #	Method	Analyte	Result	Units	MRL	Dilution
	02/28/2014	16:35 754564	(SM4500-HB)	PH (H3=past HT not compliant)	8.5	Units	0.1	1
<u>W25-675</u>	(20140225	<u>0590)</u>				Sampled	on 02/22/201	4 1615
		EPA 200.8 - IO	CPMS Metals					
2/26/2014	02/26/2014	13:01 754053	(EPA 200.8)	Chromium Total ICAP/MS	6.2	ug/L	1	1
		EPA 218.6 - H	lexavalent chrom	ium(Dissolved)				
	02/25/2014	23:55 753894	(EPA 218.6)	Hexavalent chromium(Dissolved)	7.8	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate I	oy EPA 300.0				
	02/28/2014	07:02 754599	(EPA 300.0)	Chloride	29	mg/L	5	5
	02/28/2014	07:02 754599	(EPA 300.0)	Sulfate	140	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO	3 units				
	02/28/2014	16:43 754549	(SM 2320B)	Alkalinity in CaCO3 units	270	mg/L	2	1
		E160.1/SM254	40C - Total Disso	lved Solids (TDS)				
2/26/2014	02/27/2014	16:23 754309	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	530	mg/L	10	1
		SM4500-HB -	PH (H3=past HT	not compliant)				
	02/28/2014	16:43 754564	(SM4500-HB)	PH (H3=past HT not compliant)	7.8	Units	0.1	1
W25-690	(20140225	<u>0591)</u>				Sampled	on 02/22/201	4 1640
		EPA 200.8 - I	CPMS Metals					
2/26/2014	02/26/2014	13:04 754053	(EPA 200.8)	Chromium Total ICAP/MS	5.3	ug/L	1	1
		EPA 218.6 - H	lexavalent chrom	ium(Dissolved)				
	02/26/2014	12:13 754283	(EPA 218.6)	Hexavalent chromium(Dissolved)	6.6	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate I	by EPA 300.0			MRL 0.1 d on 02/22/201 1 0.02 5 2.5 2 10 0.1 d on 02/22/201 1 0.02 5 2.5 2 10 0.1 d on 02/22/201 1 0.02 5 2.5 2 10 0.1 d on 02/22/201 1 0.02 5 2.5 2 10 0.1 1 0.02 5 2.5 2 10 0.02 5 2.5 2 10 0.02 5 2.5 2 10 0.02 5 2.5 2 10 0.02 5 2.5 2 10 0.02 5 2.5 2 10 0.02 5 2.5 2 10 0.02 5 2.5 2 10 0.02 5 2.5 2 10 0.02 5 2.5 2 10 0.02 5 2.5 2 10 0.02 5 2.5 2 10 0.02 5 2.5 2 10 0.02 5 2.5 2 10 0.02 5 2.5 2 10 0.02 5 2.5 2 10 0.02 5 2.5 2 10 0.02 5 2.5 2 10 0.02 5 2.5 2 10 0.1 10 0.02 10 0.1 10 0.1 10 0.02 10 0.1 10 0.02 10 0.1 10 0.02 10 0 0 0 0 0 0 0 0 0 0	
	02/28/2014	07:41 754599	(EPA 300.0)	Chloride	29	mg/L	5	5
	02/28/2014	07:41 754599	(EPA 300.0)	Sulfate	140	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO	3 units				
	02/28/2014	18:09 754551	(SM 2320B)	Alkalinity in CaCO3 units	250	mg/L	2	1
		E160.1/SM254	40C - Total Disso	lved Solids (TDS)				
3/1/2014	03/01/2014	16:33 754713	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	530	mg/L	10	1
		SM4500-HB -	PH (H3=past HT	not compliant)				
	02/28/2014	18:09 754554	(SM4500-HB)	PH (H3=past HT not compliant)	8.5	Units	0.1	1
<u>W25-705</u>	(20140225	<u>0592)</u>				Sampled	on 02/22/201	4 1710
		EPA 200.8 - IO	CPMS Metals					
2/26/2014	02/26/2014	13:13 754053	(EPA 200.8)	Chromium Total ICAP/MS	5.5	ug/L	1	1
		EPA 218.6 - H	lexavalent chrom	ium(Dissolved)				
	02/26/2014	12:03 754283	(EPA 218.6)	Hexavalent chromium(Dissolved)	6.4	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate I	by EPA 300.0				

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Samples Received on: 02/25/2014

Prepared	Analyzed	QC Ref #	Method	Analyte	Result	Units	MRL	Dilution
	02/28/2014	07:54 754599	(EPA 300.0)	Chloride	29	mg/L	5	5
	02/28/2014	07:54 754599	(EPA 300.0)	Sulfate	140	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO3	units				
	02/28/2014	18:18 754551	(SM 2320B)	Alkalinity in CaCO3 units	240	mg/L	2	1
		E160.1/SM254	IOC - Total Dissolv	red Solids (TDS)				
3/1/2014	03/01/2014	16:34 754713	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	530	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	02/28/2014	18:18 754554	(SM4500-HB)	PH (H3=past HT not compliant)	8.6	Units	0.1	1
Prepared Analyzed QCR #f # Method Analyze Result Units MRL 02282014 07:54 754599 (EPA 300.0) Suitate 10 mgL 5 02282014 07:54 754599 (EPA 300.0) Suitate 10 mgL 2.5 02282014 18:18 75459 (EPA 300.0) Suitate 240 mgL 2.6 02282014 18:18 754551 (SM 2208) Alkalinity in CaCO3 units 240 mgL 0 3/1/2014 18:18 754554 (SM 5200-F) Total Dissolved Solids (TDS) 530 mgL 10 3/1/2014 18:18 754554 (SM 550-HB) PH (H3=past HT not compliant) 8.6 Units 0.1 3/1/2014 02/28/2014 13:16 754596 (EPA 200.8) Chromium Total ICAP/MS 4.9 ugL 0.02 2/28/2014 02/27 7539 (EPA 200.8) Chromium Total ICAP/MS 4.9 ugL 0.02 2/28/2014 03:07 754596 </td <td>4 1735</td>						4 1735		
		EPA 200.8 - IO	CPMS Metals					
2/26/2014	02/26/2014	13:16 754053	(EPA 200.8)	Chromium Total ICAP/MS	4.9	ug/L	1	1
		EPA 218.6 - H	exavalent chromit	um(Dissolved)				
	02/25/2014	23:25 753894	(EPA 218.6)	Hexavalent chromium(Dissolved)	5.4	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate by	/ EPA 300.0				
	02/28/2014	08:07 754599	(EPA 300.0)	Chloride	30	mg/L	5	5
	02/28/2014	08:07 754599	(EPA 300.0)	Sulfate	140	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO3	units				
	02/28/2014	18:26 754551	(SM 2320B)	Alkalinity in CaCO3 units	270	mg/L	2	1
		E160.1/SM254	IOC - Total Dissolv	red Solids (TDS)				
3/1/2014	03/01/2014	16:35 754713	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	530	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	02/28/2014	18:26 754554	(SM4500-HB)	PH (H3=past HT not compliant)	8.6	Units	0.1	1
<u>W25-735</u>	6 (20140225	<u>0594)</u>				Sampled	on 02/24/201	4 1015
		EPA 200.8 - IO	CPMS Metals					
2/26/2014	02/26/2014	13:19 754053	(EPA 200.8)	Chromium Total ICAP/MS	2.0	ug/L	1	1
		EPA 218.6 - H	exavalent chromit	um(Dissolved)				
	02/26/2014	00:25 753894	(EPA 218.6)	Hexavalent chromium(Dissolved)	2.2	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate by	/ EPA 300.0				
	02/28/2014	08:20 754599	(EPA 300.0)	Chloride	33	mg/L	5	5
	02/28/2014	08:20 754599	(EPA 300.0)	Sulfate	110	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO3	units				
	02/28/2014	18:35 754551	(SM 2320B)	Alkalinity in CaCO3 units	260	mg/L	2	1
		E160.1/SM254	IOC - Total Dissolv	ved Solids (TDS)				
3/1/2014	03/01/2014	16:40 754713	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	480	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	02/28/2014	18:35 754554	(SM4500-HB)	PH (H3=past HT not compliant)	7.9	Units	0.1	1

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Data Report: 470148

Samples Received on: 02/25/2014

Prepared	Analyzed	QC Ref #	Method	Analyte	Result	Units	MRL	Dilution
W25-765	(20140225	0595 <u>)</u>				Sampled	on 02/24/201	4 1055
		EPA 200.8 - I	CPMS Metals					
2/26/2014	02/26/2014	13:22 754053	(EPA 200.8)	Chromium Total ICAP/MS	ND	ug/L	1	1
2/26/2014	02/26/2014	13:22 754053	(EPA 200.8)	Uranium ICAP/MS	7.1	ug/L	1	1
		EPA 218.6 - H	lexavalent chrom	ium(Dissolved)				
	02/26/2014	00:15 753894	(EPA 218.6)	Hexavalent chromium(Dissolved)	ND	ug/L	0.02	1
		EPA 300.0 - 0	Chloride, Sulfate b	oy EPA 300.0				
	02/28/2014	08:32 754599	(EPA 300.0)	Chloride	37	mg/L	5	5
	02/28/2014	08:32 754599	(EPA 300.0)	Sulfate	75	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO	3 units				
	02/28/2014	18:44 754551	(SM 2320B)	Alkalinity in CaCO3 units	280	mg/L	2	1
		E160.1/SM25	40C - Total Dissol	ved Solids (TDS)				
3/1/2014	03/01/2014	16:43 754713	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	450	mg/L	10	1
		SM4500-HB -	PH (H3=past HT	not compliant)				
	02/28/2014	18:44 754554	(SM4500-HB)	PH (H3=past HT not compliant)	8.0	Units	0.1	1
<u>W25-780</u>	(20140225	<u>0596)</u>				Sampled	on 02/24/201	4 1115
		EPA 200.8 - I	CPMS Metals					
2/26/2014	02/26/2014	13:25 754053	(EPA 200.8)	Chromium Total ICAP/MS	ND	ug/L	1	1
		EPA 218.6 - H	lexavalent chrom	ium(Dissolved)				
	02/26/2014	00:05 753894	(EPA 218.6)	Hexavalent chromium(Dissolved)	ND	ug/L	0.02	1
		EPA 300.0 - 0	Chloride, Sulfate b	by EPA 300.0				
	02/28/2014	09:10 754599	(EPA 300.0)	Chloride	37	mg/L	5	5
	02/28/2014	09:10 754599	(EPA 300.0)	Sulfate	76	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO	3 units				
	02/28/2014	18:52 754551	(SM 2320B)	Alkalinity in CaCO3 units	260	mg/L	2	1
		E160.1/SM25	40C - Total Dissol	ved Solids (TDS)				
3/1/2014	03/01/2014	16:44 754713	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	460	mg/L	10	1
		SM4500-HB -	PH (H3=past HT	not compliant)				
	02/28/2014	18:52 754554	(SM4500-HB)	PH (H3=past HT not compliant)	8.0	Units	0.1	1
<u>W25-795</u>	(20140225	<u>0597)</u>				Sampled	on 02/24/201	4 1150
		EPA 200.8 - I	CPMS Metals					
2/26/2014	02/26/2014	13:28 754053	(EPA 200.8)	Chromium Total ICAP/MS	ND	ug/L	1	1
		EPA 218.6 - H	lexavalent chrom	ium(Dissolved)				
	02/25/2014	23:35 753894	(EPA 218.6)	Hexavalent chromium(Dissolved)	ND	ug/L	0.02	1
		EPA 300.0 - 0	Chloride, Sulfate b	oy EPA 300.0				

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Samples Received on: 02/25/2014

Prepared	Analyzed	QC Ref #	Method	Analyte	Result	Units	MRL	Dilution
	02/28/2014	09:23 754599	(EPA 300.0)	Chloride	36	mg/L	5	5
	02/28/2014	09:23 754599	(EPA 300.0)	Sulfate	73	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO3	units				
	02/28/2014	19:00 754551	(SM 2320B)	Alkalinity in CaCO3 units	220	mg/L	2	1
		E160.1/SM254	10C - Total Dissolv	red Solids (TDS)				
3/1/2014	03/01/2014	16:45 754713	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	440	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	02/28/2014	19:00 754554	(SM4500-HB)	PH (H3=past HT not compliant)	8.0	Units	0.1	1
<u>W25-890</u>	https://tex.up/line QC Ref # Method Analyte 02/28/2014 09:23 754599 (EPA 300.0) Chloride 02/28/2014 09:23 754599 (EPA 300.0) Sulfate 02/28/2014 19:00 754551 (SM 2320B) Alkalinity in CaCO3 units 02/28/2014 19:00 754551 (SM 2320B) Alkalinity in CaCO3 units 02/28/2014 19:00 754551 (SM 2320B) Alkalinity in CaCO3 units 03/01/2014 16:45 754713 (E160.1/SM2540C) Total Dissolved Solids (TDS) V/1/2014 03/01/2014 16:45 754713 (E160.1/SM2540C) Total Dissolved Solids (TDS) V/25-890 (201402250598) EPA 200.8 - ICPMS Metals EPA 200.8) Chromium Total ICAP/MS 126/2014 02/26/2014 13:31 754553 (EPA 200.8) Chromium Total ICAP/MS 126/2014 02/26/2014 13:35 754599 (EPA 300.0) Chloride 02/28/2014 09:35 754599 (EPA 300.0) Sulfate SM 2320B - Alkalinity in CaCO3 units					Sampled	on 02/24/201	4 1220
		EPA 200.8 - IO	CPMS Metals					
2/26/2014	02/26/2014	13:31 754053	(EPA 200.8)	Chromium Total ICAP/MS	ND	ug/L	1	1
		EPA 218.6 - H	exavalent chromiu	um(Dissolved)				
	02/26/2014	11:03 754283	(EPA 218.6)	Hexavalent chromium(Dissolved)	ND	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate by	/ EPA 300.0				
	02/28/2014	09:35 754599	(EPA 300.0)	Chloride	36	mg/L	5	5
	02/28/2014	09:35 754599	(EPA 300.0)	Sulfate	69	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO3	units				
	02/28/2014	19:08 754551	(SM 2320B)	Alkalinity in CaCO3 units	270	mg/L	2	1
		E160.1/SM254	40C - Total Dissolv	red Solids (TDS)				
3/1/2014	03/01/2014	16:46 754713	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	410	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	02/28/2014	19:08 754554	(SM4500-HB)	PH (H3=past HT not compliant)	7.9	Units	0.1	1
<u>WH25-2</u>	(201402250	<u>599)</u>				Sampled	on 02/24/201	4 1255
		EPA 200.8 - IO	CPMS Metals					
2/26/2014	02/26/2014	13:33 754053	(EPA 200.8)	Chromium Total ICAP/MS	8.6	ug/L	1	1
		EPA 218.6 - H	exavalent chromiu	um(Dissolved)				
	02/25/2014	23:45 753894	(EPA 218.6)	Hexavalent chromium(Dissolved)	9.8	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate by	/ EPA 300.0				
	02/28/2014	09:48 754599	(EPA 300.0)	Chloride	32	mg/L	5	5
	02/28/2014	09:48 754599	(EPA 300.0)	Sulfate	130	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO3	units				
	02/28/2014	20:48 754551	(SM 2320B)	Alkalinity in CaCO3 units	270	mg/L	2	1
		E160.1/SM254	40C - Total Dissolv	red Solids (TDS)				
3/1/2014	03/01/2014	16:47 754713	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	520	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	02/28/2014	20:48 754554	(SM4500-HB)	PH (H3=past HT not compliant)	7.8	Units	0.1	1

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Data Report: 470148

Prepared	Analyzed QC Ref # Method Analyte		Analyte	Result	Units	MRL	Dilution	
<u>WH25-3 (</u>	201402250	<u>600)</u>				Sampled	on 02/24/201	4 1300
		EPA 200.8 - IO	CPMS Metals					
2/26/2014	02/26/2014	13:48 754053	(EPA 200.8)	Chromium Total ICAP/MS	8.5	ug/L	1	1
		EPA 218.6 - H	exavalent chromit	um(Dissolved)				
	02/26/2014	11:53 754283	(EPA 218.6)	Hexavalent chromium(Dissolved)	9.8	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate by	r EPA 300.0				
	03/01/2014	01:56 754730	(EPA 300.0)	Chloride	32	mg/L	5	5
	03/01/2014	01:56 754730	(EPA 300.0)	Sulfate	130	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO3	units				
	02/28/2014	20:56 754551	(SM 2320B)	Alkalinity in CaCO3 units	260	mg/L	2	1
		E160.1/SM254	IOC - Total Dissolv	red Solids (TDS)				
3/1/2014	03/01/2014	16:48 754713	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	520	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	02/28/2014	20:56 754554	(SM4500-HB)	PH (H3=past HT not compliant)	7.8	Units	0.1	1

Santa Ynez River WCD

QC Ref # 753894 - Hexava	llent chromium(Dissolved)	Analysis Date: 02/25/2014				
201402250590	W25-675	Analyzed by: TLH				
201402250593	W25-720	Analyzed by: TLH				
201402250594	W25-735	Analyzed by: TLH				
201402250595	W25-765	Analyzed by: TLH				
201402250596	W25-780	Analyzed by: TLH				
201402250597	W25-795	Analyzed by: TLH				
201402250599	WH25-2	Analyzed by: TLH				
QC Ref # 754053 - ICPMS	Metals	Analysis Date: 02/26/2014				
201402250585	WH25-1	Analyzed by: SXK				
201402250586	W25-500	Analyzed by: SXK				
201402250587	W25-600	Analyzed by: SXK				
201402250589	W25-645	Analyzed by: SXK				
201402250590	W25-675	Analyzed by: SXK				
201402250591	W25-690	Analyzed by: SXK				
201402250592	W25-705	Analyzed by: SXK				
201402250593	W25-720	Analyzed by: SXK				
201402250594	W25-735	Analyzed by: SXK				
201402250595	W25-765	Analyzed by: SXK				
201402250596	W25-780	Analyzed by: SXK				
201402250597	W25-795	Analyzed by: SXK				
201402250598	W25-890	Analyzed by: SXK				
201402250599	WH25-2	Analyzed by: SXK				
201402250600	WH25-3	Analyzed by: SXK				
QC Ref # 754283 - Hexava	lent chromium(Dissolved)	Analysis Date: 02/26/2014				
201402250585	WH25-1	Analyzed by: TLH				
201402250586	W25-500	Analyzed by: TLH				
201402250587	W25-600	Analyzed by: TLH				
201402250588	W25-630	Analyzed by: TLH				
201402250589	W25-645	Analyzed by: TLH				
201402250591	W25-690	Analyzed by: TLH				
201402250592	W25-705	Analyzed by: TLH				
201402250598	W25-890	Analyzed by: TLH				
201402250600	WH25-3	Analyzed by: TLH				
QC Ref # 754309 - Total D	issolved Solids (TDS)	Analysis Date: 02/27/2014				
201402250585	WH25-1	Analyzed by: JRF				
201402250586	W25-500	Analyzed by: JRF				
201402250587	W25-600	Analyzed by: JRF				
201402250588	W25-630	Analyzed by: JRF				
201402250589	W25-645	Analyzed by: JRF				
201402250590	W25-675	Analyzed by: JRF				
QC Ref # 754549 - Alkalini	ity in CaCO3 units	Analysis Date: 02/28/2014				
201402250585	WH25-1	Analyzed by: AF1				
201402250586	W25-500	Analyzed by: AF1				

Santa Ynez River WCD

201402250587	W25-600
201402250588	W25-630
201402250589	W25-645
201402250590	W25-675

QC Ref # 754551 - Alkalinity in CaCO3 units

	-
201402250591	W25-690
201402250592	W25-705
201402250593	W25-720
201402250594	W25-735
201402250595	W25-765
201402250596	W25-780
201402250597	W25-795
201402250598	W25-890
201402250599	WH25-2
201402250600	WH25-3

QC Ref # 754554 - PH (H3=past HT not compliant)

201402250591	W25-690
201402250592	W25-705
201402250593	W25-720
201402250594	W25-735
201402250595	W25-765
201402250596	W25-780
201402250597	W25-795
201402250598	W25-890
201402250599	WH25-2
201402250600	WH25-3

QC Ref # 754564 - PH (H3=past HT not compliant)

201402250585	WH25-1
201402250586	W25-500
201402250587	W25-600
201402250588	W25-630
201402250589	W25-645
201402250590	W25-675

QC Ref # 754599 - Chloride, Sulfate by EPA 300.0

201402250585	WH25-1
201402250586	W25-500
201402250587	W25-600
201402250588	W25-630
201402250589	W25-645
201402250590	W25-675
201402250591	W25-690
201402250592	W25-705
201402250593	W25-720
201402250594	W25-735

Analyzed by: AF1 Analyzed by: AF1 Analyzed by: AF1 Analyzed by: AF1

Analysis Date: 02/28/2014

Analyzed by: AF1 Analyzed by: AF1

Analysis Date: 02/28/2014

Analyzed by: AF1 Analyzed by: AF1

Analysis Date: 02/28/2014

Analyzed by: AF1 Analyzed by: AF1

Analysis Date: 02/28/2014

Analyzed by: CYP Analyzed by: CYP

Santa Ynez River WCD

201402250595	W25-765	Analyzed by: CYP
201402250596	W25-780	Analyzed by: CYP
201402250597	W25-795	Analyzed by: CYP
201402250598	W25-890	Analyzed by: CYP
201402250599	WH25-2	Analyzed by: CYP
QC Ref # 754713 - Total [Dissolved Solids (TDS)	Analysis Date: 03/01/2014
201402250591	W25-690	Analyzed by: JRF
201402250592	W25-705	Analyzed by: JRF
201402250593	W25-720	Analyzed by: JRF
201402250594	W25-735	Analyzed by: JRF
201402250595	W25-765	Analyzed by: JRF
201402250596	W25-780	Analyzed by: JRF
201402250597	W25-795	Analyzed by: JRF
201402250598	W25-890	Analyzed by: JRF
201402250599	WH25-2	Analyzed by: JRF
201402250600	WH25-3	Analyzed by: JRF
QC Ref # 754730 - Chlori	de, Sulfate by EPA 300.0	Analysis Date: 03/01/2014
201402250600	WH25-3	Analyzed by: CYP
QC Ref # 755674 - ICPMS	Metals	Analysis Date: 03/06/2014
201402250588	W25-630	Analyzed by: SXK
QC Ref # 756492 - ICPMS	Metals	Analysis Date: 03/11/2014
201402250588	W25-630	Analyzed by: SXK

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

QC Туре	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
QC Ref# 753894 - H	lexavalent chromium(Dissolved) by EP	A 218.6				Analysis D)ate: 02/25/2	2014	
LCS1	Hexavalent chromium(Dissolved)		2.0	1.98	ug/L	99	(90-110)		
LCS2	Hexavalent chromium(Dissolved)		2.0	1.99	ug/L	99	(90-110)		
MBLK	Hexavalent chromium(Dissolved)			<0.020	ug/L				
MRL_CHK	Hexavalent chromium(Dissolved)		0.02	0.0216	ug/L	108	(50-150)		
MS_201402240246	Hexavalent chromium(Dissolved)	3.4	2.0	5.37	ug/L	101	(90-110)		
MS_201402250550	Hexavalent chromium(Dissolved)	8.6	2.0	10.6	ug/L	104	(90-110)		
MSD_201402240246	Hexavalent chromium(Dissolved)	3.4	2.0	5.41	ug/L	103	(90-110)	20	0.74
MSD_201402250550	Hexavalent chromium(Dissolved)	8.6	2.0	10.6	ug/L	103	(90-110)	20	0.0
QC Ref# 754053 - I	CPMS Metals by EPA 200.8					Analysis D	Date: 02/26/2	2014	
LCS1	Chromium Total ICAP/MS		100	103	ug/L	103	(85-115)		
LCS2	Chromium Total ICAP/MS		100	103	ug/L	103	(85-115)	20	0.0
MBLK	Chromium Total ICAP/MS			<1	ug/L				
MRL_CHK	Chromium Total ICAP/MS		1.0	0.950	ug/L	95	(50-150)		
MS_201402250599	Chromium Total ICAP/MS	8.6	100	111	ug/L	102	(70-130)		
MS2_201402250600	Chromium Total ICAP/MS	8.5	100	115	ug/L	106	(70-130)		
MSD_201402250599	Chromium Total ICAP/MS	8.6	100	106	ug/L	97	(70-130)	20	4.6
MSD2_201402250600	Chromium Total ICAP/MS	8.5	100	113	ug/L	105	(70-130)	20	1.8
LCS1	Uranium ICAP/MS		20	20.0	ug/L	100	(85-115)		
LCS2	Uranium ICAP/MS		20	19.8	ug/L	99	(85-115)	20	1.0
MBLK	Uranium ICAP/MS			<1	ug/L				
MRL_CHK	Uranium ICAP/MS		1.0	1.04	ug/L	104	(50-150)		
MS_201402250599	Uranium ICAP/MS	6.7	20	29.3	ug/L	113	(70-130)		
MS2_201402250600	Uranium ICAP/MS	6.5	20	29.7	ug/L	116	(70-130)		
MSD_201402250599	Uranium ICAP/MS	6.7	20	26.9	ug/L	101	(70-130)	20	8.5
MSD2_201402250600	Uranium ICAP/MS	6.5	20	28.8	ug/L	111	(70-130)	20	3.1
QC Ref# 754283 - H	lexavalent chromium(Dissolved) by EP	A 218.6				Analysis D	Date: 02/26/2	2014	
LCS1	Hexavalent chromium(Dissolved)		2.0	1.99	ug/L	100	(90-110)		
LCS2	Hexavalent chromium(Dissolved)		2.0	1.99	ug/L	99	(90-110)		
MBLK	Hexavalent chromium(Dissolved)			<0.020	ug/L				
MRL_CHK	Hexavalent chromium(Dissolved)		0.02	0.0202	ug/L	101	(50-150)		
MS_201402250586	Hexavalent chromium(Dissolved)	14	2.0	15.6	ug/L	101	(90-110)		
MS_201402260372	Hexavalent chromium(Dissolved)	9.6	2.0	11.7	ug/L	101	(90-110)		
MSD_201402250586	Hexavalent chromium(Dissolved)	14	2.0	15.7	ug/L	102	(90-110)	20	0.0
MSD_201402260372	Hexavalent chromium(Dissolved)	9.6	2.0	11.7	ug/L	102	(90-110)	20	0.0

QC Ref# 754309 - Total Dissolved Solids (TDS) by E160.1/SM2540C

Analysis Date: 02/27/2014

Spike recovery is already corrected for native results. Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u> Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level).

Santa Ynez River WCD

QC Туре	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
DUP_201402200457	Total Dissolved Solid (TDS)	760		754	mg/L		(0-20)	20	1.1
DUP_201402250585	Total Dissolved Solid (TDS)	530		530	mg/L		(0-20)	20	0.76
LCS1	Total Dissolved Solid (TDS)		175	160	mg/L	91	(80-114)		
LCS2	Total Dissolved Solid (TDS)		700	690	mg/L	99	(80-114)		
MBLK	Total Dissolved Solid (TDS)			<10	mg/L				
MRL_CHK	Total Dissolved Solid (TDS)		10	8.00	mg/L	80	(50-150)		
QC Ref# 754549 -	Alkalinity in CaCO3 units by SM 2320	в				Analysis	Date: 02/28/	2014	
LCS1	Alkalinity in CaCO3 units		100	97.3	mg/L	97	(90-110)		
LCS2	Alkalinity in CaCO3 units		100	99.0	mg/L	99	(90-110)	20	1.7
MBLK	Alkalinity in CaCO3 units			<2	mg/L				
MRL_CHK	Alkalinity in CaCO3 units		2.0	2.88	mg/L	144	(50-150)		
MS_201402250609	Alkalinity in CaCO3 units	ND	100	92.4	mg/L	91	(80-120)		
MS_201402260735	Alkalinity in CaCO3 units	170	100	278	mg/L	106	(80-120)		
MSD_201402250609	Alkalinity in CaCO3 units	ND	100	92.5	mg/L	91	(80-120)	20	0.0
MSD_201402260735	Alkalinity in CaCO3 units	170	100	278	mg/L	106	(80-120)	20	0.0
QC Ref# 754551 -	Alkalinity in CaCO3 units by SM 2320	в			Analysis Date: 02/28/2014				
LCS1	Alkalinity in CaCO3 units		100	94.8	mg/L	95	(90-110)		
LCS2	Alkalinity in CaCO3 units		100	101	mg/L	101	(90-110)	20	6.3
MBLK	Alkalinity in CaCO3 units			<2	mg/L				
MRL_CHK	Alkalinity in CaCO3 units		2.0	2.74	mg/L	137	(50-150)		
MS_201402250389	Alkalinity in CaCO3 units	11	100	101	mg/L	90	(80-120)		
MS_201402270107	Alkalinity in CaCO3 units	22	100	108	mg/L	86	(80-120)		
MSD_201402250389	Alkalinity in CaCO3 units	11	100	101	mg/L	90	(80-120)	20	0.0
MSD_201402270107	Alkalinity in CaCO3 units	22	100	110	mg/L	88	(80-120)	20	1.8
QC Ref# 754554 -	PH (H3=past HT not compliant) by SM	/4500-HB				Analysis	Date: 02/28/	2014	
DUP_201402260756	PH (H3=past HT not compliant)	7.9		7.86	Units		(0-20)	20	0.0
DUP2_201402260804	PH (H3=past HT not compliant)	5.6		5.55	Units		(0-20)	20	1.8
LCS1	PH (H3=past HT not compliant)		6.0	6.01	Units	100	(98-102)		
LCS2	PH (H3=past HT not compliant)		6.0	6.01	Units	100	(98-102)	20	0.0
QC Ref# 754564 -	PH (H3=past HT not compliant) by SM	/4500-HB				Analysis	Date: 02/28/	2014	
DUP_201402260735	PH (H3=past HT not compliant)	7.8		7.81	Units		(0-20)	20	0.13
DUP2_201402250564	PH (H3=past HT not compliant)	5.5		5.45	Units		(0-20)	20	1.5
LCS1	PH (H3=past HT not compliant)		6.0	6.01	Units	100	(98-102)		
LCS2	PH (H3=past HT not compliant)		6.0	6.01	Units	100	(98-102)	20	0.0
QC Ref# 754599 -	Chloride, Sulfate by EPA 300.0 by EP	A 300.0				Analysis	Date: 02/28/	2014	
LCS1	Chloride		25	26.0	mg/L	104	(90-110)		

Spike recovery is already corrected for native results. Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u> Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level).

Eaton Analytical

Laboratory QC Report: 470148

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

QC Туре	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
LCS2	Chloride		25	26.7	mg/L	107	(90-110)	20	2.7
MBLK	Chloride			<0.5	mg/L				
MRL_CHK	Chloride		0.5	0.424	mg/L	85	(50-150)		
MS_201402250590	Chloride	29	13	95.9	mg/L	107	(80-120)		
MS_201402270110	Chloride	3.6	13	17.3	mg/L	110	(80-120)		
MSD_201402250590	Chloride	29	13	96.0	mg/L	108	(80-120)	20	0.21
MSD_201402270110	Chloride	3.6	13	17.3	mg/L	110	(80-120)	20	0.0
LCS1	Sulfate		50	51.2	mg/L	103	(90-110)		
LCS2	Sulfate		50	52.4	mg/L	105	(90-110)	20	2.1
MBLK	Sulfate			<0.25	mg/L				
MRL_CHK	Sulfate		1.0	0.961	mg/L	96	(50-150)		
MRLLW	Sulfate		0.25	0.248	mg/L	99	(50-150)		
MS_201402250590	Sulfate	140	25	274	mg/L	103	(80-120)		
MS_201402270110	Sulfate	11	25	37.4	mg/L	106	(80-120)		
MSD_201402250590	Sulfate	140	25	276	mg/L	104	(80-120)	20	0.73
MSD_201402270110	Sulfate	11	25	37.4	mg/L	106	(80-120)	20	0.0
QC Ref# 754713 -	Total Dissolved Solids (TDS) by E160	.1/SM2540	C			Analysis	Date: 03/01/	2014	
DUP_201402240236	Total Dissolved Solid (TDS)	570		564	mg/L		(0-20)	20	1.1
DUP_201402270307	Total Dissolved Solid (TDS)	1200		1190	mg/L		(0-20)	20	3.1
LCS1	Total Dissolved Solid (TDS)		175	164	mg/L	94	(80-114)		
LCS2	Total Dissolved Solid (TDS)		700	660	mg/L	94	(80-114)		
MBLK	Total Dissolved Solid (TDS)			<10	mg/L				
MRL_CHK	Total Dissolved Solid (TDS)		10	8.00	mg/L	80	(50-150)		
QC Ref# 754730 -	Chloride, Sulfate by EPA 300.0 by EPA	A 300.0				Analysis	Date: 02/28/	2014	
LCS1	Chloride		25	26.1	mg/L	105	(90-110)		
LCS2	Chloride		25	26.2	mg/L	105	(90-110)	20	0.38
MBLK	Chloride			<0.5	mg/L				
MRL_CHK	Chloride		0.5	0.419	mg/L	84	(50-150)		
MS_201402270181	Chloride	820	13	1490	mg/L	107	(80-120)		
	Chloride	4.0	13	17.7	mg/L	110	(80-120)		
MSD_201402270181	Chloride	820	13	1500	mg/L	108	(80-120)	20	0.67
MSD_201403010071	Chloride	4.0	13	17.8	mg/L	111	(80-120)	20	0.56
LCS1	Sulfate		50	51.6	mg/L	103	(90-110)		
LCS2	Sulfate		50	51.7	mg/L	103	(90-110)	20	0.19
MBLK	Sulfate			<0.25	mg/L				
MRL_CHK	Sulfate		1.0	0.975	mg/L	98	(50-150)		
MRLLW	Sulfate		0.25	0.266	mg/L	106	(50-150)		

Spike recovery is already corrected for native results. Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u> Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level).

Santa Ynez River WCD

QC Туре	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
MS_201402270181	Sulfate	370	25	1670	mg/L	104	(80-120)		
MS_201403010071	Sulfate	2.1	25	28.3	mg/L	105	(80-120)		
MSD_201402270181	Sulfate	370	25	1680	mg/L	105	(80-120)	20	0.60
MSD_201403010071	Sulfate	2.1	25	28.6	mg/L	106	(80-120)	20	1.1
QC Ref# 755674 - I	CPMS Metals by EPA 200.8					Analysis I	Date: 03/06/	2014	
LCS1	Chromium Total ICAP/MS		100	101	ug/L	101	(85-115)		
LCS2	Chromium Total ICAP/MS		100	101	ug/L	101	(85-115)	20	0.0
MBLK	Chromium Total ICAP/MS			<1	ug/L				
MRL_CHK	Chromium Total ICAP/MS		1.0	0.990	ug/L	99	(50-150)		
MS_201402250588	Chromium Total ICAP/MS	8.7	200	181	ug/L	86	(70-130)		
MS2_201402210367	Chromium Total ICAP/MS	ND	100	105	ug/L	105	(70-130)		
MSD_201402250588	Chromium Total ICAP/MS	8.7	100	117	ug/L	109	(70-130)	20	<u>43</u>
MSD2_201402210367	Chromium Total ICAP/MS	ND	100	98.2	ug/L	98	(70-130)	20	6.7
LCS1	Uranium ICAP/MS		20	18.9	ug/L	95	(85-115)		
LCS2	Uranium ICAP/MS		20	19.4	ug/L	97	(85-115)	20	2.6
MBLK	Uranium ICAP/MS			<1	ug/L				
MRL_CHK	Uranium ICAP/MS		1.0	0.878	ug/L	88	(50-150)		
MS_201402250588	Uranium ICAP/MS	5.9	40	43.1	ug/L	93	(70-130)		
MS2_201402210367	Uranium ICAP/MS	ND	20	24.8	ug/L	124	(70-130)		
MSD_201402250588	Uranium ICAP/MS	5.9	20	29.1	ug/L	116	(70-130)	20	<u>39</u>
MSD2_201402210367	Uranium ICAP/MS	ND	20	22.9	ug/L	115	(70-130)	20	8.0
QC Ref# 756492 - I	CPMS Metals by EPA 200.8					Analysis I	Date: 03/11/	2014	
LCS1	Chromium Total ICAP/MS		100	105	ug/L	105	(85-115)		
LCS2	Chromium Total ICAP/MS		100	108	ug/L	108	(85-115)	20	2.8
MBLK	Chromium Total ICAP/MS			<1	ug/L				
MRL_CHK	Chromium Total ICAP/MS		1.0	1.08	ug/L	108	(50-150)		
MS_201402280083	Chromium Total ICAP/MS	ND	100	91.7	ug/L	92	(70-130)		
MS2_201402280085	Chromium Total ICAP/MS	ND	100	99.6	ug/L	100	(70-130)		
MSD_201402280083	Chromium Total ICAP/MS	ND	100	103	ug/L	103	(70-130)	20	12
MSD2_201402280085	Chromium Total ICAP/MS	ND	100	103	ug/L	103	(70-130)	20	3.4
LCS1	Uranium ICAP/MS		20	20.6	ug/L	103	(85-115)		
LCS2	Uranium ICAP/MS		20	20.3	ug/L	101	(85-115)	20	1.5
MBLK	Uranium ICAP/MS			<1	ug/L				
MRL_CHK	Uranium ICAP/MS		1.0	1.13	ug/L	113	(50-150)		
MS_201402280083	Uranium ICAP/MS	ND	20	16.8	ug/L	84	(70-130)		
MS2_201402280085	Uranium ICAP/MS	ND	20	19.2	ug/L	96	(70-130)		
MSD_201402280083	Uranium ICAP/MS	ND	20	19.8	ug/L	99	(70-130)	20	17

Spike recovery is already corrected for native results. Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u> Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level).

Laboratory QC Report: 470148

Santa Ynez River WCD

QC Туре	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
MSD2_201402280085	Uranium ICAP/MS	ND	20	20.4	ug/L	102	(70-130)	20	6.1

Spike recovery is already corrected for native results. Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u> Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level).

Laboratory Report

for

Santa Ynez River WCD Post Office Box 157 Santa Ynez, CA 93460 Attention: Eric Tambini Fax: 805-688-3078

FWH: Fred Haley Project Manager Report: 487417 Project: CHROMIUM Group: well sampling

* Accredited in accordance with TNI 2009 and ISO/IEC 17025:2005.

* Laboratory certifies that the test results meet all TNI 2009 and ISO/IEC 17025:2005 requirements unless noted under the individual analysis.

* Following the cover page are State Certification List, ISO 17025 Accredited Method List, Acknowledgement of Samples Received, Comments, Hits Report, Data Report, QC Summary, QC Report and Regulatory Forms, as applicable.

* Test results relate only to the sample(s) tested.

Eaton Analytical

STATE CERTIFICATION LIST

State	Certification Number	State	Certification Number
Alabama	41060	Mississippi	Certified
Alaska	CA00006	Montana	Cert 0035
Arizona	AZ0778	Nebraska	Certified
Arkansas	Certified	Nevada	CA00006-2014-1
California-Monrovia- ELAP	2813	New Hampshire *	2959
California-Colton- ELAP	2812	New Jersey *	CA 008
California-Folsom- ELAP	2820	New Mexico	Certified
Colorado	Certified	New York *	11320
Connecticut	PH-0107	North Carolina	06701
Delaware	CA 006	North Dakota	R-009
Florida *	E871024	Oregon (Primary AB) *	ORELAP 4034
Georgia	947	Pennsylvania *	68-565
Guam	14-003r	Rhode Island	LAO00326
Hawaii	Certified	South Carolina	87016
ldaho	Certified	South Dakota	Certified
Illinois *	200033	Tennessee	TN02839
Indiana	C-CA-01	Texas *	T104704230-14-6
Kansas *	E-10268	Utah *	CA000062014-7
Kentucky	90107	Vermont	VT0114
Louisiana *	LA140009	Virginia *	460260
Maine	CA0006	Washington	C838
Maryland	224	West Virginia	9943 C
Commonwealth of Northern Marianas Is.	MP0004	Wisconsin	998316660
Massachusetts	M-CA006	Wyoming	8TMS-L
Michigan	9906	EPA Region 5	Certified
Los Angeles County Sanitation Districts	10264		

* NELAP/TNI Recognized Accreditation Bodies

750 Royal Oaks Drive, Suite 100 Monrovia, CA 91016-3629

The tests listed below are accredited and meet the requirements of ISO 17025 as verified by the ANSI-ASQ National Accreditation Board/ACLASS. Refer to Certificate and scope of accreditation (AT 1807) found at: http://www.eatonanalytical.com

SPECIFIC TESTS	METHOD OR TECHNIQUE USED	Drinking Water	Food & Beverage	Waste Water	SPECIFIC TESTS	IC TESTS METHOD OR TECHNIQUE USED		Food & Beverage	Waste Water
1,4-Dioxane	EPA 522	x	х		Hormones	EPA 539	х	х	
2,3,7,8-TCDD	Modified EPA 1613B	x	х		Hydroxide as OH Calc.	SM 2330B	х	х	
Acrylamide	In House Method	х	х		Kjeldahl Nitrogen	EPA 351.2			х
Alkalinity	SM 2320B	х	х	x	Mercury	EPA 245.1	х	х	х
Ammonia	EPA 350.1		X	X	Metals	EPA 200.7 / 200.8	x	x	х
Animonia Anions and DBPs by IC	5M 4500-NH5 H (18m) EPA 200.0	v	x	X	NIDMA	ELISA EDA 521	x	x	
Anions and DBPs by IC	EPA 300.0	×	x	X	Nitrate/Nitrite Nitrogen	EFA 321 EPA 353 2	×	×	v
Ashestos	EPA 100.2	×	^		OCL. Pesticides/PCB	EPA 505	x	x	^
Bicarbonate Alkalinity as	SM 2330B	x	x	x	Ortho Phosphate	EPA 365.1	x	x	
BOD / CBOD	SM 5210B		x	x	Ortho Phosphate and Total Phosphorous	EPA 365.1/SM 4500-P E			x
Bromate	In House Method	x	x		Ortho Phosphorous	SM 4500P E	x	x	
Carbamates	EPA 531.2	x	x		Oxyhalides Disinfection Byproducts	EPA 317.0	x	x	
Carbonate as CO3	SM 2330B	x	x	x	Perchlorate	EPA 331.0	x	x	
Carbonvls	EPA 556	x	x	~	Perchlorate	EPA 314.0	x	x	
COD	FPA 410 4 / SM 5220D			x	Perfluorinated Alkyl Acids	FPA 537	x	x	
Chlamminar	SM 4500 CL C			~	-U	EDA 150 1	~	~	
Chlorinoted Asida	SM 4500-CL G	X	X	X	pH	EPA 150.1	X	v	~
Chiofinated Acids	EFA J13.4	x	X		Phenylurea Pesticides/	SM 4500-п+в	x	x	×
Chlorinated Acids Chlorine Dioxide	EPA 555 SM 4500-CLO2 D	x	x		Herbicides Pseudomonas	In House Method IDEXX Pseudalert	x	x	
Chlorine -Total/Free/	SM 4500 CLG	v v	×	v	Padium 226	PA 226 GA	× ×	× ×	
Combined Residual	SIVI 4500-CI O	x	x	*	Kaulull-220	KA-220 GA	×	×	
Conductivity	EPA 120.1			X	Radium-228	RA-228 GA	x	x	
Conductivity	SM 2510B	x	x	x	Radon-222	SM /500RN	x	x	
Corrosivity (Langelier Index)	SM 2330B	x	x		Residue, Filterable	SM 2540C	x	x	x
Cyanide, Amenable	SM 4500-CN G	х		х	Residue, Non-filterable	SM 2540D			х
Cyanide, Free	SM 4500CN F	x	X	X	Residue, Total	SM 2540B		х	x
Cyanide, Total	EPA 335.4	X	x	X	Residue, Volatile	EPA 160.4			X
(screen)	In House Method	x	x		Semi-VOC	EPA 525.2	x	x	
Diquat and Paraquat	EPA 549.2	х	х		Semi-VOC	EPA 625	х	х	х
DBP/HAA	SM 6251B	х	х		Silica	SM 4500-Si D	х	х	х
Dissolved Oxygen	SM 4500-O G		x	x	Silica	SM 4500-SiO2 C	х		х
E. Coli	(MTF/EC+MUG)	х			Sulfide	SM 4500-S ⁻ D			х
E. Coli	CFR 141.21(f)(6)(i)		х	х	Sulfite	SM 4500-SO ³ B	х	х	х
E. Coli	SM 9223			х	Surfactants	SM 5540C	х	х	х
E. Coli (Enumeration)	SM 9221B.1/ SM 9221F	х	х		Taste and Odor Analytes	SM 6040E	х	х	
E. Coli (Enumeration)	SM 9223B	х	х		Total Coliform	SM 9221 A, B	х	х	
EDB/DCBP	EPA 504.1	x			Total Coliform (Enumeration)	SM 9221 A, B, C	x	x	
EDB/DBCP and DBP	EPA 551.1	х	x		Total Coliform / E. coli	Colisure	x	х	
EDTA and NTA	In House Method	х	х		Total Coliform	SM 9221B			х
Endothall	EPA 548.1	x	x		Total Coliform with Chlorine Present	SM 9221B			x
Enterococci	SM 9230B	х		x	Total Coliform / E.coli	SM 9223	х	х	
Fecal Coliform	SM 9221 E (MTF/EC)	х			TOC	SM 5310C		х	х
Fecal Coliform	SM 9221C, E (MTF/EC)			x	TOC/DOC	SM 5310C	x	x	
Fecal Coliform (Enumeration)	SM 9221E (MTF/EC)	x	x		тох	SM 5320B			x
Fecal Coliform with Chlorine Present	SM 9221E			x	Total Phenols	EPA 420.1			x
Fecal Streptococci	SM 9230B	x	1	x	Total Phenols	EPA 420.4	x	x	x
Fluoride	SM 4500-F C	х	x	x	Total Phosphorous	SM 4500 P F			x
Glyphosate	EPA 547	х	х		Turbidity	EPA 180.1	х	х	х
Gross Alpha/Beta	EPA 900.0	x	x	x	Turbidity	SM 2130B	x		x
HAAs/ Dalapon	EPA 552.3	х	х		Uranium by ICP/MS	EPA 200.8	х	х	
Hardness	SM 2340B	х	х	x	UV 254	SM 5910B	х	ļ	
Heterotrophic Bacteria	In House Method	X	х		VOC	EPA 524.2/EPA 524.3	x	x	
Helerotrophic Bacteria	SIVI 9215 B	X	X		VOC	EPA 024	x	X	x
Hexavalent Chromium	EPA 218.0	X	X	х	VOC	EPA SW 840 8260	X	X	
Hexavalent Chromium	EFA 218./ SM 2500 Cr D or C (20:1)	x	x	Y	VOL Vesst and Mold	SM 0610	x	x	
TIERAVAICIII CIIIOIIIIUIII	ым 5500-Сг в ог С (20th)	1	ļ	X	i cast allu MOlu	3101 9010	*	×	I

750 Royal Oaks Dr., Ste 100, Monrovia, CA 91016 Tel (626) 386-1100 Fax (626) 386-1101 http://www.EatonAnalytical.com

Version 002. Issued: 06/03/2014

🔅 eurofins				
	Eaton Analytical			
	Ac	knowledgement of Samples	Received	
Addr:	Santa Ynez River WCD Post Office Box 157 Santa Ynez, CA 93460	s	Client ID: SANTAYN Folder #: 487417 Project: CHROMIU Sample Group: well sampl	IEZWD-CA IM ing
Attn: Phone:	Eric Tambini 805-688-6015	Pro	oject Manager: Fred Haley Phone: (626) 386-	/ 1127
The follo each sar Eaton Ar	wing samples were received from nple. If this information is incorrect nalytical.	you on June 26, 2014 . They have ct, please contact your service repre	been scheduled for the tes sentative. Thank you for t	sts listed below using Eurofins
Sample #	Sample ID			Sample Date
201406260378	WH27-1			06/24/2014 1320
	Alkalinity in CaCO3 units Hexavalent chromium(Dissolved)	Chloride PH (H3=past HT not compliant)	Chromium Total ICAP/M Sulfate	S
	Total Dissolved Solid (TDS)			
201406260382	W27-1170			06/24/2014 1350
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/M	S
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate	
	Total Dissolved Solid (TDS)			
201406260383	W27-1150			06/24/2014 1405
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/M	S
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate	
	Total Dissolved Solid (TDS)			
201406260384	W27-1120			06/24/2014 1435
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/M	S
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate	
	Total Dissolved Solid (TDS)			
201406260385	W27-1100			06/24/2014 1515
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/M	S
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate	
	Total Dissolved Solid (TDS)			
201406260386	W27-1080			06/24/2014 1540
	Alkalinity in CaCO3 units	PH (H3=past HT not compliant)		
201406260387	W27-1030			06/24/2014 1625
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/M	S
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate	
	Total Dissolved Solid (TDS)			
201406260388	W27-1080-2			06/24/2014 1540
	Chromium Total ICAP/MS	Hexavalent chromium(Dissolved)		
201406260389	W27-1020			06/24/2014 1645

Page 1 of 2

Acknowledgement of Samples Received

Addr: Santa Ynez River WCD Post Office Box 157 Sonto Ynoz, CA 02460

Attn: Eric Tambini

Phone: 805-688-6015

Santa Ynez, CA 93460

Client ID: SANTAYNEZWD-CA Folder #: 487417 Project: CHROMIUM Sample Group: well sampling

Project Manager: Fred Haley Phone: (626) 386-1127

The following samples were received from you on **June 26, 2014**. They have been scheduled for the tests listed below each sample. If this information is incorrect, please contact your service representative. Thank you for using Eurofins Eaton Analytical.

Sample #	Sample ID		Sample Date
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/MS
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate
	Total Dissolved Solid (TDS)		
201406260390	W27-1000		06/24/2014 1730
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/MS
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate
	Total Dissolved Solid (TDS)		
201406260391	W27-980		06/24/2014 1745
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/MS
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate
	Total Dissolved Solid (TDS)		
201406260392	W27-960		06/24/2014 1810
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/MS
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate
	Total Dissolved Solid (TDS)		
201406260393	W27-950		06/24/2014 1840
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/MS
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate
	Total Dissolved Solid (TDS)		
201406260394	W27-900		06/24/2014 1855
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/MS
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate
	Total Dissolved Solid (TDS)		
201406260395	WH27-2		06/24/2014 1910
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/MS
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate
	Total Dissolved Solid (TDS)		
	Total Dissolved Solid (TDS)		

Test Description

🐝 eur	ofins	U	CHAIN (DF CUSTO	DY RECORD	+ ICE OWES	Firt
	Eaton Analytical	EUROFINS EATON ANALYTIC	CAL USE ONLY:				
750 Royal Monrovia	I Oaks Drive, Suite 100 CA 91016-3629	LOGIN COMMENTS:			SAMPLES CHECKED AG	AINST COC BY:	2
Phone: 62 Fax: 626 (26 386 1100 386 1101 ABS (800 566 5227)	SAMPLE TEMP RECEIVED	AT: Arizona 3.(°C (Compliance	SAMPLES REC'D DAY O :: 4 ± 2 °C) :: 4 ± 2 °C)	F COLLECTION?	(check for yes)
		CONDITION OF BLUE I METHOD OF SHIPME	ICE: Frozen	Walk-In FedEx UP	S / DHL / Area Fast / Top Line / Oth	No Ice	
TO BE COMPLE	ETED BY SAMPLER:)	(check for yes)	(che	eck for yes)
SCANFANYIA	YNEZ Rive Water	PROJECT CODE:	W	COMPLI - Re Type of samples (ci	ANCE SAMPLES NON-COM quires state forms REGULAT rcle one): ROUTINE SPECIAL CONFIRM	IPLIANCE SAMPLES ION INVOLVED: IATION (ed. SDWA, Phase	V. NPDES. FDA)
EEA CLIENT	CODE: COC ID:	SAMPLE GROUP:		SEE ATTACHEL) BOTTLE ORDER FOR ANALYS	ES (check for y	(es), <u>OR</u>
TAT requeste	d: rush by adv notice only	show 1 wk 3 day	2 day 1 day	244			(and time time
ajamar etad ajamar emit emit	SAMPLE ID	CLIENT LAB ID	* XIRTAM ATAO OJEIF ATAO DIELO ATAO DIELO	501 かかり かかり し	IA vtio	SA	MPLER
1 6/24/14 13ac	1-L8HM	¥	'GW	XXXX			
1 350	444 WA7-1170			メメメメ	X		
1 1405	W27-1150			XXXX	×		
IH35	Wa7- 11 aD			XXXX	X		
15:15	W27-1100			XXXX	×		
1540	N27-1080		24	00	X	H=0	107D
1625	W27-1030			XXXX	×		
134	W27-1080-2			XX			
543(W7-1030			XXXX	×		
× 1730	0001 - LEM 0		4	XXXX	×		
* MATRIX	TYPES: RSW = Raw Surface Water RGW = Raw Ground Water	CFW = Chlor(am)inated FW = Other Finished Wa	Finished Water ater	SEAW = Sea Water WW = Waste Water	BW = Bottled Water SO = S SW = Storm Water SL = SI	ioil O = Other - ludge	Please Identify
and the second second	SIGNATURE		PRINT NAME		COMPANY/TITLE	, DATE,	TIME
SAMPLED BY:	malan	Jet	A LLubr	CAN 1	Durkek / Hydrodebrijst	p/hz/g	1925
RELINQUISHED	BY UN Campber	Eric	Tambin	S	YRWCD, TO41	6/25/14	13:30
RECEIVED BY: RELINQUISHED	Keine flin	(brios.	Smiles		Eco	leldeliu	[Jia
RECEIVED BY:							
QA FO 0029 (0	16/26/2013)					PAGE	E L OF Z

Page 6 of 25 pages

🐝 eurofins				DF CUST	ODY RECORD	(2 ice c	iheste)
- E200	Analyrical El	JROFINS EATON ANALYT	ICAL USE ONLY:			×	
750 Royal Oaks Drive, Suite 1	00	OGIN COMMENTS:			SAMPLES CHECKED A SAMPLES	GAINST COC BY:	
Monrovia, CA 91010-3029 Phone: 626 386 1100	<u></u>		D AT:		SAMPLES REC'D DAY	OF COLLECTION?	check for yes)
Fax: 626 386 1101		Colton / No. California	/ Arizona	C (Complia	nce: 4 ± 2 ℃) nce: 4 ± 2 ℃)		
800 566 LABS (800 566 5227		Condition of Blue Method of Shipv	E ICE: Frozen	Partially Froze Walk-In Fedex /	en Thawed Wet Ice UPS / DHL / Area Fast / Top Line / O	No Ice	
TO BE COMPLETED BY SAMPLER:			-		(check for ves)	(chec	ck for ves)
COMPANY/AGENCY NAME, NIVE	r Water	PROJECT CODE: CNY OM!	- Con	COM Type of samples	PLIANCE SAMPLES NON-CO Requires state forms REGULA (circle one): ROUTINE	MPLIANCE SAMPLES	NPDES. FDA
EEA CLIENT CODE: COC	ë	SAMPLE GROUP:		SEE ATTACH list ANALYSI	IED BOTTLE ORDER FOR ANALY ES REQUIRED (enter number of bottles	SES (check for ye sent for each test for ea	_{is)} , <u>OR</u> ach sample)
TAT requested: rush by adv notice o	only	STD 1 wk 3 day	_ 2 day 1 day	2973 ~~ -			
SAMPLE DATE SAMPLE TIME	<u> </u>	CLIENT LAB ID	* XIATAM ATAO OJEIF	から から から から から し	HA fly	SANCOM	APLER IMENTS
1 GAHWITHS WA7-91	20		Rew	XXX	X		
1 1810 W27-9	60		Rew	XXX/	<hr/> <hr/> <hr/> <hr/> <hr/> <hr/> <hr/> <hr/>		
< 1840 W 27 - 9.	50		ROW	イメメ	X		
1 1855 W 27 - 9	00		Rew	XXX			
1 1 1910 WH27 - 2	~		Laew	イメメ	×		
* MATRIX TYPES: RSW = Raw RGW = Raw	Surface Water / Ground Water	CFW = Chlor(am)inate FW = Other Finished V	d Finished Water Vater	SEAW = Sea W WW = Waste W	ater BW = Bottled Water SO = ater SW = Storm Water SL =	: Soil O = Other - I Sludge	Please Identify
SIGNATI	JRE		PRINT NAME		COMPANY/TITLE	DATE	TIME
		L B	ite Kubr	22	Dudek Hydro geologist	6/24/14	19:18
RELINQUISHED BY:	l'an	in the second	e Tom Lini		SYRWOD, ID #1	10/25/14	13:30
	}	Per ler	res Suple		E GA	6/26/rel	No
QA FO 0029 (06/26/2013)		-				PAGE	2 %

-

Page 7 of 25 pages

					I DOT #			V2031								
flanager	r samples		Billing Address Santa Ynez River WCD Post Office Box 157 Santa Ynez, CA 93460	Attrr Eric Tambini Phone: 805-688-6015 Fax: 805-688-3078	utive if a			D								
red Haley is your Eurofins Eaton Analytical Project N	a: Sampler Please return this paper with your	Client ID: SANTAYNEZWD-CA Project Code: CHROMIUM Bottle Orders Group Name: well sampling PO#/JOB#:	Send Report to Santa Ynez River WCD Post Office Box 157 Santa Ynez, CA 93460	Attri Eric Tambini Phone: 805-688-6015 Fax: 805-688-3078	Bottles - Qty for each sample, type & preserva	13 250ml poly no preservative	15 125ml poly no preservative	16 500ml acid poly 2ml HNO3 (18%)	14 125ml poly 1.25 ml NH4SO4/NH4OH buffer	13 500ml poly TDS - no preservative						
Eaton Analytical tormerly WWH Laboratories	750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 (626) 386-1100 FAX (626) 386-1101 Note	Kit #: 92260 Created By: FWH Deliver By: 06/16/2014 STG: Bottle Orders Ice Type: W	Ship Sample Kits to Santa Ynez River WCD 3622 Sagunto Street Santa Ynez, CA 93460	Attn: District Office Phone: 805-688-6015 Fax: 805-688-3078	of ample Tests	I Alkalinity in CaCO3 units, PH (H3=past HT not compliant)	Chloride, Sulfate	Chromium Total ICAP/MS	Hexavalent Chromium (Dissolved)	Total Dissolved Solid (TDS)	Comments	ABEL COOLERS "well profile sampling"	Ship two coolers	io gel packs	provide wet ice packing instructions	

Kit Order for Santa Ynez River WCD

🐝 eurofins

 \sim

Code

.~

Santa Ynez River WCD Eric Tambini Post Office Box 157 Santa Ynez, CA 93460

Flags Legend:

M2 - Matrix spike recovery was low; the associated blank spike recovery was acceptable.

Laboratory Comments Report: 487417

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Hits Report: 487417

Analyzed	Analyte Sample ID	Result	Federal MCL	Units	MRL
	201406260378 <u>WH27-1</u>				
07/02/2014 22:50	Alkalinity in CaCO3 units	240		mg/L	2
06/30/2014 16:28	Chloride	32	250	mg/L	5
06/30/2014 17:58	Chromium Total ICAP/MS	13	100	ug/L	1
06/26/2014 16:52	Hexavalent chromium(Dissolved)	14		ug/L	0.02
07/02/2014 22:50	PH (H3=past HT not compliant)	7.8		Units	0.1
06/30/2014 16:28	Sulfate	100	250	mg/L	2.5
06/27/2014 16:08	Total Dissolved Solids (TDS)	500	500	mg/L	10
	201406260382 <u>W27-1170</u>				
07/02/2014 22:58	Alkalinity in CaCO3 units	240		mg/L	2
06/30/2014 16:42	Chloride	30	250	mg/L	5
07/03/2014 19:18	Chromium Total ICAP/MS	14	100	ug/L	1
06/26/2014 17:22	Hexavalent chromium(Dissolved)	2.0		ug/L	0.02
07/02/2014 22:58	PH (H3=past HT not compliant)	7.7		Units	0.1
06/30/2014 16:42	Sulfate	120	250	mg/L	2.5
06/27/2014 16:09	Total Dissolved Solids (TDS)	510	500	mg/L	10
	201406260383 <u>W27-1150</u>				
07/02/2014 23:06	Alkalinity in CaCO3 units	250		mg/L	2
06/30/2014 16:55	Chloride	30	250	mg/L	5
07/08/2014 20:20	Chromium Total ICAP/MS	35	100	ug/L	1
06/26/2014 17:32	Hexavalent chromium(Dissolved)	3.8		ug/L	0.02
07/02/2014 23:06	PH (H3=past HT not compliant)	7.7		Units	0.1
06/30/2014 16:55	Sulfate	120	250	mg/L	2.5
06/27/2014 16:10	Total Dissolved Solids (TDS)	460	500	mg/L	10
	201406260384 <u>W27-1120</u>				
07/02/2014 23:35	Alkalinity in CaCO3 units	230		mg/L	2
06/30/2014 17:08	Chloride	30	250	mg/L	5
07/08/2014 20:22	Chromium Total ICAP/MS	16	100	ug/L	1
06/26/2014 17:42	Hexavalent chromium(Dissolved)	4.0		ug/L	0.02
07/02/2014 23:35	PH (H3=past HT not compliant)	7.8		Units	0.1
06/30/2014 17:08	Sulfate	120	250	mg/L	2.5
06/27/2014 16:11	Total Dissolved Solids (TDS)	510	500	mg/L	10
	201406260385 <u>W27-1100</u>				
07/03/2014 00:09	Alkalinity in CaCO3 units	230		mg/L	2
06/30/2014 17:22	Chloride	31	250	mg/L	5

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Hits Report: 487417

Analyzed	Analyte	Sample ID	Result	Federal MCL	Units	MRL
07/03/2014 19:1	6 Chromium Total ICAP/M	IS	32	100	ug/L	1
06/26/2014 17:5	2 Hexavalent chromium(D	Dissolved)	3.7		ug/L	0.02
07/03/2014 00:0	PH (H3=past HT not cor	mpliant)	7.7		Units	0.1
06/30/2014 17:2	2 Sulfate		120	250	mg/L	2.5
06/27/2014 16:1	2 Total Dissolved Solids (TDS)	530	500	mg/L	10
	201406260386	<u>W27-1080</u>				
07/03/2014 00:1	Alkalinity in CaCO3 unit	s	240		mg/L	2
07/03/2014 00:1	PH (H3=past HT not cor	mpliant)	7.7		Units	0.1
	201406260387	<u>W27-1030</u>				
07/03/2014 00:2	5 Alkalinity in CaCO3 unit	s	240		mg/L	2
06/30/2014 18:0	2 Chloride		31	250	mg/L	5
07/03/2014 19:2	Chromium Total ICAP/M	1S	12	100	ug/L	1
06/26/2014 18:1	2 Hexavalent chromium(D	Dissolved)	9.1		ug/L	0.02
07/03/2014 00:2	5 PH (H3=past HT not cor	mpliant)	7.8		Units	0.1
06/30/2014 18:0	2 Sulfate		99	250	mg/L	2.5
06/27/2014 16:1	B Total Dissolved Solids (TDS)	470	500	mg/L	10
	201406260388	<u>W27-1080-2</u>				
07/08/2014 20:2	Chromium Total ICAP/M	1S	20	100	ug/L	1
06/26/2014 18:2	2 Hexavalent chromium(D	Dissolved)	3.6		ug/L	0.02
	201406260389	<u>W27-1020</u>				
07/03/2014 00:3	8 Alkalinity in CaCO3 unit	s	240		mg/L	2
06/30/2014 18:4	2 Chloride		31	250	mg/L	5
07/03/2014 19:3	Chromium Total ICAP/N	IS	16	100	ug/L	1
06/26/2014 18:3	2 Hexavalent chromium(D	Dissolved)	11		ug/L	0.02
07/03/2014 00:3	B PH (H3=past HT not cor	mpliant)	7.9		Units	0.1
06/30/2014 18:4	2 Sulfate		100	250	mg/L	2.5
06/27/2014 16:1	Total Dissolved Solids (TDS)	500	500	mg/L	10
	201406260390	<u>W27-1000</u>				
07/03/2014 00:4	Alkalinity in CaCO3 unit	S	240		mg/L	2
06/30/2014 18:5	6 Chloride		31	250	mg/L	5
07/03/2014 19:0	Chromium Total ICAP/N	IS	13	100	ug/L	1
06/26/2014 18:4	2 Hexavalent chromium(D	Dissolved)	12		ug/L	0.02
07/03/2014 00:4	PH (H3=past HT not cor	mpliant)	7.8		Units	0.1
06/30/2014 18:5	5 Sulfate		100	250	mg/L	2.5
06/27/2014 16:1	5 Total Dissolved Solids (TDS)	510	500	mg/L	10

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Hits Report: 487417

Analyzed	Analyte Sample ID	Result	Federal MCL	Units	MRL
	201406260391 <u>W27-980</u>				
07/03/2014 00:49	Alkalinity in CaCO3 units	240		mg/L	2
06/30/2014 19:09	Chloride	31	250	mg/L	5
07/03/2014 18:58	Chromium Total ICAP/MS	14	100	ug/L	1
06/26/2014 19:12	Hexavalent chromium(Dissolved)	13		ug/L	0.02
07/03/2014 00:49	PH (H3=past HT not compliant)	7.8		Units	0.1
06/30/2014 19:09	Sulfate	100	250	mg/L	2.5
06/27/2014 16:16	Total Dissolved Solids (TDS)	500	500	mg/L	10
	201406260392 <u>W27-960</u>				
07/03/2014 00:57	Alkalinity in CaCO3 units	250		mg/L	2
06/30/2014 19:22	Chloride	31	250	mg/L	5
07/08/2014 20:26	Chromium Total ICAP/MS	22	100	ug/L	1
06/26/2014 19:42	Hexavalent chromium(Dissolved)	13		ug/L	0.02
07/03/2014 00:57	PH (H3=past HT not compliant)	7.8		Units	0.1
06/30/2014 19:22	Sulfate	100	250	mg/L	2.5
06/27/2014 16:18	Total Dissolved Solids (TDS)	490	500	mg/L	10
	201406260393 <u>W27-950</u>				
07/03/2014 01:06	Alkalinity in CaCO3 units	250		mg/L	2
06/30/2014 19:36	Chloride	32	250	mg/L	5
07/08/2014 20:28	Chromium Total ICAP/MS	17	100	ug/L	1
06/26/2014 19:52	Hexavalent chromium(Dissolved)	13		ug/L	0.02
07/03/2014 01:06	PH (H3=past HT not compliant)	7.8		Units	0.1
06/30/2014 19:36	Sulfate	100	250	mg/L	2.5
06/27/2014 16:19	Total Dissolved Solids (TDS)	500	500	mg/L	10
	201406260394 <u>W27-900</u>				
07/03/2014 01:14	Alkalinity in CaCO3 units	250		mg/L	2
06/30/2014 19:49	Chloride	32	250	mg/L	5
07/03/2014 19:20	Chromium Total ICAP/MS	16	100	ug/L	1
06/26/2014 20:02	Hexavalent chromium(Dissolved)	14		ug/L	0.02
07/03/2014 01:14	PH (H3=past HT not compliant)	7.8		Units	0.1
06/30/2014 19:49	Sulfate	100	250	mg/L	2.5
06/30/2014 17:37	Total Dissolved Solids (TDS)	470	500	mg/L	10
	201406260395 <u>WH27-2</u>				
07/03/2014 17:01	Alkalinity in CaCO3 units	230		mg/L	2
06/30/2014 20:03	Chloride	32	250	mg/L	5

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Hits Report: 487417

Analyzed	Analyte	Sample ID	Result	Federal MCL	Units	MRL
07/08/2014 20:30	Chromium Total ICAP/MS	8	15	100	ug/L	1
06/26/2014 20:12	Hexavalent chromium(Dis	ssolved)	14		ug/L	0.02
07/03/2014 17:01	PH (H3=past HT not com	ipliant)	7.8		Units	0.1
06/30/2014 20:03	Sulfate		99	250	mg/L	2.5
06/30/2014 17:38	Total Dissolved Solids (T	DS)	460	500	mg/L	10

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Data Report: 487417

Samples Received on: 06/26/2014

Prepared	Analyzed	QC Ref #	Method	Analyte	Result	Units	MRL	Dilution
WH27-1 (201406260378)						Sampled on 06/24/2014 1320		
		FPA 200 8 - IC	CPMS Metals					
6/27/2014	06/30/2014	17:58 778488	(EPA 200.8)	Chromium Total ICAP/MS	13	ug/L	1	1
		EPA 218.6 - H	exavalent chromi	um(Dissolved)				
	06/26/2014	16:52 778032	(EPA 218.6)	Hexavalent chromium(Dissolved)	14	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate b	y EPA 300.0				
	06/30/2014	16:28 778456	(EPA 300.0)	Chloride	32	mg/L	5	5
	06/30/2014	16:28 778456	(EPA 300.0)	Sulfate	100	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO	3 units				
	07/02/2014	22:50 779031	(SM 2320B)	Alkalinity in CaCO3 units	240	mg/L	2	1
		E160.1/SM254	IOC - Total Dissol	ved Solids (TDS)				
6/27/2014	06/27/2014	16:08 778121	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	500	mg/L	10	1
		SM4500-HB - PH (H3=past HT not compliant)						
	07/02/2014	22:50 779042	(SM4500-HB)	PH (H3=past HT not compliant)	7.8	Units	0.1	1
<u>W27-117</u>	<u>/27-1170 (201406260382)</u>					Sampled on 06/24/2014 1350		
		EPA 200.8 - IC	CPMS Metals					
6/27/2014	07/03/2014	19:18 779470	(EPA 200.8)	Chromium Total ICAP/MS	14	ug/L	1	1
		EPA 218.6 - H	exavalent chromi	um(Dissolved)				
	06/26/2014	17:22 778032	(EPA 218.6)	Hexavalent chromium(Dissolved)	2.0	ug/L	0.02	1
		EPA 300.0 - Chloride, Sulfate by EPA 300.0						
	06/30/2014	16:42 778456	(EPA 300.0)	Chloride	30	mg/L	5	5
	06/30/2014	16:42 778456	(EPA 300.0)	Sulfate	120	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO	3 units				
	07/02/2014	22:58 779031	(SM 2320B)	Alkalinity in CaCO3 units	240	mg/L	2	1
		E160.1/SM2540C - Total Dissolved Solids (TDS)						
6/27/2014	06/27/2014	16:09 778121	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	510	mg/L	10	1
		SM4500-HB - PH (H3=past HT not compliant)						
	07/02/2014	22:58 779042	(SM4500-HB)	PH (H3=past HT not compliant)	7.7	Units	0.1	1
<u>W27-1150 (201406260383)</u>						Sampled on 06/24/2014 1405		
		EPA 200.8 - IC	CPMS Metals					
6/27/2014	07/08/2014	20:20 779522	(EPA 200.8)	Chromium Total ICAP/MS	35	ug/L	1	1
		EPA 218.6 - Hexavalent chromium(Dissolved)						
	06/26/2014	17:32 778032	(EPA 218.6)	Hexavalent chromium(Dissolved)	3.8	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate b	y EPA 300.0				
	06/30/2014	16:55 778456	(EPA 300.0)	Chloride	30	mg/L	5	5
Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Samples Received on: 06/26/2014

Prepared	Analyzed	QC Ref #	Method	Analyte	Result	Units	MRL	Dilution
	06/30/2014	16:55 778456	(EPA 300.0)	Sulfate	120	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO3	units				
	07/02/2014	23:06 779031	(SM 2320B)	Alkalinity in CaCO3 units	250	mg/L	2	1
		E160.1/SM254	OC - Total Dissol	/ed Solids (TDS)				
6/27/2014	06/27/2014	16:10 778121	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	460	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	07/02/2014	23:06 779042	(SM4500-HB)	PH (H3=past HT not compliant)	7.7	Units	0.1	1
<u>W27-112</u>	0 (2014062	<u>60384)</u>				Sampled	on 06/24/201	4 1435
		EPA 200.8 - IC	CPMS Metals					
6/27/2014	07/08/2014	20:22 779522	(EPA 200.8)	Chromium Total ICAP/MS	16	ug/L	1	1
		EPA 218.6 - H	exavalent chromi	um(Dissolved)				
	06/26/2014	17:42 778032	(EPA 218.6)	Hexavalent chromium(Dissolved)	4.0	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate by	y EPA 300.0				
	06/30/2014	17:08 778456	(EPA 300.0)	Chloride	30	mg/L	5	5
	06/30/2014	17:08 778456	(EPA 300.0)	Sulfate	120	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO3	units				
	07/02/2014	23:35 779031	(SM 2320B)	Alkalinity in CaCO3 units	230 (M2)	mg/L	2	1
		E160.1/SM254	OC - Total Dissol	/ed Solids (TDS)				
6/27/2014	06/27/2014	16:11 778121	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	510	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	07/02/2014	23:35 779042	(SM4500-HB)	PH (H3=past HT not compliant)	7.8	Units	0.1	1
<u>W27-110</u>	0 (2014062	<u>60385)</u>				Sampled	on 06/24/201	4 1515
		EPA 200.8 - IC	CPMS Metals					
6/27/2014	07/03/2014	19:15 779470	(EPA 200.8)	Chromium Total ICAP/MS	32	ug/L	1	1
		EPA 218.6 - H	exavalent chromi	um(Dissolved)				
	06/26/2014	17:52 778032	(EPA 218.6)	Hexavalent chromium(Dissolved)	3.7	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate by	y EPA 300.0				
	06/30/2014	17:22 778456	(EPA 300.0)	Chloride	31	mg/L	5	5
	06/30/2014	17:22 778456	(EPA 300.0)	Sulfate	120	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO3	units				
	07/03/2014	00:09 779031	(SM 2320B)	Alkalinity in CaCO3 units	230	mg/L	2	1
		E160.1/SM254	OC - Total Dissol	/ed Solids (TDS)				
6/27/2014	06/27/2014	16:12 778121	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	530	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	07/03/2014	00:09 779042	(SM4500-HB)	PH (H3=past HT not compliant)	7.7	Units	0.1	1

W27-1080 (201406260386)

Rounding on totals after summation. (c) - indicates calculated results Sampled on 06/24/2014 1540

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Data Report: 487417

Samples Received on: 06/26/2014

Prepared	Analyzed	QC Ref #	Method	Analyte	Result	Units	MRL	Dilution
		SM 2320B - A	Ikalinity in CaCO	3 units				
	07/03/2014	00:17 779031	(SM 2320B)	Alkalinity in CaCO3 units	240	mg/L	2	1
		SM4500-HB -	PH (H3=past HT i	not compliant)				
	07/03/2014	00:17 779042	(SM4500-HB)	PH (H3=past HT not compliant)	7.7	Units	0.1	1
<u>W27-103</u>	<u>80 (2014062</u>	<u>60387)</u>				Sampled	on 06/24/201	4 1625
		EPA 200.8 - IC	PMS Metals					
6/27/2014	07/03/2014	19:24 779470	(EPA 200.8)	Chromium Total ICAP/MS	12	ug/L	1	1
		EPA 218.6 - H	exavalent chrom	ium(Dissolved)				
	06/26/2014	18:12 778032	(EPA 218.6)	Hexavalent chromium(Dissolved)	9.1	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate b	y EPA 300.0				
	06/30/2014	18:02 778456	(EPA 300.0)	Chloride	31	mg/L	5	5
	06/30/2014	18:02 778456	(EPA 300.0)	Sulfate	99	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO	3 units				
	07/03/2014	00:25 779031	(SM 2320B)	Alkalinity in CaCO3 units	240	mg/L	2	1
		E160.1/SM254	OC - Total Dissol	ved Solids (TDS)				
6/27/2014	06/27/2014	16:13 778121	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	470	mg/L	10	1
		SM4500-HB -	PH (H3=past HT i	not compliant)				
	07/03/2014	00:25 779042	(SM4500-HB)	PH (H3=past HT not compliant)	7.8	Units	0.1	1
<u>W27-108</u>	0-2 (201406	<u>6260388)</u>				Sampled	on 06/24/201	4 1540
		FPA 200.8 - IC	PMS Metals					
6/27/2014	07/08/2014	20:24 779522	(EPA 200.8)	Chromium Total ICAP/MS	20	ug/L	1	1
		EPA 218.6 - H	exavalent chrom	ium(Dissolved)				
	06/26/2014	18:22 778032	(EPA 218.6)	Hexavalent chromium(Dissolved)	3.6	ug/L	0.02	1
<u>W27-102</u>	20 (2014062	<u>60389)</u>				Sampled	on 06/24/201	4 1645
		EPA 200.8 - IC	PMS Metals					
6/27/2014	07/03/2014	19:30 779470	(EPA 200.8)	Chromium Total ICAP/MS	16	ug/L	1	1
		EPA 218.6 - H	exavalent chrom	ium(Dissolved)				
	06/26/2014	18:32 778032	(EPA 218.6)	Hexavalent chromium(Dissolved)	11	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate b	9 EPA 300.0				
	06/30/2014	18:42 778456	(EPA 300.0)	Chloride	31	mg/L	5	5
	06/30/2014	18:42 778456	(EPA 300.0)	Sulfate	100	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO	3 units				
	07/03/2014	00:33 779031	(SM 2320B)	Alkalinity in CaCO3 units	240	mg/L	2	1
		E160.1/SM254	OC - Total Dissol	ved Solids (TDS)				

Rounding on totals after summation. (c) - indicates calculated results

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Data Report: 487417

Samples Received on: 06/26/2014

Prepared	Analyzed	QC	Ref #	Method	Analyte	Result	Units	MRL	Dilution
6/27/2014	06/27/2014	16:14 778	121	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	500	mg/L	10	1
		SM4500-	HB -	PH (H3=past HT n	ot compliant)				
	07/03/2014	00:33 779	042	(SM4500-HB)	PH (H3=past HT not compliant)	7.9	Units	0.1	1
<u>W27-100</u>	0 (2014062	<u>60390)</u>					Sampled	on 06/24/201	4 1730
		FPA 200	8 - 10	PMS Motals					
6/27/2014	07/03/2014	19:00 779	470	(EPA 200.8)	Chromium Total ICAP/MS	13	ug/L	1	1
		EPA 218	.6 - H	exavalent chromi	um(Dissolved)				
	06/26/2014	18:42 778	032	(EPA 218.6)	Hexavalent chromium(Dissolved)	12	ug/L	0.02	1
		EPA 300	.0 - C	hloride, Sulfate by	/ EPA 300.0				
	06/30/2014	18:56 778	456	(EPA 300.0)	Chloride	31	mg/L	5	5
	06/30/2014	18:56 778	456	(EPA 300.0)	Sulfate	100	mg/L	2.5	5
		SM 2320	В - А	Ikalinity in CaCO3	units				
	07/03/2014	00:41 779	031	(SM 2320B)	Alkalinity in CaCO3 units	240	mg/L	2	1
		E160.1/S	M254	IOC - Total Dissolv	ved Solids (TDS)				
6/27/2014	06/27/2014	16:15 778	121	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	510	mg/L	10	1
		SM4500-	HB -	PH (H3=past HT n	ot compliant)				
	07/03/2014	00:41 779	042	(SM4500-HB)	PH (H3=past HT not compliant)	7.8	Units	0.1	1
<u>W27-980</u>	(20140626	<u>0391)</u>					Sampled	on 06/24/201	4 1745
		FPA 200	8 - 10	PMS Metals					
6/27/2014	07/03/2014	18:58 779	470	(EPA 200.8)	Chromium Total ICAP/MS	14	ug/L	1	1
		EPA 218	.6 - H	exavalent chromi	um(Dissolved)				
	06/26/2014	19:12 778	032	(EPA 218.6)	Hexavalent chromium(Dissolved)	13	ug/L	0.02	1
		EPA 300	.0 - C	hloride, Sulfate by	/ EPA 300.0				
	06/30/2014	19:09 778	456	(EPA 300.0)	Chloride	31	mg/L	5	5
	06/30/2014	19:09 778	456	(EPA 300.0)	Sulfate	100	mg/L	2.5	5
		SM 2320	В - А	Ikalinity in CaCO3	units				
	07/03/2014	00:49 779	031	(SM 2320B)	Alkalinity in CaCO3 units	240	mg/L	2	1
		E160.1/S	M254	OC - Total Dissolv	ved Solids (TDS)				
6/27/2014	06/27/2014	16:16 778	121	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	500	mg/L	10	1
		SM4500-	HB -	PH (H3=past HT n	ot compliant)				
	07/03/2014	00:49 779	042	(SM4500-HB)	PH (H3=past HT not compliant)	7.8	Units	0.1	1
<u>W27-960</u>	(20140626	<u>0392)</u>					Sampled	on 06/24/201	4 1810
		EPA 200	.8 - 10	CPMS Metals					
6/27/2014	07/08/2014	20:26 779	522	(EPA 200.8)	Chromium Total ICAP/MS	22	ug/L	1	1
		EPA 218	.6 - H	exavalent chromi	um(Dissolved)				

Rounding on totals after summation. (c) - indicates calculated results

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Data Report: 487417

Samples Received on: 06/26/2014

Prepared	Analyzed	QC Ref #	Method	Analyte	Result	Units	MRL	Dilution
	06/26/2014	19:42 778032	(EPA 218.6)	Hexavalent chromium(Dissolved)	13	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate b	y EPA 300.0				
	06/30/2014	19:22 778456	(EPA 300.0)	Chloride	31	mg/L	5	5
	06/30/2014	19:22 778456	(EPA 300.0)	Sulfate	100	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO3	8 units				
	07/03/2014	00:57 779031	(SM 2320B)	Alkalinity in CaCO3 units	250	mg/L	2	1
		E160.1/SM254	OC - Total Dissol	ved Solids (TDS)				
6/27/2014	06/27/2014	16:18 778121	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	490	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	07/03/2014	00:57 779042	(SM4500-HB)	PH (H3=past HT not compliant)	7.8	Units	0.1	1
<u>W27-950</u>	(20140626	<u>0393)</u>				Sampled	on 06/24/201	4 1840
			CDMC Motolo					
6/27/2014	07/08/2014	20:28 779522		Chromium Total ICAP/MS	17	ug/l	1	1
0/2//2014	01/00/2014		(El A 200.0)		17	ug/L	I	
	06/26/2014	ЕРА 210.0 - П 19:52 778032	(EPA 218 6)	Hexavalent chromium(Dissolved)	13	ug/l	0.02	1
	00/20/2014	EBA 200 0 C	blarida Sulfata b		15	ug/L	0.02	
	06/30/2014	EFA 300.0 - C	(EPA 300 0)	Chloride	32	ma/l	5	5
	06/30/2014	10:36 778456	(EPA 300.0)	Sulfate	100	mg/L	25	5
	00/30/2014	SM 2220B A			100	ing/L	2.5	5
	07/03/2014	01:06 779031	(SM 2320B)	Alkalinity in CaCO3 units	250	ma/l	2	1
	01/03/2014	E160 1/SM264		Anality in Cacco units	230	ing/L	2	
6/27/2014	06/27/2014	16.10 778121	(E160 1/SM2540C)	Total Dissolved Solids (TDS)	500	ma/l	10	1
0/2//2014	00/21/2014	SM4500 HD	(E100:1/3m23400)	not compliant)	500	ing/L	10	
	07/03/2014	Зімі4300-ПВ -		PH (H3=past HT not compliant)	7.8	Unite	0.1	1
W07 000	01103/2014	01.00 773042	(0014000-110)		7.0		0.1	4 4055
<u>w27-900</u>	20140626	<u>0394)</u>				Sampled	on 06/24/201	4 1855
		EPA 200.8 - IC	CPMS Metals					
6/27/2014	07/03/2014	19:20 779470	(EPA 200.8)	Chromium Total ICAP/MS	16	ug/L	1	1
		EPA 218.6 - H	exavalent chromi	um(Dissolved)				
	06/26/2014	20:02 778032	(EPA 218.6)	Hexavalent chromium(Dissolved)	14	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate b	y EPA 300.0				
	06/30/2014	19:49 778456	(EPA 300.0)	Chloride	32	mg/L	5	5
	06/30/2014	19:49 778456	(EPA 300.0)	Sulfate	100	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO3	8 units				
	07/03/2014	01:14 779031	(SM 2320B)	Alkalinity in CaCO3 units	250	mg/L	2	1
		E160.1/SM254	IOC - Total Dissol	ved Solids (TDS)				
6/30/2014	06/30/2014	17:37 778428	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	470	mg/L	10	1

Rounding on totals after summation. (c) - indicates calculated results

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Data Report: 487417

Prepared	Analyzed	QC Ref #	Method	Analyte	Result	Units	MRL	Dilution
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	07/03/2014	01:14 779042	(SM4500-HB)	PH (H3=past HT not compliant)	7.8	Units	0.1	1
<u>WH27-2</u>	(201406260	<u>395)</u>				Sampled	on 06/24/201	4 1910
		EPA 200.8 - IO	CPMS Metals					
6/27/2014	07/08/2014	20:30 779522	(EPA 200.8)	Chromium Total ICAP/MS	15	ug/L	1	1
		EPA 218.6 - H	lexavalent chromi	um(Dissolved)				
	06/26/2014	20:12 778032	(EPA 218.6)	Hexavalent chromium(Dissolved)	14	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate b	y EPA 300.0				
	06/30/2014	20:03 778456	(EPA 300.0)	Chloride	32	mg/L	5	5
	06/30/2014	20:03 778456	(EPA 300.0)	Sulfate	99	mg/L	2.5	5
		SM 2320B - A	Ikalinity in CaCO3	units				
	07/03/2014	17:01 779065	(SM 2320B)	Alkalinity in CaCO3 units	230	mg/L	2	1
		E160.1/SM254	40C - Total Dissol	/ed Solids (TDS)				
6/30/2014	06/30/2014	17:38 778428	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	460	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	07/03/2014	17:01 779344	(SM4500-HB)	PH (H3=past HT not compliant)	7.8	Units	0.1	1

Santa Ynez River WCD

QC Ref # 778032 - Hexava	alent chromium(Dissolved)	Analysis Date: 06/26/2014
201406260378	WH27-1	Analyzed by: TLH
201406260382	W27-1170	Analyzed by: TLH
201406260383	W27-1150	Analyzed by: TLH
201406260384	W27-1120	Analyzed by: TLH
201406260385	W27-1100	Analyzed by: TLH
201406260387	W27-1030	Analyzed by: TLH
201406260388	W27-1080-2	Analyzed by: TLH
201406260389	W27-1020	Analyzed by: TLH
201406260390	W27-1000	Analyzed by: TLH
201406260391	W27-980	Analyzed by: TLH
201406260392	W27-960	Analyzed by: TLH
201406260393	W27-950	Analyzed by: TLH
201406260394	W27-900	Analyzed by: TLH
201406260395	WH27-2	Analyzed by: TLH
QC Ref # 778121 - Total D	Dissolved Solids (TDS)	Analysis Date: 06/27/2014
201406260378	WH27-1	Analyzed by: W8E1
201406260382	W27-1170	Analyzed by: W8E1
201406260383	W27-1150	Analyzed by: W8E1
201406260384	W27-1120	Analyzed by: W8E1
201406260385	W27-1100	Analyzed by: W8E1
201406260387	W27-1030	Analyzed by: W8E1
201406260389	W27-1020	Analyzed by: W8E1
201406260390	W27-1000	Analyzed by: W8E1
201406260391	W27-980	Analyzed by: W8E1
201406260392	W27-960	Analyzed by: W8E1
201406260393	W27-950	Analyzed by: W8E1
QC Ref # 778428 - Total E	Dissolved Solids (TDS)	Analysis Date: 06/30/2014
201406260394	W27-900	Analyzed by: JRF
201406260395	WH27-2	Analyzed by: JRF
QC Ref # 778456 - Chlorid	de, Sulfate by EPA 300.0	Analysis Date: 06/30/2014
201406260378	WH27-1	Analyzed by: CYP
201406260382	W27-1170	Analyzed by: CYP
201406260383	W27-1150	Analyzed by: CYP
201406260384	W27-1120	Analyzed by: CYP
201406260385	W27-1100	Analyzed by: CYP
201406260387	W27-1030	Analyzed by: CYP
201406260389	W27-1020	Analyzed by: CYP
201406260390	W27-1000	Analyzed by: CYP
201406260391	W27-980	Analyzed by: CYP
201406260392	W27-960	Analyzed by: CYP
201406260393	W27-950	Analyzed by: CYP
201406260394	W27-900	Analyzed by: CYP
201406260395	WH27-2	Analyzed by: CYP

Santa Ynez River WCD

QC Ref # 778488 - ICPMS	Metals	Analysis Date: 06/30/2014
201406260378	WH27-1	Analyzed by: SXK
QC Ref # 779031 - Alkalin	nity in CaCO3 units	Analysis Date: 07/02/2014
201406260378	WH27-1	Analyzed by: JMO
201406260382	W27-1170	Analyzed by: JMO
201406260383	W27-1150	Analyzed by: JMO
201406260384	W27-1120	Analyzed by: JMO
201406260385	W27-1100	Analyzed by: JMO
201406260386	W27-1080	Analyzed by: JMO
201406260387	W27-1030	Analyzed by: JMO
201406260389	W27-1020	Analyzed by: JMO
201406260390	W27-1000	Analyzed by: JMO
201406260391	W27-980	Analyzed by: JMO
201406260392	W27-960	Analyzed by: JMO
201406260393	W27-950	Analyzed by: JMO
201406260394	W27-900	Analyzed by: JMO
QC Ref # 779042 - PH (H3	s=past HT not compliant)	Analysis Date: 07/02/2014
201406260378	WH27-1	Analyzed by: JMO
201406260382	W27-1170	Analyzed by: JMO
201406260383	W27-1150	Analyzed by: JMO
201406260384	W27-1120	Analyzed by: JMO
201406260385	W27-1100	Analyzed by: JMO
201406260386	W27-1080	Analyzed by: JMO
201406260387	W27-1030	Analyzed by: JMO
201406260389	W27-1020	Analyzed by: JMO
201406260390	W27-1000	Analyzed by: JMO
201406260391	W27-980	Analyzed by: JMO
201406260392	W27-960	Analyzed by: JMO
201406260393	W27-950	Analyzed by: JMO
201406260394	W27-900	Analyzed by: JMO
QC Ref # 779065 - Alkalin	nity in CaCO3 units	Analysis Date: 07/03/2014
201406260395	WH27-2	Analyzed by: JMO
QC Ref # 779344 - PH (H3	=past HT not compliant)	Analysis Date: 07/03/2014
201406260395	WH27-2	Analyzed by: JMO
QC Ref # 779470 - ICPMS	Metals	Analysis Date: 07/03/2014
201406260382	W27-1170	Analyzed by: AZS
201406260385	W27-1100	Analyzed by: AZS
201406260387	W27-1030	Analyzed by: AZS
201406260389	W27-1020	Analyzed by: AZS
201406260390	W27-1000	Analyzed by: AZS
201406260391	W27-980	Analyzed by: AZS
201406260394	W27-900	Analyzed by: AZS

Santa Ynez River WCD

QC Ref # 779522 - ICPMS Metals Analysis Date: 07/08/2014 201406260383 Analyzed by: RPD W27-1150 W27-1120 201406260384 Analyzed by: RPD 201406260388 W27-1080-2 Analyzed by: RPD 201406260392 W27-960 Analyzed by: RPD 201406260393 W27-950 Analyzed by: RPD WH27-2 Analyzed by: RPD 201406260395

Laboratory QC Report: 487417

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

QC Туре	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
QC Ref# 778032 -	Hexavalent chromium(Dissolved) by	y EPA 218.6				Analysis I	Date: 06/26/2	2014	
LCS1	Hexavalent chromium(Dissolved)		2.0	1.95	ug/L	97	(90-110)		
LCS2	Hexavalent chromium(Dissolved)		2.0	1.95	ug/L	98	(90-110)		
MBLK	Hexavalent chromium(Dissolved)			<0.020	ug/L				
MRL_CHK	Hexavalent chromium(Dissolved)		0.02	0.0180	ug/L	90	(50-150)		
MS_201406260378	Hexavalent chromium(Dissolved)	14	2.0	15.5	ug/L	96	(90-110)		
MS_201406260391	Hexavalent chromium(Dissolved)	13	2.0	15.0	ug/L	103	(90-110)		
MSD_201406260378	Hexavalent chromium(Dissolved)	14	2.0	15.5	ug/L	95	(90-110)	20	0.0
MSD_201406260391	Hexavalent chromium(Dissolved)	13	2.0	15.0	ug/L	102	(90-110)	20	0.0
QC Ref# 778121 -	Total Dissolved Solids (TDS) by E16	60.1/SM2540	C			Analysis I	Date: 06/27/2	2014	
DUP_201406240368	Total Dissolved Solid (TDS)	360		362	mg/L		(0.000-20) 20	0.0
DUP_201406260391	Total Dissolved Solid (TDS)	500		476	mg/L		(0.000-20) 20	4.1
LCS1	Total Dissolved Solid (TDS)		175	160	mg/L	91	(80-114)		
LCS2	Total Dissolved Solid (TDS)		700	638	mg/L	91	(80-114)		
MBLK	Total Dissolved Solid (TDS)			<10	mg/L				
MRL_CHK	Total Dissolved Solid (TDS)		10	9.00	mg/L	90	(50-150)		
QC Ref# 778428 -	Total Dissolved Solids (TDS) by E16	60.1/SM2540	C			Analysis I	Date: 06/30/2	2014	
DUP_201406240620	Total Dissolved Solid (TDS)	570		594	mg/L		(0.000-20) 20	3.8
DUP_201406270447	Total Dissolved Solid (TDS)	910		906	mg/L		(0.000-20) 20	<u>22</u>
LCS1	Total Dissolved Solid (TDS)		175	160	mg/L	91	(80-114)		
LCS2	Total Dissolved Solid (TDS)		700	644	mg/L	92	(80-114)		
MBLK	Total Dissolved Solid (TDS)			<10	mg/L				
MRL_CHK	Total Dissolved Solid (TDS)		10	12.0	mg/L	120	(50-150)		
QC Ref# 778456 -	Chloride, Sulfate by EPA 300.0 by E	PA 300.0				Analysis I	Date: 06/30/2	2014	
LCS1	Chloride		25	24.2	mg/L	97	(90-110)		
LCS2	Chloride		25	24.2	mg/L	97	(90-110)	20	0.41
MBLK	Chloride			<0.5	mg/L				
MRL_CHK	Chloride		0.5	0.410	mg/L	82	(50-150)		
MS_201406260387	Chloride	31	13	94.0	mg/L	100	(80-120)		
MS_201406270442	Chloride	260	13	381	mg/L	95	(80-120)		
MSD_201406260387	Chloride	31	13	94.2	mg/L	101	(80-120)	20	0.21
MSD_201406270442	Chloride	260	13	380	mg/L	94	(80-120)	20	0.26
LCS1	Sulfate		50	50.7	mg/L	101	(90-110)		
LCS2	Sulfate		50	50.8	mg/L	102	(90-110)	20	0.20
MBLK	Sulfate			<0.25	mg/L				
MRL_CHK	Sulfate		1.0	0.895	mg/L	90	(50-150)		

Spike recovery is already corrected for native results. Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u> Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level).

Santa Ynez River WCD

QC Type	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
MRLLW	Sulfate		0.25	0.235	mg/L	94	(50-150)		
MS_201406260387	Sulfate	99	25	229	mg/L	104	(80-120)		
MS_201406270442	Sulfate	150	25	403	mg/L	102	(80-120)		
MSD_201406260387	Sulfate	99	25	229	mg/L	104	(80-120)	20	0.0
MSD_201406270442	Sulfate	150	25	404	mg/L	103	(80-120)	20	0.25
QC Ref# 778488 - I	CPMS Metals by EPA 200.8					Analysis Da	ate: 06/30/20)14	
LCS1	Chromium Total ICAP/MS		100	102	ug/L	102	(85-115)		
LCS2	Chromium Total ICAP/MS		100	102	ug/L	102	(85-115)	20	0.98
MBLK	Chromium Total ICAP/MS			<1	ug/L				
MRL_CHK	Chromium Total ICAP/MS		1.0	0.965	ug/L	97	(50-150)		
MS_201406170947	Chromium Total ICAP/MS	1.1	100	96.5	ug/L	95	(70-130)		
MS2_201406260618	Chromium Total ICAP/MS	ND	100	89.1	ug/L	89	(70-130)		
MS2_201406260618	Chromium Total ICAP/MS	ND	100	89.1	ug/L	89	(70-130)		
MSD_201406170947	Chromium Total ICAP/MS	1.1	100	91.0	ug/L	90	(70-130)	20	5.9
MSD2_201406260618	Chromium Total ICAP/MS	ND	100	92.9	ug/L	93	(70-130)	20	4.2
MSD2_201406260618	Chromium Total ICAP/MS	ND	100	92.9	ug/L	93	(70-130)	20	4.2
QC Ref# 779031 - A	Alkalinity in CaCO3 units by SM 2320B					Analysis Da	ate: 07/02/20)14	
LCS1	Alkalinity in CaCO3 units		100	96.4	mg/L	96	(90-110)		
LCS2	Alkalinity in CaCO3 units		100	95.7	mg/L	96	(90-110)	20	0.73
MBLK	Alkalinity in CaCO3 units			<2	mg/L				
MRL_CHK	Alkalinity in CaCO3 units		2.0	2.26	mg/L	113	(50-150)		
MS_201406260267	Alkalinity in CaCO3 units	74	100	165	mg/L	91	(80-120)		
MS_201406260384	Alkalinity in CaCO3 units	230	100	315	mg/L	83	(80-120)		
MSD_201406260267	Alkalinity in CaCO3 units	74	100	168	mg/L	94	(80-120)	20	1.8
MSD_201406260384	Alkalinity in CaCO3 units	230	100	312	mg/L	<u>79</u>	(80-120)	20	0.96
QC Ref# 779042 - F	PH (H3=past HT not compliant) by SM45	00-HB				Analysis Da	ate: 07/02/20)14	
DUP_201406260267	PH (H3=past HT not compliant)	8.2		8.28	Units		(0.000-20)	20	0.85
DUP_201406260384	PH (H3=past HT not compliant)	7.8		7.79	Units		(0.000-20)	20	0.39
LCS1	PH (H3=past HT not compliant)		6.0	6.02	Units	100	(98-102)		
LCS2	PH (H3=past HT not compliant)		6.0	6.01	Units	100	(98-102)	20	0.17
QC Ref# 779065 - A	Alkalinity in CaCO3 units by SM 2320B					Analysis Da	ate: 07/03/20)14	
LCS1	Alkalinity in CaCO3 units		100	95.5	mg/L	96	(90-110)		
LCS2	Alkalinity in CaCO3 units		100	91.7	mg/L	92	(90-110)	20	4.1
MBLK	Alkalinity in CaCO3 units			<2	mg/L				
MRL_CHK	Alkalinity in CaCO3 units		2.0	1.97	mg/L	99	(50-150)		
MS_201406260606	Alkalinity in CaCO3 units	120	100	190	mg/L	<u>72</u>	(80-120)		

Spike recovery is already corrected for native results. Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u> Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level).


```
Eaton Analytical
```

Laboratory QC Report: 487417

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

QC Туре	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
MS_201406270451	Alkalinity in CaCO3 units	270	100	287	mg/L	<u>15</u>	(80-120)		
MSD_201406260606	Alkalinity in CaCO3 units	120	100	193	mg/L	<u>75</u>	(80-120)	20	1.0
MSD_201406270451	Alkalinity in CaCO3 units	270	100	306	mg/L	<u>34</u>	(80-120)	20	6.4
QC Ref# 779344 - F	PH (H3=past HT not compliant) by SM45	00-HB				Analysis D	ate: 07/03/2	014	
DUP_201406270451	PH (H3=past HT not compliant)	8.4		8.37	Units		(0.000-20)	20	0.24
LCS1	PH (H3=past HT not compliant)		6.0	5.99	Units	100	(98-102)		
LCS2	PH (H3=past HT not compliant)		6.0	5.99	Units	100	(98-102)	20	0.0
QC Ref# 779470 - I	CPMS Metals by EPA 200.8					Analysis D	ate: 07/03/2	014	
LCS1	Chromium Total ICAP/MS		100	103	ug/L	103	(85-115)		
LCS2	Chromium Total ICAP/MS		100	103	ug/L	103	(85-115)	20	0.0
MBLK	Chromium Total ICAP/MS			<1	ug/L				
MRL_CHK	Chromium Total ICAP/MS		1.0	1.19	ug/L	119	(50-150)		
MS_201406180694	Chromium Total ICAP/MS	1.8	100	97.6	ug/L	96	(70-130)		
MS_201406250101	Chromium Total ICAP/MS	ND	100	105	ug/L	105	(70-130)		
MSD_201406180694	Chromium Total ICAP/MS	1.8	100	106	ug/L	104	(70-130)	20	8.3
MSD_201406250101	Chromium Total ICAP/MS	ND	100	103	ug/L	103	(70-130)	20	1.9
QC Ref# 779522 - I	CPMS Metals by EPA 200.8					Analysis D	ate: 07/08/2	014	
LCS1	Chromium Total ICAP/MS		100	93.4	ug/L	94	(85-115)		
LCS2	Chromium Total ICAP/MS		100	96.2	ug/L	96	(85-115)	20	2.9
MBLK	Chromium Total ICAP/MS			<1	ug/L				
MRL_CHK	Chromium Total ICAP/MS		1.0	1.07	ug/L	107	(50-150)		
MS_201406180510	Chromium Total ICAP/MS	ND	100	95.6	ug/L	95	(70-130)		
MS2_201406180532	Chromium Total ICAP/MS	ND	100	95.3	ug/L	95	(70-130)		
MSD_201406180510	Chromium Total ICAP/MS	ND	100	95.4	ug/L	95	(70-130)	20	0.21
MSD2_201406180532	Chromium Total ICAP/MS	ND	100	95.8	ug/L	96	(70-130)	20	0.52

Spike recovery is already corrected for native results. Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u> Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level).

Laboratory Report

for

Santa Ynez River WCD Post Office Box 157 Santa Ynez, CA 93460 Attention: Eric Tambini Fax: 805-688-3078

FWH: Fred Haley

Project Manager

Report: 472440 Project: CHROMIUM Group: well sampling

* Accredited in accordance with NELAP.

^{*} Laboratory certifies that the test results meet all TNI NELAP requirements unless noted under the individual analysis.

^{*} Following the cover page are State Certification List, ISO 17025 Accredited Method List, Acknowledgement of Samples Received, Comments, Hits Report, Data Report, QC Summary, QC Report and Regulatory Forms, as applicable.

^{*} Test results relate only to the sample(s) tested.

^{*} This report shall not be reproduced except in full, without the written approval of the laboratory.

STATE CERTIFICATION LIST

State	Certification Number	State	Certification Number
Alabama	41060	Mississippi	Certified
Alaska	CA00006	Montana	Cert 0035
Arizona	AZ0778	Nebraska	Certified
Arkansas	Certified	Nevada	CA00006-2012-1
California-Monrovia- ELAP	2813	New Hampshire *	2959
California-Colton- ELAP	2812	New Jersey *	CA 008
California-Folsom- ELAP	2820	New Mexico	Certified
Colorado	Certified	New York *	11320
Connecticut	PH-0107	North Carolina	06701
Delaware	CA 006	North Dakota	R-009
Florida *	E871024	Oregon (Primary AB) *	ORELAP 4034
Georgia	947	Pennsylvania *	68-565
Guam	13-004r	Rhode Island	LAO00326
Hawaii	Certified	South Carolina	87016
Idaho	Certified	South Dakota	Certified
Illinois *	200033	Tennessee	TN02839
Indiana	C-CA-01	Texas *	T104704230-14-6
Kansas *	E-10268	Utah *	CA000062014-6
Kentucky	90107	Vermont	VT0114
Louisiana *	LA140009	Virginia *	00210
Maine	CA0006	Washington	C838
Maryland	224	West Virginia	9943 C
Commonwealth of Northern Marianas Is.	MP0004	Wisconsin	998316660
Massachusetts	M-CA006	Wyoming	8TMS-L
Michigan	9906	EPA Region 5	Certified
Los Angeles County Sanitation Districts	10264		

* NELAP/TNI Recognized Accreditation Bodies

750 Royal Oaks Drive, Suite 100 Monrovia, CA 91016-3629

T | 626-386-1100 F | 626-386-1101 www.EatonAnalytical.com

The tests listed below are accredited and meet the requirements of ISO 17025 as verified by the ANSI-ASQ National Accreditation Board/ACLASS. Refer to Certificate and scope of accreditation (AT 1807) found at: http://www.eatonanalytical.com

14-Directors PPA 52 x x x s PPA 53 x	SPECIFIC TESTS	METHOD OR TECHNIQUE USED	Drinking Water	Food & Beverage	Waste Water	SPECIFIC TESTS	METHOD OR TECHNIQUE USED	Drinking Water	Food & Beverage	Waste Water
2.5.7.8 (TOD) Moding EPA (6130 *	1,4-Dioxane	EPA 522	х	х		Hormones	EPA 539	х	х	
Acquanted Interac Mendad s x Key Key S x </td <td>2,3,7,8-TCDD</td> <td>Modified EPA 1613B</td> <td>х</td> <td>х</td> <td></td> <td>Hydroxide as OH Calc.</td> <td>SM 2330B</td> <td>х</td> <td>х</td> <td></td>	2,3,7,8-TCDD	Modified EPA 1613B	х	х		Hydroxide as OH Calc.	SM 2330B	х	х	
Alkalany BM 21501 *	Acrylamide	In House Method	х	х		Kjeldahl Nitrogen	EPA 351.2			х
Administa BPA 291 11100 x x Act x Media DPA 207 7 200.8 x x x Adminestar UBEN by C. EPA 300.1 x x x Names and DBN by C. EPA 300.1 x x x Adminest DDP by C. EPA 300.1 x x x Names and DBN by C. EPA 300.1 x x x Biendboard RABMIN 20 SM 2330.0 x x x Names and DBN by C. EPA 301.1 x x x Biorboard RABMIN 20 SM 2330.0 x x x x x Biorboard 2000 SM 5210.8 x	Alkalinity	SM 2320B	x	х	х	Mercury	EPA 245.1	х	х	х
Amman Difference Difference </td <td>Ammonia</td> <td>EPA 350.1</td> <td></td> <td>х</td> <td>х</td> <td>Metals</td> <td>EPA 200.7 / 200.8</td> <td>х</td> <td>х</td> <td>х</td>	Ammonia	EPA 350.1		х	х	Metals	EPA 200.7 / 200.8	х	х	х
Anom and Diffy by IC 107A Bill s s Non-Xiana Diffy by IC 107A S12 s s s Biolando Diffy by IC 107A Bill s <td>Ammonia</td> <td>SM 4500-NH3 H (18th)</td> <td></td> <td>х</td> <td>х</td> <td>Microcystin LR</td> <td>ELISA</td> <td>х</td> <td>x</td> <td></td>	Ammonia	SM 4500-NH3 H (18th)		х	х	Microcystin LR	ELISA	х	x	
Jama and July by [C DPA 40:1 x </td <td>Anions and DBPs by IC</td> <td>EPA 300.0</td> <td>x</td> <td>х</td> <td>х</td> <td>NDMA</td> <td>EPA 521</td> <td>х</td> <td>x</td> <td></td>	Anions and DBPs by IC	EPA 300.0	x	х	х	NDMA	EPA 521	х	x	
Addebia EPA 100.2 x x x x x AGO S SM 52106 x x x Colorate 1000 PPA 355.1 x x AGO S SM 52106 x x x Colorate 1000 PPA 351.2 x x x Colorate 1000 PPA 531.2 x x x Percharate EPA 357.0 x x x Colorate 1000 PPA 531.2 x x x Percharate EPA 351.0 x x x Colorate 1000 PPA 531.0 x x Percharate EPA 310.0 x x x Colorate 1000 NM 5300 CI G x x X PPI EPA 130.1 x x Colorate 1000 NM 5300 CI G x x X PPI EPA 130.1 x x X Colorate 1000 NM 5300 CI G X X PPI EPA 130.1 X X X Colorate 1000 NM 5300 CI G X X X Colo	Anions and DBPs by IC	EPA 300.1	х	х		Nitrate/Nitrite Nitrogen	EPA 353.2	х	x	х
Distrochem SM 2330B x x x x bits Description Description Description Section x x x RDD / CGDD SM 5210B - x x Chron Propherons SM 4500 P E x x x Chron Propherons SM 4500 P E x x x x Chron Propherons SM 4500 P E x x x Chron Propherons SM 4500 C P E x x x Chron Propherons SM 4500 C P E x x x X <td< td=""><td>Asbestos</td><td>EPA 100.2</td><td>x</td><td></td><td></td><td>OCL, Pesticides/PCB</td><td>EPA 505</td><td>x</td><td>х</td><td></td></td<>	Asbestos	EPA 100.2	x			OCL, Pesticides/PCB	EPA 505	x	х	
NDD / CDOD SM 52108 v x x x x x linemate In Honse Method x x x x x cabroaties IPA 361, JAN 4500P II x x x x Cabroaties CD7 SM 22080 x x x x x Cabroaties CD7 SM 52080 x x x x x x x CD0 IPA 401, X5M 5200 x <td< td=""><td>HCO3</td><td>SM 2330B</td><td>х</td><td>x</td><td>x</td><td>Ortho Phosphate</td><td>EPA 365.1</td><td>x</td><td>x</td><td></td></td<>	HCO3	SM 2330B	х	x	x	Ortho Phosphate	EPA 365.1	x	x	
Intrace Introduce Method x	BOD / CBOD	SM 5210B		x	x	Ortho Phosphate and Total Phosphorous	EPA 365.1/SM 4500-P E			x
Carbonate as CO3 EPA 511.2 x <td>Bromate</td> <td>In House Method</td> <td>х</td> <td>х</td> <td></td> <td>Ortho Phosphorous</td> <td>SM 4500P E</td> <td>х</td> <td>х</td> <td></td>	Bromate	In House Method	х	х		Ortho Phosphorous	SM 4500P E	х	х	
Carbonie EPA 2130B x x x Perchiorate EPA 31.0 x x Carbonyh EPA 410.4 / SM 5200 x Perchiorate EPA 31.0 x x COD EPA 410.4 / SM 5200 x Perchiorate EPA 31.0 x x Chorinated Acids EPA 35.1 x x Perchiorate EPA 31.0 x x Chorinated Acids EPA 35.5 X x Perchiorate EPA 31.0 x x x Chorinated Acids SM 4500-C1Q D x x x Perchiorate EPA 31.0 x x x Chorinate Dicals SM 4500-C1Q D x x x Relation-226 RA 223 60.4 x x x x Conductity SM 2510B x x x Relation-226 SM 2520C x x x Conductity SM 450CN F x x x x x x	Carbamates	EPA 531.2	x	x		Oxyhalides Disinfection Byproducts	EPA 317.0	x	x	
Carbonyk EPA 356 x x N Perchlorate EPA 310.0 x x CDO PPA 410/4.58/35200 Image: State 100 and 100	Carbonate as CO3	SM 2330B	x	х	х	Perchlorate	EPA 331.0	х	х	
CDD EPA 410.47 SM 5200 v x s Perfleminate Ads/s EPA 515. x x x perfleminate Ads/s EPA 515. x x x perfleminate Ads/s EPA 515. x x x x perfleminate Ads/s EPA 515. x x x x x perfleminate Ads/s EPA 515. x x x x x perfleminate Ads/s EPA 515. x <t< td=""><td>Carbonyls</td><td>EPA 556</td><td>x</td><td>х</td><td></td><td>Perchlorate</td><td>EPA 314.0</td><td>х</td><td>х</td><td></td></t<>	Carbonyls	EPA 556	x	х		Perchlorate	EPA 314.0	х	х	
Chormaines SM 4500-C1 x x x x pH Dep 15.1 x x x Chorinad Acids EPA 555 x x x Preprint Pecicites' In House Method x x x Chorinad Acids EPA 555 x x x Preprint Pecicites' In House Method x x x Chorinad Acids SM 4500-C1G x x x Readomnana IDEXX Pseudient x x Conductivity SM 2510B x x x Readom-222 SN 7500RN x x x Conductivity SM 2500C X x x Residue, Filterable SM 2500C x x x Cyanide, froat EPA 592.2 x<	COD	EPA 410.4 / SM 5220D			x	Perfluorinated Alkyl Acids	EPA 537	x	x	
Chlorinad Acids EPA 515.4 x x x pH M 4500-11-B x	Chloramines	SM 4500-CL G	х	х	х	pH	EPA 150.1	х		
Choinane Acids EPA 555 x x x Program Positives' In House Method x x x Chiorine Toolife'' SM 4500-C1G x x x Radonnoise IDEXN Pendieter x x x Conducting Uniteriating BFA 120.1 x x Radium-226 RA-226 GA x x x Conducting Uniteriating SM 2510B x x x Radium-227 SM 7500RN x	Chlorinated Acids	EPA 515.4	х	х		pH	SM 4500-H+B	х	х	х
$ \begin{array}{c} \mboxide SM 4500-CLO D x x x \\ \mbox{Combined Residual} \\ \mbox{SM 42500C1 G} x x x \\ \mbox{SM 4230B8} x x x \\ \mbox{SM 4230B8} x x x \\ \mbox{Combined Residual} \\ \mbox{Combined Residual} \\ \mbox{Combined Residual} \\ \mbox{SM 4230B8} x x x \\ \mbox{Combined Residuel} \\ \mbox{SM 4200-CN G} x & x \\ \mbox{Combined Residue, Non-filterable} \\ \mbox{SM 4200CN G} x & x \\ \mbox{Combined Residue, Non-filterable} \\ \mbox{SM 4200D N F} x x x x \\ \mbox{Combined Residue, Non-filterable} \\ \mbox{SM 4200D N F} x & x & x \\ \mbox{Combined Residue, Non-filterable} \\ \mbox{SM 4200D N F} x & x & x \\ \mbox{Combined Residue, Non-filterable} \\ \mbox{SM 4200D N F} x & x & x \\ \mbox{Combined Residue, Non-filterable} \\ \mbox{SM 4200D N F} x & x & x \\ \mbox{Combined Residue, Non-filterable} \\ \mbox{SM 4200B N F} x & x & x \\ \mbox{Combined Residue, Non-filterable} \\ \mbox{SM 4200B N F} x & x & x \\ \mbox{Combined Residue, Non-filterable} \\ \mbox{SM 4200B N F} x & x & x \\ \mbox{Combined Residue, Non-filterable} \\ \mbox{SM 4200B N F} x & x & x \\ \mbox{Combox} x & x & x \\ \mbox} x & x & x \\ \mbox{Combox} x & x & x \\ \mbox} x & x \\ \mbox} x & x & x \\ \mbox} x & x & x \\ \mbox} x & x \\ \$	Chlorinated Acids	EPA 555	x	x		Phenylurea Pesticides/ Herbicides	In House Method	x	x	
Choines SM 4500-C1 G x x x x Radium-226 RA-226 GA x x x Conductivity EFA 120.1 - - x Radium-226 RA-226 GA x x x Conductivity SM 4500-CNG x x x Radium-22.2 SM 7500RN x x x Cyande, free SM 4500-CNG x x x x Radium-22.0 SM 7500RN x x x Cyande, free SM 4500-CNG x x x x Residue, fold SM 2540D x x Cyande, free SM 4500-CN x x x Residue, fold SM 2540D x x Coning Chroing MA 6551B x x x Residue, fold SM 4500-S1D x x x E Coli CFR 1412(10)(6)(C x x X Silica SM 4500-S1D x x E Coli fammeration) SM 9221B.	Chlorine Dioxide	SM 4500-CLO2 D	х	x		Pseudomonas	IDEXX Pseudalert	x	x	
	Chlorine -Total/Free/ Combined Residual	SM 4500-Cl G	x	x	x	Radium-226	RA-226 GA	x	x	
Conductivity SM 2510B x x Readue, Filterable SM 7500RN x x Corrowity (Langeler Inde) SM 2330B x x Residue, Filterable SM 2540C x x Cynnice, Teal FPA 355.4 x x Residue, Non-filterable SM 2540B x x Cynnice, Teal FPA 335.4 x x Residue, Non-filterable SM 2540B x x Cynnice, Teal FPA 335.4 x x Residue, Non-filterable SM 2540B x x Cynnice, Teal FPA 354.1 x x Residue, Non-filterable SM 2540C x x Diguat and Paraquat FPA 549.2 x x Semi-VOC EPA 552.2 x x x Disolved Oxygen SM 4500.6 G x x Suffactants SM 540C x x E Coli CMTFEC+MUG) x x Total Coliform SM 4500.8 G x x E Coli Gummeration) <	Conductivity	EPA 120.1			х	Radium-228	RA-228 GA	х	х	
Corrosity (Langeher Index) SM 2330B x x x Cyanide, Amenable SM 4500CN G x x x Cyanide, Total EPA 353.4 x x x Cyanoga (Linder) In House Method x x x Cyanoga (Linder) In House Method x x x Digutating Parayangi EPA 459.2 x x x Digutating Parayangi EPA 459.2 x x x Digutating Parayangi SM 5500 FG x x x Digutating Parayangi SM 4500-2G x x x E. Coli (MTFEC: MUG) x x x E. Coli CFR 141.21 (V060) x x x E. Coli (Eaumeration) SM 92218 x x x E. Coli (Eaumeration) SM 92218 x x x EDB/DCBP EPA 551.1 x x x EDB/DCBP EPA 551.1 x x x Feal Coliform SM 92218 x x x Total Coliform / E-coil Colisare x x Total Coliform / E-coil SM 92218 x x	Conductivity	SM 2510B	х	х	х	Radon-222	SM 7500RN	х	х	
Cyanide, Amenable SM 4500-CN G x x x Cyanide, Free SM 4500-CN F x x x Cyanide, Total EPA 355.4 x x x Cyanide, Total PPA 355.4 x x x Serie, VOC EPA 549.2 x x x Disolved Oxygen SM 4500-0 x x x E. Coli CPTFEC-MUG) x x x E. Coli CPTFEC-MUG) x x x E. Coli (Cammeration) SM 9223 x x x E. Coli (Cammeration) SM 9223B x x Total Coliform SM 921 A, B, C x x EDB/DEP EPA 541.1 x x Total Coliform / E.coli SM 9221 B x	Corrosivity (Langelier Index)	SM 2330B	x	x		Residue, Filterable	SM 2540C	x	x	x
Cyanide, Free SM 4500CN F x	Cvanide Amenable	SM 4500-CN G	x		x	Residue Non-filterable	SM 2540D			x
Cyanade, Total EPA 335.4 x	Cyanide, Free	SM 4500CN F	x	x	x	Residue, Total	SM 2540B		x	x
	Cvanide, Total	EPA 335.4	x	х	х	Residue, Volatile	EPA 160.4			х
Diput and Paraquat EPA 549.2 x x x Diput and Paraquat EPA 549.2 x x Silica SM 4500-Si D x x Disolved Oxygen SM 4500-O x x Silica SM 4500-Si D x x E. Coli (MTF/EC-WUG) x x Suffactants SM 4500-Si D x x E. Coli SM 9223 x x Suffactants SM 5540C x x E. Coli SM 9221B.1/SM 9221F x x Total Coliform SM 9221 A, B x x E. Coli (Enumeration) SM 9223B x x Total Coliform SM 9221 A, B x x EDP/DCP EPA 548.1 x x Total Coliform SM 9221 B, D x X Endorbail EPA 548.1 x x Total Coliform SM 9221 B, D x X Fecal Coliform SM 9221 C, C (MTF/EC) x X Total Coliform with SM 9221 C, C (MTF/EC) x	Cyanogen Chloride	In House Method	x	x		Semi-VOC	EPA 525.2	x	x	
DBPHAA SM 4500.0 G x x x Disolved Oxygen SM 4500.0 G x x x E. Coli (MTFEC-MUG) x x x E. Coli CFR 141.21(f)(6)(i) x x x x E. Coli SM 92218 x x x x x E. Coli SM 92218 x x x x x x E. Coli (Enumeration) SM 92218 x x Total Coliform SM 9221 A, B, C x x E. Coli (Enumeration) SM 9223B x x Total Coliform SM 9221 A, B, C x x EDB/DE/P EPA 504.1 x x Total Coliform SM 9221 A, B, C x x EDFDCBP EPA 551.1 x x Total Coliform / E coli Colisure x x Endotall EPA 551.1 x x Total Coliform with SM 9221 B x x Fecal Coliform SM 9221 E, (MTF/EC) x x Total Coliform with SM 9221 E, (MTF/EC) x	Diquat and Paraquat	EPA 549.2	х	х		Semi-VOC	EPA 625	x	x	x
Dissolved Oxygen SM 4500-0 G x x x E. Coli (MTFEC-MUG) x x Silica SM 4500-SiO2 C x x E. Coli (MTFEC-MUG) x x Suffactants SM 4500-SiO2 C x x E. Coli SM 9221 B.1/SM 9221F x x X Suffactants SM 4500-SiO2 C x x E. Coli SM 9221 B.1/SM 9221F x x X Taste and Odor Analytes SM 6040E x x X E. Coli (Enumeration) SM 9221B.1/SM 9221F x x Total Coliform SM 9221 A, B, C x x EDB/DCBP EPA 504.1 x x Total Coliform SM 9221 A, B, C x x Endothall House Method x x Total Coliform SM 9221 B x x Fecal Coliform SM 9221 E (MTF/EC) x x x Total Phenols EPA 420.4 x x Fecal Coliform with Choine Present SM 9221E (MTF/EC	DBP/HAA	SM 6251B	x	х		Silica	SM 4500-Si D	х	х	х
E. Coli (MTF/EC+MUG) x x E. Coli CFR 141.21(f)(6)(i) x x E. Coli SM 92218 x x E. Coli SM 9221B.//SM 9221F x x E. Coli (Enumeration) SM 9221B.//SM 9221F x x EDB/DCDP EPA 551.1 x x EDTA and NTA In House Method x x Endothall EPA 548.1 x x Fecal Coliform SM 9221C, E (MTF/EC) x x Fecal Coliform SM 9221C, E (MTF/EC) x x Fecal Coliform with Choine Present SM 9221E (MTF/EC) x x Fecal Coliform with Choine Present SM 9230B x x Fecal Coliform with Choine Present SM 9230B x x Fecal Schpaced EPA 420.1 x x Total Phenols EPA 420	Dissolved Oxygen	SM 4500-O G		х	х	Silica	SM 4500-SiO2 C	х		х
E. ColiCFR 141.21(f)(6)(i)xxxE. Coli (Enumeration)SM 9223xxE. Coli (Enumeration)SM 9221B.1/SM 9221FxxTotal ColiformSM 9221A, BxxE. Coli (Enumeration)SM 9223BxxE. Coli (Enumeration)SM 9223BxxE. Coli (Enumeration)SM 9223BxxE. Coli (Enumeration)SM 9223BxxEDB/DECPEPA 551.1xxEDB/DECP and DBPEPA 551.1xxEndothallEPA 548.1xxEndothallEPA 548.1xxEndotoriomSM 9230BxxFecal ColiformSM 9221C, E (MTF/EC)xxFecal Coliform with Choirne PresentSM 9221E (MTF/EC)xFecal StreptococciSM 9230BxxFolal StreptococciSM 9230BxxFolal StreptococciSM 9230BxxFolal StreptococciSM 9230BxxFolal StreptococciSM 4500-FCxxFardersSM 230BxxFardersSM 230BxxFolal PhenolsEPA 420.4xxTotal PhenolsEPA 420.4xxTotal PhenolsEPA 420.4xxTotal PhenolsEPA 420.4xxTotal PhenolsEPA 420.4xxTotal PhosphorousSM 4500 FCxx	E. Coli	(MTF/EC+MUG)	x			Sulfide	SM 4500-S ⁼ D			х
L. ColiCIR (Fil-121()(0,0)XXXXXXE. ColiSM 9223xxTaste and Odor AnalytesSM 6040ExxXE. Coli (Enumeration)SM 9221B, I/SM 9221FxxTaste and Odor AnalytesSM 9221 A, B, CxxxE. Coli (Enumeration)SM 9223BxxxTotal ColiformSM 9221 A, B, CxxxEDB/DCBPEPA 504.1xxTotal Coliform /E. coliColisurexxxEDTA and NTAIn House MethodxxxTotal Coliform /E. coliSM 9221BxxEnterococciSM 9230BxxxTotal Coliform with Chlorine PresentSM 9221 E (MTF/EC)xxTotal Coliform /E. coliSM 92233xxFecal ColiformSM 9221 E (MTF/EC)xxTotal Coliform /E. coliSM 92233xxxFecal Coliform with Chlorine PresentSM 9221 E (MTF/EC)xxTotal Coliform /E. coliSM 92233xxxFecal Coliform with Chlorine PresentSM 9221 E (MTF/EC)xxTotal PhenolsEPA 420.1xxTotal PhenolsEPA 420.1xXFecal Coliform with Chlorine PresentSM 9230BxxXTotal PhenolsEPA 420.1xXTotal PhenolsEPA 420.1X <t< td=""><td>E Coli</td><td>CEP 141 21(f)(6)(j)</td><td></td><td>v</td><td>v</td><td>Surfactants</td><td>SM 5540C</td><td>×</td><td>v</td><td>v</td></t<>	E Coli	CEP 141 21(f)(6)(j)		v	v	Surfactants	SM 5540C	×	v	v
L. ColiSM 9223xxE. Coli (Enumeration)SM 9221B.1/SM 9221FxxTotal ColiformSM 9221 A, BxxE. Coli (Enumeration)SM 9223BxxTotal ColiformSM 9221 A, B, CxxEDB/DCBPEPA 504.1xxTotal ColiformSM 9221 A, B, CxxxEDB/DCP and DBPEPA 551.1xxxTotal Coliform / E, coliColisurexxxEDD/DCP and DBPEPA 548.1xxxTotal Coliform with Coliorim / E, coliSM 9221 BxxEndothallEPA 548.1xxxTotal Coliform / E, coliSM 9221 BxxEndothallEPA 548.1xxxTotal Coliform / E, coliSM 9221 BxxFecal ColiformSM 9221 E (MTF/EC)xxTotal Coliform / E, coliSM 9223xxFecal ColiformSM 9221 E (MTF/EC)xxTotal PhenolsEPA 420.1xxFecal ColiformSM 9221 E (MTF/EC)xxTotal PhenolsEPA 420.1xxFecal ColiformSM 9230 BxxxTotal PhenolsEPA 420.4xxxFecal ColiformSM 9230 BxxxTotal PhenolsEPA 420.4xxxFecal ColiformSM 9230 BxxxTotal PhenolsEPA 420.4xxxGipybosateEPA 547	E. Coli	CI K 141.21(1)(0)(1)		^	^	Tests and Oden Analytes	SM 6040E	^	^	^
E. Coli (Enumeration)SM 9221B.1/ SM 9221FxxxTotal ColiformSM 9221 A, BxxE. Coli (Enumeration)SM 9223BxxxTotal ColiformSM 9221 A, B, CxxxEDB/DCBPEPA 504.1xxxTotal ColiformSM 9221 A, B, CxxxEDB/DCBPEPA 551.1xxxTotal ColiformSM 9221 BxxxEDTA and NTAIn House MethodxxxTotal Coliform vithSM 9221 BxxxEndothallEPA 548.1xxxTotal Coliform vithSM 9221 BxxxFecal ColiformSM 9221 E, (MTF/EC)xxxTOCSM 5310CxxxFecal Coliform withSM 9221 E, (MTF/EC)xxTOXSM 5320BxxxFecal Coliform withSM 9221 E, (MTF/EC)xxxTotal PhenolsEPA 420.1xxFecal Coliform withSM 9221 E, (MTF/EC)xxxTotal PhenolsEPA 420.4xxxFecal Coliform withSM 920BxxxXTotal PhenolsEPA 420.4xxxChorine PresentSM 920BxxxXTotal PhenolsEPA 420.4xxxGross Alpha/BetaEPA 900.0xxxXTurbidityEPA 180.1xxxHardn	E. Coll	SIVI 9225			X	Taste and Odor Analytes	SM 6040E	x	x	
E. Coli (Enumeration)SM 9223BxxxssssxxsEDB/DCBPEPA 504.1xxxTotal ColiformColisurexxxEDB/DCBPEPA 51.1xxxTotal Coliform /E. coliColisurexxxEDTA and NTAIn House MethodxxxTotal ColiformSM 9221BxxxEndothallEPA 548.1xxxTotal Coliform with Chlorine PresentSM 9221BxxxFecal ColiformSM 9221 E (MTF/EC)xxTotal Coliform /E.coliSM 9223xxxFecal ColiformSM 9221 E (MTF/EC)xxTotal Coliform /E.coliSM 9230BxxFecal Coliform with Chlorine PresentSM 9221E (MTF/EC)xxTotal PhenolsEPA 420.1xxFecal StreptococciSM 9221BxxxTotal PhenolsEPA 420.4xxxFecal StreptococciSM 4500-F CxxxTotal PhenolsEPA 200.8xxxGross Alpha/BetaEPA 52.3xxxTotal PhenolsEPA 200.8xxxHeterotrophic BacteriaIn House MethodxxxXYOCEPA 524.2/EPA 524.3xxXVOCEPA 524.2/EPA 524.3xxXYOCEPA 624xxXHeterotrophic Bacte	E. Coli (Enumeration)	SM 9221B.1/ SM 9221F	x	x		Total Coliform	SM 9221 A, B	x	x	
LDB/DGPLPA 504.1xxTotal Coliform / E. coliColisurexxxEDB/DBCP and DBPEPA 551.1xxxTotal ColiformSM 9221BxxEDTA and NTAIn House MethodxxxTotal Coliform with Chlorine PresentSM 9221BxxEndothallEPA 548.1xxxTotal Coliform with Chlorine PresentSM 9221BxxxFecal ColiformSM 9221 E (MTF/EC)xxTOC/DOCSM 5310CxxxFecal ColiformSM 9221 C, E (MTF/EC)xxTOC/DOCSM 5300BxxxFecal Coliform with Chlorine PresentSM 9221E (MTF/EC)xxTotal PhenolsEPA 420.1xxFecal Coliform with Chlorine PresentSM 9221BxxxxxxFecal Coliform with Chlorine PresentSM 920BxxxxxxFecal StreptococciSM 920BxxxxxxxxxFluorideSM 4500-F CxxxxxxxxxxGlyphosateEPA 524.3xxxxxxxxxxHardnessSM 2340BxxxxxxxxxxxHeterotrophic BacteriaSM 9215 Bxxxxx <t< td=""><td>E. Coli (Enumeration)</td><td>SM 9223B</td><td>х</td><td>x</td><td></td><td>(Enumeration)</td><td>SM 9221 A, B, C</td><td>x</td><td>x</td><td></td></t<>	E. Coli (Enumeration)	SM 9223B	х	x		(Enumeration)	SM 9221 A, B, C	x	x	
LDB/DBCP and DBPEPA S51.1xxxEDTA and NTAIn House MethodxxxEDTA and NTAIn House MethodxxxEndothallEPA 548.1xxxEnterococciSM 9230BxxxFecal ColiformSM 9221 E (MTF/EC)xxTOC/DCCSM 5310CxxFecal ColiformSM 9221 E (MTF/EC)xxTOC/DCCSM 5310CxxFecal Coliform with Chlorine PresentSM 9221 E (MTF/EC)xxTOXSM 5320BxxFecal Coliform with Chlorine PresentSM 9221 ExxTotal PhenolsEPA 420.1xxFecal SteptococciSM 9230BxxxTotal PhenolsEPA 420.4xxxFluorideSM 4500-F CxxxTotal PhenolsEPA 420.4xxxGlyphosateEPA 547xxTurbidityEPA 180.1xxxHardnessSM 2340BxxxWCCEPA 524.2 EPA 524.3xxHeterotrophic BacteriaSM 9215 BxxXVOCEPA 524.2 EPA 524.4xxVOCEPA SW 846 8260xxxVOCEPA SW 846 8260xxXVOCEPA SW 846 8260xxXYYYYYHardnessSM 9215 BxxXYY <td>EDB/DCBP</td> <td>EPA 504.1</td> <td>х</td> <td></td> <td></td> <td>Total Coliform / E. coli</td> <td>Colisure</td> <td>х</td> <td>х</td> <td></td>	EDB/DCBP	EPA 504.1	х			Total Coliform / E. coli	Colisure	х	х	
EndotationInterfaceInterfaceInterfaceInterfaceEndothallEPA 548.1xxEndothallEPA 548.1xxEnterococciSM 9230BxxFecal ColiformSM 9221 E (MTF/EC)xxFecal ColiformSM 9221 E (MTF/EC)xxFecal Coliform withSM 9221 E (MTF/EC)xxFecal Coliform withSM 9221 ExxFecal Coliform withSM 9221 ExxFecal StreptococciSM 9230BxxFecal StreptococciSM 9230BxxFecal StreptococciSM 9230BxxFecal StreptococciSM 9230BxxFecal StreptococciSM 9230BxxFluorideSM 4500-F CxxHAAs/ DalaponEPA 547xxHeterotrophic BacteriaIn House MethodxxHeterotrophic BacteriaIn House MethodxxHexavalent ChromiumEPA 218.6xxHexavalent ChromiumEPA 218.6xxHexavalent ChromiumSM 3200-Cr B or C (20th)x	EDB/DBCP and DBP EDTA and NTA	EPA 551.1 In House Method	x	x		Total Coliform Total Coliform with	SM 9221B SM 9221B			x
EnuonanEPA 348.1xxxxEnterococciSM 9230BxxxFecal ColiformSM 921E (MTF/EC)xxTOCSM 5310CxxFecal ColiformSM 9221C, E (MTF/EC)xxTOC/DOCSM 5310CxxFecal Coliform (Enumeration)SM 9221E (MTF/EC)xxTOC/DOCSM 5320BxxFecal Coliform with Chlorine PresentSM 9221ExxTotal PhenolsEPA 420.1xxFecal StreptococciSM 9230BxxxTotal PhenolsEPA 420.4xxxFecal StreptococciSM 9230BxxxTotal PhenolsEPA 420.4xxxGlyphosateEPA 547xxxTurbidityEPA 180.1xxxHachossSM 2340BxxxWOCEPA 542.2FA 524.3xxxHeterotrophic BacteriaIn House MethodxxxXVOCEPA 624xxxVOCEPA 624xxxXVOCEPA 624xxxHexavalent ChromiumEPA 218.7xxXVOCIn House MethodxxYeast and MoldSM 9610xX	Endethall	EDA 549.1				Chlorine Present	SM 0000			
EntercorectSM 9230BxxxFecal ColiformSM 9221 E (MTF/EC)xxTOC/DOCSM 5310CxxFecal ColiformSM 9221 C, E (MTF/EC)xxTOC/DOCSM 5310CxxFecal ColiformSM 9221 E (MTF/EC)xxxTOC/DOCSM 5320BxxFecal Coliform with Chlorine PresentSM 9221 ExxTotal PhenolsEPA 420.1xxFecal StreptococciSM 9230BxxxTotal PhenolsEPA 420.4xxxFluorideSM 4500-F CxxxTotal PhenolsEPA 420.4xxxFluorideSM 4500-F CxxxTotal PhenolsEPA 480.1xxxGross Alpha/BetaEPA 900.0xxxTurbidityEPA 180.1xxxHardnessSM 2340BxxxUV 254SM 5910BxxxVOCEPA 524.2/EPA 524.3xxxVOCEPA 624xxxHeterotrophic BacteriaIn House MethodxxxVOCEPA 624xxxVOCEPA 518.7xxVOCEPA 624xxxXVOCEPA 624xxxVOCEPA 624xxxHexavalent ChromiumEPA 218.7xxVOCEPA 624xxx	Endothall	EPA 548.1	x	x		Total Coliform / E.coli	SM 9223	x	X	
Feed ConformSM 9221 E (MTF/EC)xx10C/DOCSM 930CxxFeed ColiformSM 9221C, E (MTF/EC)xxxTOXSM 5320BxxFeed Coliform (Enumeration)SM 9221E (MTF/EC)xxxTotal PhenolsEPA 420.1xxFeed StreptococciSM 9221BxxxTotal PhenolsEPA 420.4xxxFeed StreptococciSM 9230BxxxTotal PhenolsEPA 420.4xxxFuorideSM 4500-F CxxxTotal PhenolsEPA 480.1xxxGross Alpha/BetaEPA 590.0xxxTurbiditySM 2130BxxxHardnessSM 2340BxxxVOCEPA 524.2 (EPA 524.3)xxxHeterotrophic BacteriaIn House MethodxxxVOCEPA 624xxxHexavalent ChromiumEPA 218.7xxxVOCIn House MethodxxHexavalent ChromiumSM 350-Cr B or C (20th)xxxYeast and MoldSM 9610xx	Enterococci	SM 9230B	x		x	TOCIDOC	SM 5310C		X	x
Fecal Coliform (Enumeration)SM 9221E (MTF/EC)xxxFecal Coliform with Chlorine PresentSM 9221ExxTotal PhenolsEPA 420.1xFecal StreptococciSM 9230BxxxFecal StreptococciSM 4500-FCxxxFluorideSM 4500-FCxxxGlyphosateEPA 547xxTotal PhenolsSM 2130BxxHAAs/ DalaponEPA 552.3xxxTurbiditySM 5100BxxHeterotrophic BacteriaIn House MethodxxxVOCEPA 524.2/EPA 524.3xxVoCEPA 524.2/EPA 524.3xxxVOCEPA 624xxxVoCEPA 524.2/EPA 524.3xxxVOCEPA 624xxxVoCEPA 524.2/EPA 524.3xxxVOCEPA 524.2/EPA 524.3xxxHexavalent ChromiumEPA 218.7xxxVOCEPA 524.2/EPA 524.3xxxVoCEPA SW 846 8260xxxVOCEPA 524.2/EPA 524.3xxXVoCEPA SW 846 8260xxxVOCVOCIn House MethodxxVoCEPA SW 846 8260xxxVOCYeast and MoldSM 9610xXVeast and MoldSM 9610xxXYeast and MoldSM 9610x <td>Fecal Coliform</td> <td>SM 9221 E (MTF/EC)</td> <td>X</td> <td></td> <td>x</td> <td>тох</td> <td>SM 5310C</td> <td>x</td> <td>x</td> <td>x</td>	Fecal Coliform	SM 9221 E (MTF/EC)	X		x	тох	SM 5310C	x	x	x
CharacteriaSM 9221ExxFecal Coliform with Chlorine PresentSM 9230BxxFluorideSM 9230BxxxFluorideSM 4500-F CxxxGlyphosateEPA 547xxxGross Alpha/BetaEPA 900.0xxxHAAs/ DalaponEPA 552.3xxxHardnessSM 2340BxxxHeterotrophic BacteriaIn House MethodxxHexavalent ChromiumEPA 218.6xxHexavalent ChromiumSM 3500-Cr B or C (20th)x	Fecal Coliform	SM 9221E (MTF/EC)	x	x		Total Phenols	EPA 420.1			x
Chlorine PresentChlorine PresentChlorine PresentChlorine PresentChlorine PresentChlorine PresentFecal StreptococciSM 9230BxxTotal PhosphorousSM 4500 P FxFluorideSM 4500-F CxxxTurbidityEPA 180.1xxGross Alpha/BetaEPA 900.0xxxTurbiditySM 2130BxxxHAAs/ DalaponEPA 552.3xxxUranium by ICP/MSEPA 200.8xxxHardnessSM 2340BxxxVOCEPA 524.2/EPA 524.3xxxHeterotrophic BacteriaIn House MethodxxXVOCEPA 624xxxVocEPA 518.6xxxVOCEPA SW 846 8260xxxVocIn House MethodxxVOCIn House MethodxxYeast and MoldSM 9610xx	Fecal Coliform with	SM 9221E			x	Total Phenols	EPA 420.4	x	x	x
New SubjectionSite J200xxxFluorideSM 4500-FCxxxGlyphosateEPA 547xxxGross Alpha/BetaEPA 900.0xxxHAAs/ DalaponEPA 552.3xxxHardnessSM 2340BxxxHeterotrophic BacteriaIn House MethodxxxHeterotrophic BacteriaSM 9215 BxxxHexavalent ChromiumEPA 218.6xxxHexavalent ChromiumSM 3500-Cr B or C (20th)xx	Fecal Streptococci	SM 9230B	v		~	Total Phosphorous	SM 4500 P F			v
AnswerDiff root icxxIndiantyDiff root icxxGlyphosateEPA 547xxxTurbiditySM 2130BxxGross Alpha/BetaEPA 900.0xxxxTurbiditySM 2130BxxHAAs/ DalaponEPA 552.3xxxUranium by ICP/MSEPA 200.8xxxHardnessSM 2340BxxxVOCEPA 524.2/EPA 524.3xxHeterotrophic BacteriaIn House MethodxxVOCEPA 624xxVocEPA SW 846 8260xxxHexavalent ChromiumEPA 218.7xxVOCIn House MethodxxYeast and MoldSM 9610xxX	Fluoride	SM 4500-F C	×	Y	× ×	Turbidity	EPA 180 1	¥	¥	×
CorporationCorporatio	Glyphosate	EPA 547	×	× ×	^	Turbidity	SM 2130B	× ×	^	×
HAAs/ DalaponEPA 552.3xxVHardnessSM 2340BxxVHeterotrophic BacteriaIn House MethodxxHeterotrophic BacteriaSM 9215 BxxHexavalent ChromiumEPA 218.6xxHexavalent ChromiumEPA 218.7xxHexavalent ChromiumSM 3500-Cr B or C (20th)xx	Gross Alpha/Beta	EPA 900 0	x	x	×	Uranium by ICP/MS	EPA 200 8	x	×	^
HardnessSM 2340BxxxHeterotrophic BacteriaIn House MethodxxHeterotrophic BacteriaSM 9215 BxxHexavalent ChromiumEPA 218.6xxHexavalent ChromiumSM 3500-Cr B or C (20th)x	HAAs/ Dalanon	EPA 552 3	×	×	^	UV 254	SM 5910B	×	^	
Heterotrophic Bacteria In House Method x x Heterotrophic Bacteria SM 9215 B x x Hexavalent Chromium EPA 218.6 x x Hexavalent Chromium SM 3500-Cr B or C (20th) x x	Hardness	SM 2340B	×	×	×	VOC	EPA 524.2/EPA 524 3	×	×	
Heterotrophic Bacteria SM 9215 B x x Hexavalent Chromium EPA 218.6 x x Hexavalent Chromium EPA 218.7 x x Hexavalent Chromium SM 3500-Cr B or C (20th) x x	Heterotrophic Bacteria	In House Method	x	x		VOC	EPA 624	x	x	×
Hexavalent Chromium EPA 218.6 x x x Hexavalent Chromium EPA 218.7 x x Hexavalent Chromium SM 3500-Cr B or C (20th) x	Heterotrophic Bacteria	SM 9215 B	x	x		VOC	EPA SW 846 8260	x	x	
Hexavalent Chromium EPA 218.7 x x Hexavalent Chromium SM 3500-Cr B or C (20th) x	Hexavalent Chromium	EPA 218.6	×	x	x	VOC	In House Method	×	×	
Hexavalent Chromium SM 3500-Cr B or C (20th) x	Hexavalent Chromium	EPA 218 7	x	x	^	Yeast and Mold	SM 9610	x	x	
	Hexavalent Chromium	SM 3500-Cr B or C (20th)	~	~	x	- cust and more	511 7010		- ^	

🔅 eurofins	Eaton Analytical			
_	Ac	knowledgement of Samples	Received	
Addr: Santa Ynez River WCD Post Office Box 157 Santa Ynez, CA 93460 Attn: Eric Tambini Phone: 805-688-6015		S Pro	Client ID: SANTA Folder #: 472440 Project: CHRO ample Group: well sa ject Manager: Fred H Phone: (626) 3	AYNEZWD-CA 0 MIUM ampling laley 386-1127
The follo below ea Eurofins	wing samples were received from ach sample. If this information is in Eaton Analytical.	you on March 12, 2014 . They have ncorrect, please contact your service	been scheduled for to representative. Thar	he tests listed nk you for using
Sample #	Sample ID			Sample Date
201403120734	WH28-1			03/10/2014 1125
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICA	AP/MS
	Hexavalent chromium(Dissolved) Total Dissolved Solid (TDS)	PH (H3=past HT not compliant)	Sulfate	
201403120735	Well 6			03/10/2014 1100
	Chromium Total ICAP/MS	Hexavalent chromium(Dissolved)	RUSH	
201403120736	W28-620			03/10/2014 1205
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICA	AP/MS
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate	
	Total Dissolved Solid (TDS)			
201403120737	W28-640			03/10/2014 1250
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICA	AP/MS
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate	
	Total Dissolved Solid (TDS)	Uranium ICAP/MS		
201403120738	W28-660			03/10/2014 1320
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICA	AP/MS
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate	
	Total Dissolved Solid (TDS)			
201403120739	W28-685			03/10/2014 1350
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICA	AP/MS
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate	
	Total Dissolved Solid (TDS)			
201403120740	W28-705			03/10/2014 1420
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICA	AP/MS
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate	
	Total Dissolved Solid (TDS)			
201403120741	W28-725			03/10/2014 1440
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICA	AP/MS
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate	
	Total Dissolved Solid (TDS)	Uranium ICAP/MS		
201403120742	W28-760			03/10/2014 1540

Page 1 of 2

Sectionins	Eaton Analytical			
_	Ac	knowledgement of Samples	Received	
Addr:	Santa Ynez River WCD	Client ID: SANTAYNEZWD-CA		
Post Office Box 157			Folder #: 472440	
	Santa Ynez, CA 93460	Project: CHROMIUM Sample Group: well sampling		
Attn:	Eric Tambini	Project Manager: Fred Haley		
Phone: 805-688-6015		Phone: (626) 386-1127		
The follo below ea Eurofins	wing samples were received from ach sample. If this information is in Eaton Analytical.	you on March 12, 2014 . They have ncorrect, please contact your service	e been scheduled for the tests listed e representative. Thank you for using	
The follo below ea Eurofins Sample #	wing samples were received from ach sample. If this information is in Eaton Analytical. Sample ID	you on March 12, 2014 . They have ncorrect, please contact your service	e been scheduled for the tests listed e representative. Thank you for using Sample Date	
The follo below ea Eurofins Sample #	wing samples were received from ach sample. If this information is in Eaton Analytical. Sample ID	you on March 12, 2014 . They have ncorrect, please contact your service Chloride	e been scheduled for the tests listed e representative. Thank you for using Sample Date Chromium Total ICAP/MS	
The follo below ea Eurofins Sample #	wing samples were received from ach sample. If this information is in Eaton Analytical. Sample ID Alkalinity in CaCO3 units Hexavalent chromium(Dissolved)	you on March 12, 2014 . They have ncorrect, please contact your service Chloride PH (H3=past HT not compliant)	e been scheduled for the tests listed e representative. Thank you for using Sample Date Chromium Total ICAP/MS Sulfate	
The follo below ea Eurofins Sample #	wing samples were received from ach sample. If this information is in Eaton Analytical. Sample ID Alkalinity in CaCO3 units Hexavalent chromium(Dissolved) Total Dissolved Solid (TDS)	you on March 12, 2014 . They have ncorrect, please contact your service Chloride PH (H3=past HT not compliant)	e been scheduled for the tests listed e representative. Thank you for using Sample Date Chromium Total ICAP/MS Sulfate	
The follo below ea Eurofins Sample #	wing samples were received from ach sample. If this information is in Eaton Analytical. Sample ID Alkalinity in CaCO3 units Hexavalent chromium(Dissolved) Total Dissolved Solid (TDS) W28-750	you on March 12, 2014 . They have ncorrect, please contact your service Chloride PH (H3=past HT not compliant)	e been scheduled for the tests listed e representative. Thank you for using Sample Date Chromium Total ICAP/MS Sulfate 03/10/2014 1	510
The follo below ea Eurofins Sample # 201403120743	wing samples were received from ach sample. If this information is in Eaton Analytical. Sample ID Alkalinity in CaCO3 units Hexavalent chromium(Dissolved) Total Dissolved Solid (TDS) W28-750 Alkalinity in CaCO3 units	you on March 12, 2014 . They have ncorrect, please contact your service Chloride PH (H3=past HT not compliant) Chloride	e been scheduled for the tests listed e representative. Thank you for using Sample Date Chromium Total ICAP/MS Sulfate 03/10/2014 15 Chromium Total ICAP/MS	510
The follo below ea Eurofins Sample #	wing samples were received from ach sample. If this information is in Eaton Analytical. Sample ID Alkalinity in CaCO3 units Hexavalent chromium(Dissolved) Total Dissolved Solid (TDS) W28-750 Alkalinity in CaCO3 units Hexavalent chromium(Dissolved)	you on March 12, 2014 . They have ncorrect, please contact your service Chloride PH (H3=past HT not compliant) Chloride PH (H3=past HT not compliant)	e been scheduled for the tests listed e representative. Thank you for using Sample Date Chromium Total ICAP/MS Sulfate 03/10/2014 1! Chromium Total ICAP/MS Sulfate	510

M.Y. SAMPLES CHECKED AGAINST COC BY: SAMPLES CHECKED AGAINST COC BY: SAMPLES CHECKED AGAINST COC BY: SAMPLES PECP DAY OF COLLECTION? Check for yes	ROFINS EATON ANALYTICAL USE ONL OGIN COMMENTS: OGIN COMMENTS: MPLE TEMP RECEIVED AT: Colton / No. California / Arizona Monrovia Condition of BLUE ICE: Frozen PROJECT CODE: STD 1 wk CLIENT LAB ID RK-W REM RK-W CLIENT LAB ID RK-W REM RK-W CLIENT LAB ID RK-W RT-VA CLIENT LAB ID RT-VA RK-W RT-VA RK-W RT-VA RK-W RT-VA RM-MATER	Eaton Analytical oyal Oaks Drive, Suite 100 Eutnoriny oyal Oaks Drive, Suite 100 SamPle via, CA 91016-3629 SamPle c6 386 1101 Conversion 66 LABS (800 566 5227) CON 67 Labs SamPle 68 LABS (800 566 5227) CON 66 LABS (800 566 5227) CON 66 LABS (800 566 5227) CON 67 Labs SamPle Me COE Marce SamPle Marce
--	--	--

Santa Ynez River WCD Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Comments Report: 472440

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Hits Report: 472440

Analyzed	Analyte Sample ID	Result	Federal MCL	Units	MRL
	201403120734 WH28-1				
03/18/2014 16:22	Alkalinity in CaCO3 units	250		mg/L	2
03/20/2014 21:29	Chloride	36	250	mg/L	2
03/13/2014 14:06	Chromium Total ICAP/MS	8.7	100	ug/L	1
03/13/2014 14:31	Hexavalent chromium(Dissolved)	8.9		ug/L	0.02
03/18/2014 16:22	PH (H3=past HT not compliant)	7.8		Units	0.1
03/20/2014 21:29	Sulfate	140	250	mg/L	1
03/17/2014 16:59	Total Dissolved Solids (TDS)	550	500	mg/L	10
	201403120735 <u>Well 6</u>				
03/14/2014 15:19	Chromium Total ICAP/MS	3.2	100	ug/L	1
	201403120736 <u>W28-620</u>				
03/18/2014 16:36	Alkalinity in CaCO3 units	260		mg/L	2
03/20/2014 21:41	Chloride	36	250	mg/L	2
03/13/2014 14:35	Chromium Total ICAP/MS	8.6	100	ug/L	1
03/13/2014 16:01	Hexavalent chromium(Dissolved)	9.1		ug/L	0.02
03/18/2014 16:36	PH (H3=past HT not compliant)	8.2		Units	0.1
03/20/2014 21:41	Sulfate	140	250	mg/L	1
03/17/2014 17:00	Total Dissolved Solids (TDS)	550	500	mg/L	10
	201403120737 <u>W28-640</u>				
03/18/2014 16:44	Alkalinity in CaCO3 units	230		mg/L	2
03/20/2014 21:54	Chloride	36	250	mg/L	2
03/13/2014 14:20	Chromium Total ICAP/MS	8.4	100	ug/L	1
03/13/2014 13:41	Hexavalent chromium(Dissolved)	9.2		ug/L	0.02
03/18/2014 16:44	PH (H3=past HT not compliant)	7.8		Units	0.1
03/20/2014 21:54	Sulfate	140	250	mg/L	1
03/17/2014 17:01	Total Dissolved Solids (TDS)	530	500	mg/L	10
03/13/2014 14:20	Uranium ICAP/MS	6.2	30	ug/L	1
	201403120738 <u>W28-660</u>				
03/18/2014 16:52	Alkalinity in CaCO3 units	240		mg/L	2
03/20/2014 22:07	Chloride	34	250	mg/L	2
03/14/2014 14:52	Chromium Total ICAP/MS	9.3	100	ug/L	1
03/13/2014 14:01	Hexavalent chromium(Dissolved)	9.4		ug/L	0.02
03/18/2014 16:52	PH (H3=past HT not compliant)	7.8		Units	0.1
03/20/2014 22:07	Sulfate	130	250	mg/L	1
03/17/2014 17:02	Total Dissolved Solids (TDS)	530	500	mg/L	10

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Hits Report: 472440

Analyzed	Analyte Sample ID	Result	Federal MCL	Units	MRL
	201403120739 <u>W28-685</u>				
03/18/2014 17:00	Alkalinity in CaCO3 units	230		mg/L	2
03/20/2014 22:20	Chloride	34	250	mg/L	2
03/13/2014 14:41	Chromium Total ICAP/MS	8.6	100	ug/L	1
03/13/2014 14:41	Hexavalent chromium(Dissolved)	9.5		ug/L	0.02
03/18/2014 17:00	PH (H3=past HT not compliant)	7.9		Units	0.1
03/20/2014 22:20	Sulfate	130	250	mg/L	1
03/17/2014 17:03	Total Dissolved Solids (TDS)	520	500	mg/L	10
	201403120740 <u>W28-705</u>				
03/18/2014 17:08	Alkalinity in CaCO3 units	240		mg/L	2
03/20/2014 23:25	Chloride	34	250	mg/L	2
03/13/2014 14:43	Chromium Total ICAP/MS	8.9	100	ug/L	1
03/13/2014 14:21	Hexavalent chromium(Dissolved)	10		ug/L	0.02
03/18/2014 17:08	PH (H3=past HT not compliant)	7.8		Units	0.1
03/20/2014 23:25	Sulfate	130	250	mg/L	1
03/17/2014 17:04	Total Dissolved Solids (TDS)	530	500	mg/L	10
	201403120741 <u>W28-725</u>				
03/18/2014 17:16	Alkalinity in CaCO3 units	230		mg/L	2
03/20/2014 23:37	Chloride	34	250	mg/L	2
03/13/2014 14:38	Chromium Total ICAP/MS	10	100	ug/L	1
03/13/2014 16:21	Hexavalent chromium(Dissolved)	11		ug/L	0.02
03/18/2014 17:16	PH (H3=past HT not compliant)	8.5		Units	0.1
03/20/2014 23:37	Sulfate	130	250	mg/L	1
03/17/2014 17:05	Total Dissolved Solids (TDS)	520	500	mg/L	10
03/13/2014 14:38	Uranium ICAP/MS	6.4	30	ug/L	1
	201403120742 <u>W28-760</u>				
03/18/2014 17:25	Alkalinity in CaCO3 units	240		mg/L	2
03/22/2014 10:06	Chloride	32	250	mg/L	2
03/19/2014 15:06	Chromium Total ICAP/MS	12	100	ug/L	1
03/13/2014 16:11	Hexavalent chromium(Dissolved)	13		ug/L	0.02
03/18/2014 17:25	PH (H3=past HT not compliant)	7.8		Units	0.1
03/22/2014 10:06	Sulfate	130	250	mg/L	1
03/17/2014 17:06	Total Dissolved Solids (TDS)	530	500	mg/L	10
	201403120743 <u>W28-750</u>				
03/18/2014 17:33	Alkalinity in CaCO3 units	240		mg/L	2

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Hits Report: 472440

Analyzed	Analyte	Sample ID	Result	Federal MCL	Units	MRL
03/22/2014 10:19	Chloride		33	250	mg/L	2
03/13/2014 14:12	Chromium Total ICAP/N	Chromium Total ICAP/MS		100	ug/L	1
03/13/2014 13:51	Hexavalent chromium(D	Hexavalent chromium(Dissolved)			ug/L	0.02
03/18/2014 17:33	PH (H3=past HT not cor	npliant)	7.8		Units	0.1
03/22/2014 10:19	Sulfate		130	250	mg/L	1
03/17/2014 17:08	Total Dissolved Solids (TDS)	520	500	mg/L	10

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Data Report: 472440

Samples Received on: 03/12/2014

Prepared	Analyzed	QC Ref #	Method	Analyte	Result	Units	MRL	Dilution
WH28-1	(201403120	734 <u>)</u>				Sampled	on 03/10/201	4 1125
		EPA 200.8 - I	CPMS Metals					
3/13/2014	03/13/2014	14:06 757266	(EPA 200.8)	Chromium Total ICAP/MS	8.7	ug/L	1	1
		EPA 218.6 - H	lexavalent chromi	um(Dissolved)				
	03/13/2014	14:31 757323	(EPA 218.6)	Hexavalent chromium(Dissolved)	8.9	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate b	y EPA 300.0				
	03/20/2014	21:29 758836	(EPA 300.0)	Chloride	36	mg/L	2	2
	03/20/2014	21:29 758836	(EPA 300.0)	Sulfate	140	mg/L	1	2
		SM 2320B - A	Ikalinity in CaCO3	units				
	03/18/2014	16:22 758032	(SM 2320B)	Alkalinity in CaCO3 units	250	mg/L	2	1
		E160.1/SM254	40C - Total Dissol	ved Solids (TDS)				
3/16/2014	03/17/2014	16:59 757827	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	550	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	03/18/2014	16:22 758036	(SM4500-HB)	PH (H3=past HT not compliant)	7.8	Units	0.1	1
<u>Well 6 (2</u>	014031207	<u>35)</u>				Sampled	on 03/10/201	4 1100
			CDMC Metale					
3/13/2014	03/14/2014	15:10 757/30		Chromium Total ICAP/MS	3.2	ug/l	1	1
5/15/2014	00/14/2014				5.2	ug/L	I I	I
	03/13/2014	EFA 210.0 - Г 13·11 757323	(EPA 218 6)	Hexavalent chromium(Dissolved)	ND	ug/l	0.02	1
W00 000	(004 400 40	70.11 707020	(217/210.0)			ug/⊑ Communad	0.02	4 4005
<u> </u>	(20140312	0736)				Sampled	on 03/10/201	4 1205
		EPA 200.8 - I	CPMS Metals					
3/13/2014	03/13/2014	14:35 757266	(EPA 200.8)	Chromium Total ICAP/MS	8.6	ug/L	1	1
		EPA 218.6 - H	lexavalent chromi	um(Dissolved)				
	03/13/2014	16:01 757323	(EPA 218.6)	Hexavalent chromium(Dissolved)	9.1	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate b	y EPA 300.0				
	03/20/2014	21:41 758836	(EPA 300.0)	Chloride	36	mg/L	2	2
	03/20/2014	21:41 758836	(EPA 300.0)	Sulfate	140	mg/L	1	2
		SM 2320B - A	Ikalinity in CaCO3	units				
	03/18/2014	16:36 758032	(SM 2320B)	Alkalinity in CaCO3 units	260	mg/L	2	1
		E160.1/SM254	40C - Total Dissol	ved Solids (TDS)				
3/16/2014	03/17/2014	17:00 757827	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	550	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	03/18/2014	16:36 758036	(SM4500-HB)	PH (H3=past HT not compliant)	8.2	Units	0.1	1
W28-640	(20140312	0737)				Sampled	on 03/10/201	4 1250

Rounding on totals after summation.

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Data Report: 472440

Prepared	Analyzed	QC Ref #	Method	Analyte	Result	Units	MRL	Dilution
		EPA 200.8 - IC	PMS Metals					
3/13/2014	03/13/2014	14:20 757266	(EPA 200.8)	Chromium Total ICAP/MS	8.4	ug/L	1	1
3/13/2014	03/13/2014	14:20 757266	(EPA 200.8)	Uranium ICAP/MS	6.2	ug/L	1	1
		EPA 218.6 - H	exavalent chromi	um(Dissolved)				
	03/13/2014	13:41 757323	(EPA 218.6)	Hexavalent chromium(Dissolved)	9.2	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate b	y EPA 300.0				
	03/20/2014	21:54 758836	(EPA 300.0)	Chloride	36	mg/L	2	2
	03/20/2014	21:54 758836	(EPA 300.0)	Sulfate	140	mg/L	1	2
		SM 2320B - A	Ikalinity in CaCO	3 units				
	03/18/2014	16:44 758032	(SM 2320B)	Alkalinity in CaCO3 units	230	mg/L	2	1
		E160.1/SM254	OC - Total Dissol	ved Solids (TDS)				
3/16/2014	03/17/2014	17:01 757827	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	530	mg/L	10	1
		SM4500-HB -	PH (H3=past HT r	not compliant)				
	03/18/2014	16:44 758036	(SM4500-HB)	PH (H3=past HT not compliant)	7.8	Units	0.1	1
<u>W28-660</u>	(20140312	<u>0738)</u>				Sampled	on 03/10/201	4 1320
			DMO Matala					
3/13/2014	03/14/2014	EPA 200.8 - IC		Chromium Total ICAP/MS	03	ug/l	1	1
5/15/2014	00/14/2014	EDA 249 6 U	avavalant ahrami		3.5	ug/L	I	I
	03/13/2014	ЕГА 210.0 - П 14:01 757323	(FPA 218 6)	Hexavalent chromium(Dissolved)	94	ug/l	0.02	1
	00,10,2011	EPA 300 0 - C	hloride Sulfate b	v FPA 300.0	0	~g, _	0.02	·
	03/20/2014	22:07 758836	(EPA 300.0)	Chloride	34	ma/L	2	2
	03/20/2014	22:07 758836	(EPA 300.0)	Sulfate	130	mg/L	1	2
		SM 2320B - A	kalinity in CaCO	3 units		0		
	03/18/2014	16:52 758032	(SM 2320B)	Alkalinity in CaCO3 units	240	mg/L	2	1
		E160.1/SM254	OC - Total Dissol	ved Solids (TDS)				
3/16/2014	03/17/2014	17:02 757827	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	530	mg/L	10	1
		SM4500-HB -	PH (H3=past HT r	not compliant)				
	03/18/2014	16:52 758036	(SM4500-HB)	PH (H3=past HT not compliant)	7.8	Units	0.1	1
<u>W28-685</u>	<u>(20140312</u>	<u>0739)</u>				Sampled	on 03/10/201	4 1350
		EPA 200.8 - IC	CPMS Metals					
3/13/2014	03/13/2014	14:41 /5/266	(EPA 200.8)	Chromium Total ICAP/MS	8.6	ug/L	1	1
	00/40/0044	EPA 218.6 - H	exavalent chromi	um(Dissolved)	0.5		0.00	
	03/13/2014	14:41 /5/323			9.5	ug/L	0.02	1
	02/20/2044	EPA 300.0 - C	nioride, Sulfate b	y EPA 300.0	24	ma/l	2	2
	03/20/2014	22.20 / 58830	(EPA 300.0)		34	mg/L	2	2
	03/20/2014	22:20 /58836	(EPA 300.0)	Sunate	130	mg/L	1	2

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Data Report: 472440

Samples Received on: 03/12/2014

Prepared	Analyzed	QC Ref #	Method	Analyte	Result	Units	MRL	Dilution
		SM 2320B - A	Ikalinity in CaCO3	units				
	03/18/2014	17:00 758032	(SM 2320B)	Alkalinity in CaCO3 units	230	mg/L	2	1
		E160.1/SM254	OC - Total Dissol	ved Solids (TDS)				
3/16/2014	03/17/2014	17:03 757827	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	520	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	03/18/2014	17:00 758036	(SM4500-HB)	PH (H3=past HT not compliant)	7.9	Units	0.1	1
<u>W28-705</u>	(20140312	<u>0740)</u>				Sampled	on 03/10/201	4 1420
		EPA 200.8 - IC	PMS Metals					
3/13/2014	03/13/2014	14:43 757266	(EPA 200.8)	Chromium Total ICAP/MS	8.9	ug/L	1	1
		EPA 218.6 - H	exavalent chromi	um(Dissolved)				
	03/13/2014	14:21 757323	(EPA 218.6)	Hexavalent chromium(Dissolved)	10	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate b	y EPA 300.0				
	03/20/2014	23:25 758836	(EPA 300.0)	Chloride	34	mg/L	2	2
	03/20/2014	23:25 758836	(EPA 300.0)	Sulfate	130	mg/L	1	2
		SM 2320B - A	Ikalinity in CaCO3	units				
	03/18/2014	17:08 758032	(SM 2320B)	Alkalinity in CaCO3 units	240	mg/L	2	1
		E160.1/SM254	OC - Total Dissol	ved Solids (TDS)				
3/16/2014	03/17/2014	17:04 757827	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	530	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	03/18/2014	17:08 758036	(SM4500-HB)	PH (H3=past HT not compliant)	7.8	Units	0.1	1
<u>W28-725</u>	(20140312)	<u>0741)</u>				Sampled	on 03/10/201	4 1440
		EPA 200.8 - IC	PMS Metals					
3/13/2014	03/13/2014	14:38 757266	(EPA 200.8)	Chromium Total ICAP/MS	10	ug/L	1	1
3/13/2014	03/13/2014	14:38 757266	(EPA 200.8)	Uranium ICAP/MS	6.4	ug/L	1	1
		EPA 218.6 - H	exavalent chromi	um(Dissolved)				
	03/13/2014	16:21 757323	(EPA 218.6)	Hexavalent chromium(Dissolved)	11	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate b	y EPA 300.0				
	03/20/2014	23:37 758836	(EPA 300.0)	Chloride	34	mg/L	2	2
	03/20/2014	23:37 758836	(EPA 300.0)	Sulfate	130	mg/L	1	2
		SM 2320B - A	Ikalinity in CaCO3	units				
	03/18/2014	17:16 758032	(SM 2320B)	Alkalinity in CaCO3 units	230	mg/L	2	1
		E160.1/SM254	OC - Total Dissol	ved Solids (TDS)				
3/16/2014	03/17/2014	17:05 757827	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	520	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	03/18/2014	17:16 758036	(SM4500-HB)	PH (H3=past HT not compliant)	8.5	Units	0.1	1

W28-760 (201403120742)

Rounding on totals after summation. (c) - indicates calculated results Sampled on 03/10/2014 1540

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Data Report: 472440

Prepared	Analvzed	QC Ref #	Method	Analyte	Result	Units	MRL	Dilution
	-,							
		EPA 200.8 - I	CPMS Metals					
3/13/2014	03/19/2014	15:06 758419	(EPA 200.8)	Chromium Total ICAP/MS	12	ug/L	1	1
		EPA 218.6 - H	lexavalent chromi	um(Dissolved)				
	03/13/2014	16:11 757323	(EPA 218.6)	Hexavalent chromium(Dissolved)	13	ug/L	0.02	1
		EPA 300.0 - C	Chloride, Sulfate b	y EPA 300.0				
	03/22/2014	10:06 759004	(EPA 300.0)	Chloride	32	mg/L	2	2
	03/22/2014	10:06 759004	(EPA 300.0)	Sulfate	130	mg/L	1	2
		SM 2320B - A	Ikalinity in CaCO3	8 units				
	03/18/2014	17:25 758032	(SM 2320B)	Alkalinity in CaCO3 units	240	mg/L	2	1
		E160.1/SM25	40C - Total Dissol	ved Solids (TDS)				
3/16/2014	03/17/2014	17:06 757827	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	530	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	not compliant)				
	03/18/2014	17:25 758036	(SM4500-HB)	PH (H3=past HT not compliant)	7.8	Units	0.1	1
<u>W28-750</u>	(20140312	<u>0743)</u>				Sampled	on 03/10/201	4 1510
		FPA 200.8 - I	CPMS Metals					
3/13/2014	03/13/2014	14:12 757266	(EPA 200.8)	Chromium Total ICAP/MS	11	ug/L	1	1
		EPA 218.6 - H	lexavalent chromi	um(Dissolved)				
	03/13/2014	13:51 757323	(EPA 218.6)	Hexavalent chromium(Dissolved)	12	ug/L	0.02	1
		EPA 300.0 - C	Chloride, Sulfate b	y EPA 300.0				
	03/22/2014	10:19 759004	(EPA 300.0)	Chloride	33	mg/L	2	2
	03/22/2014	10:19 759004	(EPA 300.0)	Sulfate	130	mg/L	1	2
		SM 2320B - A	Ikalinity in CaCO3	8 units				
	03/18/2014	17:33 758032	(SM 2320B)	Alkalinity in CaCO3 units	240	mg/L	2	1
		E160.1/SM25	40C - Total Dissol	ved Solids (TDS)				
3/16/2014	03/17/2014	17:08 757827	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	520	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	iot compliant)				
	03/18/2014	17:33 758036	(SM4500-HB)	PH (H3=past HT not compliant)	7.8	Units	0.1	1

Santa Ynez River WCD

QC Ref # 757266 - ICPMS N	letals	Analysis Date: 03/13/2014
201403120734	WH28-1	Analyzed by: SXK
201403120736	W28-620	Analyzed by: SXK
201403120737	W28-640	Analyzed by: SXK
201403120739	W28-685	Analyzed by: SXK
201403120740	W28-705	Analyzed by: SXK
201403120741	W28-725	Analyzed by: SXK
201403120743	W28-750	Analyzed by: SXK
QC Ref # 757323 - Hexavale	ent chromium(Dissolved)	Analysis Date: 03/13/2014
201403120734	WH28-1	Analyzed by: TLH
201403120735	Well 6	Analyzed by: TLH
201403120736	W28-620	Analyzed by: TLH
201403120737	W28-640	Analyzed by: TLH
201403120738	W28-660	Analyzed by: TLH
201403120739	W28-685	Analyzed by: TLH
201403120740	W28-705	Analyzed by: TLH
201403120741	W28-725	Analyzed by: TLH
201403120742	W28-760	Analyzed by: TLH
201403120743	W28-750	Analyzed by: TLH
QC Ref # 757430 - ICPMS N	letals	Analysis Date: 03/14/2014
201403120735	Well 6	Analyzed by: AZS
201403120738	W28-660	Analyzed by: AZS
QC Ref # 757827 - Total Dis	solved Solids (TDS)	Analysis Date: 03/17/2014
201403120734	WH28-1	Analyzed by: JRF
201403120736	W28-620	Analyzed by: JRF
201403120737	W28-640	Analyzed by: JRF
201403120738	W28-660	Analyzed by: JRF
201403120739	W28-685	Analyzed by: JRF
201403120740	W28-705	Analyzed by: JRF
201403120741	W28-725	Analyzed by: JRF
201403120742	W28-760	Analyzed by: JRF
201403120743	W28-750	Analyzed by: JRF
QC Ref # 758032 - Alkalinity	y in CaCO3 units	Analysis Date: 03/18/2014
201403120734	WH28-1	Analyzed by: AF1
201403120736	W28-620	Analyzed by: AF1
201403120737	W28-640	Analyzed by: AF1
201403120738	W28-660	Analyzed by: AF1
201403120739	W28-685	Analyzed by: AF1
201403120740	W28-705	Analyzed by: AF1
201403120741	W28-725	Analyzed by: AF1
201403120742	W28-760	Analyzed by: AF1
201403120743	W28-750	Analyzed by: AF1
QC Ref # 758036 - PH (H3=	past HT not compliant)	Analysis Date: 03/18/2014

Santa Ynez River WCD

201403120734	WH28-1
201403120736	W28-620
201403120737	W28-640
201403120738	W28-660
201403120739	W28-685
201403120740	W28-705
201403120741	W28-725
201403120742	W28-760
201403120743	W28-750

QC Ref # 758419 - ICPMS Metals

201403120742

W28-760

QC Ref # 758836 - Chloride, Sulfate by EPA 300.0

201403120734	WH28-1
201403120736	W28-620
201403120737	W28-640
201403120738	W28-660
201403120739	W28-685
201403120740	W28-705
201403120741	W28-725

QC Ref # 759004 - Chloride, Sulfate by EPA 300.0

201403120742	W28-760
201403120743	W28-750

Analyzed by: AF1 Analyzed by: AF1

Analysis Date: 03/19/2014

Analyzed by: SXK

Analysis Date: 03/20/2014

Analyzed by: CYP Analyzed by: CYP

Analysis Date: 03/22/2014

Analyzed by: CYP Analyzed by: CYP

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

QC Туре	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
QC Ref# 757266 -	ICPMS Metals by EPA 200.8					Analysis I	Date: 03/13/	2014	
LCS1	Chromium Total ICAP/MS		100	98.5	ug/L	99	(85-115)		
LCS2	Chromium Total ICAP/MS		100	98.8	ug/L	99	(85-115)	20	0.30
MBLK	Chromium Total ICAP/MS			<1	ug/L				
MRL_CHK	Chromium Total ICAP/MS		1.0	0.947	ug/L	95	(50-150)		
MS_201403050932	Chromium Total ICAP/MS	ND	100	103	ug/L	103	(70-130)		
MS2_201403100207	Chromium Total ICAP/MS	3.8	100	106	ug/L	102	(70-130)		
MSD_201403050932	Chromium Total ICAP/MS	ND	100	102	ug/L	102	(70-130)	20	0.98
MSD2_201403100207	Chromium Total ICAP/MS	3.8	100	106	ug/L	102	(70-130)	20	0.0
LCS1	Uranium ICAP/MS		20	18.3	ug/L	92	(85-115)		
LCS2	Uranium ICAP/MS		20	18.3	ug/L	92	(85-115)	20	0.0
MBLK	Uranium ICAP/MS			<1	ug/L				
MRL_CHK	Uranium ICAP/MS		1.0	0.929	ug/L	93	(50-150)		
MS_201403050932	Uranium ICAP/MS	ND	20	21.6	ug/L	108	(70-130)		
MS2_201403100207	Uranium ICAP/MS	17	20	40.4	ug/L	115	(70-130)		
MS2_201403100207	Uranium ICAP/MS	NA	20	40.4	ug/L	115	(70-130)		
MSD_201403050932	Uranium ICAP/MS	ND	20	21.4	ug/L	107	(70-130)	20	0.93
MSD2_201403100207	Uranium ICAP/MS	17	20	39.7	ug/L	112	(70-130)	20	1.8
MSD2_201403100207	Uranium ICAP/MS	NA	20	39.7	ug/L	112	(70-130)	20	1.8
QC Ref# 757323 -	Hexavalent chromium(Dissolved)	by EPA 218.6				Analysis I	Date: 03/13/	2014	
LCS1	Hexavalent chromium(Dissolved)		2.0	1.99	ug/L	100	(90-110)		
LCS2	Hexavalent chromium(Dissolved)		2.0	2.00	ug/L	100	(90-110)		
MBLK	Hexavalent chromium(Dissolved)			<0.020	ug/L				
MRL_CHK	Hexavalent chromium(Dissolved)		0.02	0.0204	ug/L	102	(50-150)		
MS_201403120728	Hexavalent chromium(Dissolved)	0.75	2.0	2.84	ug/L	104	(90-110)		
MS_201403120735	Hexavalent chromium(Dissolved)	ND	2.0	2.06	ug/L	103	(90-110)		
MSD_201403120728	Hexavalent chromium(Dissolved)	0.75	2.0	2.83	ug/L	104	(90-110)	20	0.35
MSD_201403120735	Hexavalent chromium(Dissolved)	ND	2.0	2.04	ug/L	102	(90-110)	20	0.98
QC Ref# 757430 -	ICPMS Metals by EPA 200.8					Analysis I	Date: 03/14/	2014	
LCS1	Chromium Total ICAP/MS		100	99.0	ug/L	99	(85-115)		
LCS2	Chromium Total ICAP/MS		100	101	ug/L	101	(85-115)	20	2.0
MBLK	Chromium Total ICAP/MS			<1	ug/L				
MRL_CHK	Chromium Total ICAP/MS		1.0	1.05	ug/L	105	(50-150)		
MS_201403120738	Chromium Total ICAP/MS	9.3	100	111	ug/L	102	(70-130)		
MSD_201403120738	Chromium Total ICAP/MS	9.3	100	112	ug/L	103	(70-130)	20	1.8
LCS1	Uranium ICAP/MS		20	18.7	ug/L	93	(85-115)		
LCS2	Uranium ICAP/MS		20	18.9	ug/L	94	(85-115)	20	1.1

Spike recovery is already corrected for native results. Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u> Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level).


```
Eaton Analytical
```

Laboratory QC Report: 472440

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

QC Туре	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
MBLK	Uranium ICAP/MS			<1	ug/L				
MRL_CHK	Uranium ICAP/MS		1.0	0.932	ug/L	93	(50-150)		
MS_201403120738	Uranium ICAP/MS	6.1	20	27.1	ug/L	105	(70-130)		
MSD_201403120738	Uranium ICAP/MS	6.1	20	27.4	ug/L	107	(70-130)	20	1.1
QC Ref# 757827 - 1	Fotal Dissolved Solids (TDS) by E160.1/	SM2540	с			Analysis [Date: 03/17/2	2014	
DUP_201403120729	Total Dissolved Solid (TDS)	500		516	mg/L		(0-20)	20	2.8
DUP_201403120742	Total Dissolved Solid (TDS)	530		530	mg/L		(0-20)	20	0.38
LCS1	Total Dissolved Solid (TDS)		175	170	mg/L	97	(80-114)		
LCS2	Total Dissolved Solid (TDS)		700	688	mg/L	98	(80-114)		
MBLK	Total Dissolved Solid (TDS)			<10	mg/L				
MRL_CHK	Total Dissolved Solid (TDS)		10	9.00	mg/L	90	(50-150)		
QC Ref# 758032 - /	Alkalinity in CaCO3 units by SM 2320B					Analysis [Date: 03/18/2	2014	
LCS1	Alkalinity in CaCO3 units		100	101	mg/L	101	(90-110)		
LCS2	Alkalinity in CaCO3 units		100	102	mg/L	102	(90-110)	20	0.99
MBLK	Alkalinity in CaCO3 units			<2	mg/L				
MRL_CHK	Alkalinity in CaCO3 units		2.0	2.37	mg/L	119	(50-150)		
MS_201403130521	Alkalinity in CaCO3 units	150	100	189	mg/L	<u>40</u>	(80-120)		
MS_201403130524	Alkalinity in CaCO3 units	72	100	156	mg/L	85	(80-120)		
MSD_201403130521	Alkalinity in CaCO3 units	150	100	186	mg/L	<u>37</u>	(80-120)	20	1.6
MSD_201403130524	Alkalinity in CaCO3 units	72	100	156	mg/L	85	(80-120)	20	0.0
QC Ref# 758036 - I	PH (H3=past HT not compliant) by SM4	500-HB				Analysis [Date: 03/18/2	2014	
DUP_201403120734	PH (H3=past HT not compliant)	7.8		7.76	Units		(0-20)	20	0.13
DUP_201403130540	PH (H3=past HT not compliant)	12		11.6	Units		(0-20)	20	0.0
LCS1	PH (H3=past HT not compliant)		6.0	6.01	Units	100	(98-102)		
LCS2	PH (H3=past HT not compliant)		6.0	6.00	Units	100	(98-102)	20	0.17
QC Ref# 758419 - I	CPMS Metals by EPA 200.8					Analysis D	Date: 03/19/2	2014	
LCS1	Chromium Total ICAP/MS		100	99.1	ug/L	99	(85-115)		
LCS2	Chromium Total ICAP/MS		100	95.8	ug/L	96	(85-115)	20	3.4
MBLK	Chromium Total ICAP/MS			<1	ug/L				
MRL_CHK	Chromium Total ICAP/MS		1.0	0.970	ug/L	97	(50-150)		
MS_201403160031	Chromium Total ICAP/MS	ND	100	107	ug/L	107	(70-130)		
MS2_201403160034	Chromium Total ICAP/MS	ND	100	98.5	ug/L	99	(70-130)		
MSD_201403160031	Chromium Total ICAP/MS	ND	100	104	ug/L	104	(70-130)	20	2.8
MSD2_201403160034	Chromium Total ICAP/MS	ND	100	97.8	ug/L	98	(70-130)	20	0.71
LCS1	Uranium ICAP/MS		20	18.0	ug/L	90	(85-115)		
LCS2	Uranium ICAP/MS		20	17.7	ug/L	89	(85-115)	20	1.7

Spike recovery is already corrected for native results. Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u> Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level).

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

QC Туре	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
MBLK	Uranium ICAP/MS			<1	ug/L				
MRL_CHK	Uranium ICAP/MS		1.0	0.959	ug/L	96	(50-150)		
MS_201403160031	Uranium ICAP/MS	ND	20	21.0	ug/L	105	(70-130)		
MS2_201403160034	Uranium ICAP/MS	ND	20	18.2	ug/L	91	(70-130)		
MSD_201403160031	Uranium ICAP/MS	ND	20	20.9	ug/L	104	(70-130)	20	0.48
MSD2_201403160034	Uranium ICAP/MS	ND	20	18.5	ug/L	93	(70-130)	20	1.6
QC Ref# 758836 - 0	chloride, Sulfate by EPA 300.0 by EPA 3	0.00				Analysis D	ate: 03/20/2	014	
LCS1	Chloride		25	25.2	mg/L	101	(90-110)		
LCS2	Chloride		25	25.2	mg/L	101	(90-110)	20	0.0
MBLK	Chloride			<0.5	mg/L				
MRL_CHK	Chloride		0.5	0.428	mg/L	86	(50-150)		
MS_201403120739	Chloride	34	13	59.9	mg/L	102	(80-120)		
MS_201403190518	Chloride	9	13	22.4	mg/L	107	(80-120)		
MSD_201403120739	Chloride	34	13	59.4	mg/L	100	(80-120)	20	0.84
MSD_201403190518	Chloride	9	13	22.5	mg/L	107	(80-120)	20	0.45
LCS1	Sulfate		50	49.5	mg/L	99	(90-110)		
LCS2	Sulfate		50	49.5	mg/L	99	(90-110)	20	0.0
MBLK	Sulfate			<0.25	mg/L				
MRL_CHK	Sulfate		1.0	0.928	mg/L	93	(50-150)		
MRLLW	Sulfate		0.25	0.241	mg/L	97	(50-150)		
MS_201403120739	Sulfate	130	25	180	mg/L	96	(80-120)		
MS_201403190518	Sulfate	5.5	25	30.9	mg/L	102	(80-120)		
MSD_201403120739	Sulfate	130	25	178	mg/L	94	(80-120)	20	1.1
MSD_201403190518	Sulfate	5.5	25	31.0	mg/L	102	(80-120)	20	0.32
QC Ref# 759004 - 0	chloride, Sulfate by EPA 300.0 by EPA 3	0.00				Analysis D	ate: 03/22/2	014	
LCS1	Chloride		25	25.6	mg/L	103	(90-110)		
LCS2	Chloride		25	25.7	mg/L	103	(90-110)	20	0.39
MBLK	Chloride			<0.5	mg/L				
MRL_CHK	Chloride		0.5	0.404	mg/L	81	(50-150)		
MS_201403120743	Chloride	33	13	58.1	mg/L	100	(80-120)		
MS_201403220256	Chloride	76	13	98.1	mg/L	89	(80-120)		
MSD_201403120743	Chloride	33	13	58.3	mg/L	101	(80-120)	20	0.34
MSD_201403220256	Chloride	76	13	98.0	mg/L	89	(80-120)	20	0.10
LCS1	Sulfate		50	51.0	mg/L	102	(90-110)		
LCS2	Sulfate		50	51.0	mg/L	102	(90-110)	20	0.20
MBLK	Sulfate			<0.25	mg/L				
MRL_CHK	Sulfate		1.0	0.912	mg/L	91	(50-150)		

Spike recovery is already corrected for native results. Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u> Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level).

Laboratory QC Report: 472440

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

QC Туре	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
MRLLW	Sulfate		0.25	0.234	mg/L	94	(50-150)		
MS_201403120743	Sulfate	130	25	179	mg/L	93	(80-120)		
MS_201403220256	Sulfate	120	25	164	mg/L	95	(80-120)		
MSD_201403120743	Sulfate	130	25	180	mg/L	94	(80-120)	20	0.56
MSD_201403220256	Sulfate	120	25	163	mg/L	94	(80-120)	20	0.61

Spike recovery is already corrected for native results. Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u> Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level).

Laboratory Report

for

Santa Ynez River WCD Post Office Box 157 Santa Ynez, CA 93460 Attention: Eric Tambini Fax: 805-688-3078

FWH: Fred Haley

Project Manager

Report: 472438 Project: CHROMIUM Group: well sampling

* Accredited in accordance with NELAP.

^{*} Laboratory certifies that the test results meet all TNI NELAP requirements unless noted under the individual analysis.

^{*} Following the cover page are State Certification List, ISO 17025 Accredited Method List, Acknowledgement of Samples Received, Comments, Hits Report, Data Report, QC Summary, QC Report and Regulatory Forms, as applicable.

^{*} Test results relate only to the sample(s) tested.

^{*} This report shall not be reproduced except in full, without the written approval of the laboratory.

STATE CERTIFICATION LIST

State	Certification Number	State	Certification Number
Alabama	41060	Mississippi	Certified
Alaska	CA00006	Montana	Cert 0035
Arizona	AZ0778	Nebraska	Certified
Arkansas	Certified	Nevada	CA00006-2012-1
California-Monrovia- ELAP	2813	New Hampshire *	2959
California-Colton- ELAP	2812	New Jersey *	CA 008
California-Folsom- ELAP	2820	New Mexico	Certified
Colorado	Certified	New York *	11320
Connecticut	PH-0107	North Carolina	06701
Delaware	CA 006	North Dakota	R-009
Florida *	E871024	Oregon (Primary AB) *	ORELAP 4034
Georgia	947	Pennsylvania *	68-565
Guam	13-004r	Rhode Island	LAO00326
Hawaii	Certified	South Carolina	87016
Idaho	Certified	South Dakota	Certified
Illinois *	200033	Tennessee	TN02839
Indiana	C-CA-01	Texas *	T104704230-14-6
Kansas *	E-10268	Utah *	CA000062014-6
Kentucky	90107	Vermont	VT0114
Louisiana *	LA140009	Virginia *	00210
Maine	CA0006	Washington	C838
Maryland	224	West Virginia	9943 C
Commonwealth of Northern Marianas Is.	MP0004	Wisconsin	998316660
Massachusetts	M-CA006	Wyoming	8TMS-L
Michigan	9906	EPA Region 5	Certified
Los Angeles County Sanitation Districts	10264		

* NELAP/TNI Recognized Accreditation Bodies

750 Royal Oaks Drive, Suite 100 Monrovia, CA 91016-3629

T | 626-386-1100 F | 626-386-1101 www.EatonAnalytical.com

The tests listed below are accredited and meet the requirements of ISO 17025 as verified by the ANSI-ASQ National Accreditation Board/ACLASS. Refer to Certificate and scope of accreditation (AT 1807) found at: http://www.eatonanalytical.com

SPECIFIC TESTS	METHOD OR TECHNIQUE USED	Drinking Water	Food & Beverage	Waste Water	SPECIFIC TESTS	METHOD OR TECHNIQUE USED	Drinking Water	Food & Beverage	Waste Water
1,4-Dioxane	EPA 522	х	х		Hormones	EPA 539	х	х	
2,3,7,8-TCDD	Modified EPA 1613B	х	х		Hydroxide as OH Calc.	SM 2330B	х	х	
Acrylamide	In House Method	х	х		Kjeldahl Nitrogen	EPA 351.2			х
Alkalinity	SM 2320B	х	х	х	Mercury	EPA 245.1	х	X	х
Ammonia	EPA 350.1		x	x	Metals	EPA 200.7 / 200.8	X	X	х
Ammonia Anions and DBPs by IC	EPA 300 0	×	x	x	NDMA	ELISA EDA 521	X	X	
Anions and DBPs by IC	EFA 300.0 EPA 300.1	×	X	X	Nitrate/Nitrite Nitrogen	EFA 321 EDA 353 2	X	X	×
Ashestos	EFA 300.1	x	^		OCL Pesticides/PCB	EFPA 505	×	×	^
Bicarbonate Alkalinity as	EI 11 100.2	~			oce, resteració reb	LIN 505	~	~	
HCO3	SM 2330B	х	x	x	Ortho Phosphate	EPA 365.1	x	x	
BOD / CBOD	SM 5210B		x	x	Phosphorous	EPA 365.1/SM 4500-P E			x
Bromate	In House Method	х	х		Ortho Phosphorous	SM 4500P E	х	х	
Carbamates	EPA 531.2	x	x		Oxyhalides Disinfection Byproducts	EPA 317.0	x	x	
Carbonate as CO3	SM 2330B	х	х	х	Perchlorate	EPA 331.0	х	х	
Carbonyls	EPA 556	х	х		Perchlorate	EPA 314.0	х	х	
COD	EPA 410.4 / SM 5220D			х	Perfluorinated Alkyl Acids	EPA 537	x	x	
Chloramines	SM 4500-CL G	х	х	х	рН	EPA 150.1	х		
Chlorinated Acids	EPA 515.4	х	x		pH	SM 4500-H+B	х	х	х
Chlorinated Acids	EPA 555	х	x		Phenylurea Pesticides/ Herbicides	In House Method	x	x	
Chlorine Dioxide	SM 4500-CLO2 D	х	x		Pseudomonas	IDEXX Pseudalert	x	x	
Chlorine -Total/Free/ Combined Residual	SM 4500-Cl G	х	x	х	Radium-226	RA-226 GA	x	x	
Conductivity	EPA 120.1			х	Radium-228	RA-228 GA	х	х	
Conductivity	SM 2510B	х	х	х	Radon-222	SM 7500RN	х	х	
Corrosivity (Langelier Index)	SM 2330B	х	x		Residue, Filterable	SM 2540C	x	x	x
Cyanide, Amenable	SM 4500-CN G	х		х	Residue, Non-filterable	SM 2540D			х
Cyanide, Free	SM 4500CN F	х	х	х	Residue, Total	SM 2540B		х	х
Cyanide, Total	EPA 335.4	х	х	х	Residue, Volatile	EPA 160.4			х
Cyanogen Chloride (screen)	In House Method	x	x		Semi-VOC	EPA 525.2	x	x	
Diquat and Paraquat	EPA 549.2	х	x		Semi-VOC	EPA 625	х	х	х
DBP/HAA	SM 6251B	х	х		Silica	SM 4500-Si D	х	х	х
Dissolved Oxygen	SM 4500-O G		х	х	Silica	SM 4500-SiO2 C	х		х
E. Coli	(MTF/EC+MUG)	x			Sulfide	SM 4500-S ⁼ D			х
E. Coli	CFR 141.21(f)(6)(i)		х	х	Surfactants	SM 5540C	х	х	х
E. Coli	SM 9223			x	Taste and Odor Analytes	SM 6040E	x	x	
	SM 0221D 1/SM 0221E			~		SM 00101	~		
E. Coli (Enumeration)	SM 9221B.1/ SM 9221F	×	x		Total Coliform	SM 9221 A, B	×	X	
E. Con (Enumeration)	FPA 504 1	×	^		(Enumeration) Total Coliform / F. coli	Colisure	^ ×	×	
EDB/DECP and DBP	EPA 551 1	×	x		Total Coliform	SM 9221B	~	~	x
EDTA and NTA	In House Method	x	x		Total Coliform with Chlorine Present	SM 9221B			x
Endothall	EPA 548 1	×	×		Total Coliform / E coli	SM 9223	×	×	L
Enterococci	SM 9230B	×	~	x	TOC	SM 5310C	~	x	x
Fecal Coliform	SM 9221 E (MTF/EC)	x		~	TOC/DOC	SM 5310C	х	x	~
Fecal Coliform	SM 9221C, E (MTF/EC)			x	тох	SM 5320B			x
Fecal Coliform (Enumeration)	SM 9221E (MTF/EC)	x	x		Total Phenols	EPA 420.1			x
Fecal Coliform with	SM 9221E			x	Total Phenols	EPA 420.4	x	x	x
Fecal Streptococci	SM 9230B	x		x	Total Phosphorous	SM 4500 P F			x
Fluoride	SM 4500-F C	x	x	x	Turbidity	EPA 180.1	x	x	x
Glyphosate	EPA 547	x	x		Turbidity	SM 2130B	x		x
Gross Alpha/Beta	EPA 900.0	х	x	x	Uranium by ICP/MS	EPA 200.8	x	x	
HAAs/ Dalapon	EPA 552.3	x	x		UV 254	SM 5910B	x		
Hardness	SM 2340B	х	х	х	VOC	EPA 524.2/EPA 524.3	х	х	
Heterotrophic Bacteria	In House Method	х	х		VOC	EPA 624	х	х	х
Heterotrophic Bacteria	SM 9215 B	х	х		VOC	EPA SW 846 8260	х	х	
Hexavalent Chromium	EPA 218.6	х	x	х	VOC	In House Method	х	х	
Hexavalent Chromium	EPA 218.7	х	x		Yeast and Mold	SM 9610	х	х	
Hexavalent Chromium	SM 3500-Cr B or C (20th)			x					

euronns	Foton Analytical			
-	Ac	knowledgement of Samples	Received	
Addr:	Santa Ynez River WCD Post Office Box 157 Santa Ynez, CA 93460	s	Client ID: SANTAYN Folder #: 472438 Project: CHROMIL Sample Group: well samp	NEZWD-CA JM ling
Attn: Phone:	Eric Tambini 805-688-6015	Pro	oject Manager: Fred Hale Phone: (626) 386	y -1127
The follo below ea Eurofins	wing samples were received from ach sample. If this information is in Eaton Analytical.	you on March 12, 2014 . They have no rect, please contact your service	been scheduled for the t representative. Thank y	tests listed You for using
Sample #	Sample ID			Sample Date
201403120727	W28-770			03/10/2014 1605
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/N	IS
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate	-
	Total Dissolved Solid (TDS)			
01403120728	W28-790			03/10/2014 1640
	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/M	15
	Hexavalent chromium(Dissolved)	PH (H3=past HT not compliant)	Sulfate	-
	Total Dissolved Solid (TDS)			
	W28-800			03/10/2014 1710
01403120729	1120 000			
01403120729				
<u>01403120729</u>	Alkalinity in CaCO3 units	Chloride	Chromium Total ICAP/N	IS
<u>01403120729</u>	Alkalinity in CaCO3 units Hexavalent chromium(Dissolved)	Chloride PH (H3=past HT not compliant)	Chromium Total ICAP/N Sulfate	1S
01403120729	Alkalinity in CaCO3 units Hexavalent chromium(Dissolved) Total Dissolved Solid (TDS)	Chloride PH (H3=past HT not compliant)	Chromium Total ICAP/N Sulfate	IS
01403120729 01403120730	Alkalinity in CaCO3 units Hexavalent chromium(Dissolved) Total Dissolved Solid (TDS) W28-900	Chloride PH (H3=past HT not compliant)	Chromium Total ICAP/N Sulfate	03/10/2014 1750
01403120729 01403120730	Alkalinity in CaCO3 units Hexavalent chromium(Dissolved) Total Dissolved Solid (TDS) W28-900 Alkalinity in CaCO3 units	Chloride PH (H3=past HT not compliant) Chloride	Chromium Total ICAP/N Sulfate Chromium Total ICAP/N	03/10/2014 1750 IS
01403120729 01403120730	Alkalinity in CaCO3 units Hexavalent chromium(Dissolved) Total Dissolved Solid (TDS) W28-900 Alkalinity in CaCO3 units Hexavalent chromium(Dissolved)	Chloride PH (H3=past HT not compliant) Chloride PH (H3=past HT not compliant)	Chromium Total ICAP/N Sulfate Chromium Total ICAP/N Sulfate	03/10/2014 1750 IS
01403120729 01403120730	Alkalinity in CaCO3 units Hexavalent chromium(Dissolved) Total Dissolved Solid (TDS) W28-900 Alkalinity in CaCO3 units Hexavalent chromium(Dissolved) Total Dissolved Solid (TDS)	Chloride PH (H3=past HT not compliant) Chloride PH (H3=past HT not compliant)	Chromium Total ICAP/IV Sulfate Chromium Total ICAP/IV Sulfate	03/10/2014 1750 IS
01403120729 01403120730 01403120731	Alkalinity in CaCO3 units Hexavalent chromium(Dissolved) Total Dissolved Solid (TDS) W28-900 Alkalinity in CaCO3 units Hexavalent chromium(Dissolved) Total Dissolved Solid (TDS) WH28-2	Chloride PH (H3=past HT not compliant) Chloride PH (H3=past HT not compliant)	Chromium Total ICAP/N Sulfate Chromium Total ICAP/N Sulfate	03/10/2014 1750 IS 03/10/2014 1810
01403120729 01403120730 01403120731	Alkalinity in CaCO3 units Hexavalent chromium(Dissolved) Total Dissolved Solid (TDS) W28-900 Alkalinity in CaCO3 units Hexavalent chromium(Dissolved) Total Dissolved Solid (TDS) WH28-2 Alkalinity in CaCO3 units	Chloride PH (H3=past HT not compliant) Chloride PH (H3=past HT not compliant)	Chromium Total ICAP/IV Sulfate Chromium Total ICAP/IV Sulfate	03/10/2014 1750 IS 03/10/2014 1810
01403120729 01403120730 01403120731	Alkalinity in CaCO3 units Hexavalent chromium(Dissolved) Total Dissolved Solid (TDS) W28-900 Alkalinity in CaCO3 units Hexavalent chromium(Dissolved) Total Dissolved Solid (TDS) WH28-2 Alkalinity in CaCO3 units Hexavalent chromium(Dissolved)	Chloride PH (H3=past HT not compliant) Chloride PH (H3=past HT not compliant) Chloride PH (H3=past HT not compliant)	Chromium Total ICAP/N Sulfate Chromium Total ICAP/N Sulfate Chromium Total ICAP/N Sulfate	03/10/2014 1750 IS 03/10/2014 1810 IS

	eurofins Eaton Analytica	CHAIN C	DF CUSTODY RECORD	58
l		EUROFINS EATON ANALYTICAL USE ONLY: LOGIN COMMENTS:	SAMPLES CHECKED AGAINST COC BY:	
750 Mon	Royal Oaks Drive, Suite 100		SAMPLES LOGGED IN BY:	
Phot Fax:	ne: 626 386 1100 626 386 1101	SAMPLE TEMP RECEIVED AT: Colton / No. California / Arizona Monrovia	SAMPLES REC'D DAY OF COLLECTION? (che °C (Compliance: 4 ± 2 °C) °C (Compliance: 4 ± 2 °C)	neck for yes)
Web	566 LABS (800 566 5227) site: www.EatonAnalytical.com	CONDITION OF BLUE ICE: Frozen METHOD OF SHIPMENT: Pick-Up / V	Partially Frozen Thawed Wet Ice No Ice Valk-In / FedEx / UPS / DHL / Area Fast / Top Line / Other: Other:	
TO BE C	OMPLETED BY SAMPLER:		(check for yes) (check fo	for yes)
COMPA	.ta yez River Wate	PROJECT CODE:	COMPLIANCE SAMPLES NON-COMPLIANCE SAMPLES - Requires state forms REGULATION INVOLVED: Type of samples (circle one): ROUTINE	VPDES, FDA)
EEA CL	IENT CODE: COC ID:	SAMPLE GROUP:	SEE ATTACHED BOTTLE ORDER FOR ANALYSES [check for yes).	OR
TAT req	l uested: rush by adv notice only	STD 1 wk 3 day 2 day 1 day	list ANALYSES REQUIRED (enter number of bottles sent for each test for each	h sample)
ajamaz ataq	SAMPLE ID	CLIENT LAB ID MATRIX *	Alkalinit Sampi Sa	PLER AENTS
3/0/4	16:05 W28-770	R6-W	XXXXX X coolev	~ 2 (c2)
	16:40 W28-790			52
	008-82M 01:11			62
	7.50 W28-900			c2
5	8:10 WH28-2	7		22
1				
* MAT	RIX TYPES: RSW = Raw Surface Wi RGW = Raw Ground Wi SIGMATURE	ater CFW = Chlor(am)inated Finished Water ater FW = Other Finished Water	SEAW = Sea Water BW = Bottled Water SO = Soil O = Other - Plea WW = Waste Water SW = Storm Water SL = Sludge	ease Identify TIME
SAMPLEE	BY: Trey Brizes	4 Trey Discoll/Jeff	Kuburn Dudek/Hyduo geologist 2/10/17 1	(8:20
RELINOU	ISHED BY: Jey Direco	itrev Drisi	coll Dudek a J Shifty I	11:00
RECEIVE	ISHED BY:	population States	EGA Shalley 15	boe,
RECEIVE	D BY:			
			BAGE	De l

5

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Comments Report: 472438 🛟 eurofins

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Hits Report: 472438

Samples Received on: 03/12/2014

Analyzed	Analyte Sample ID	Result	Federal MCL	Units	MRL
	201403120727 <u>W28-770</u>				
03/18/2014 14:44	Alkalinity in CaCO3 units	240		mg/L	2
03/20/2014 20:24	Chloride	33	250	mg/L	2
03/14/2014 15:41	Chromium Total ICAP/MS	9.7	100	ug/L	1
03/13/2014 15:01	Hexavalent chromium(Dissolved)	9.7		ug/L	0.02
03/18/2014 14:44	PH (H3=past HT not compliant)	7.7		Units	0.1
03/20/2014 20:24	Sulfate	130	250	mg/L	1
03/16/2014 16:46	Total Dissolved Solids (TDS)	540	500	mg/L	10
	201403120728 <u>W28-790</u>				
03/18/2014 14:52	Alkalinity in CaCO3 units	230		mg/L	2
03/20/2014 20:37	Chloride	37	250	mg/L	2
03/13/2014 14:09	Chromium Total ICAP/MS	2.1	100	ug/L	1
03/13/2014 15:31	Hexavalent chromium(Dissolved)	0.75		ug/L	0.02
03/18/2014 14:52	PH (H3=past HT not compliant)	7.7		Units	0.1
03/20/2014 20:37	Sulfate	120	250	mg/L	1
03/16/2014 16:48	Total Dissolved Solids (TDS)	520	500	mg/L	10
	201403120729 <u>W28-800</u>				
03/18/2014 15:00	Alkalinity in CaCO3 units	230		mg/L	2
03/20/2014 20:50	Chloride	37	250	mg/L	2
03/14/2014 15:32	Chromium Total ICAP/MS	1.0	100	ug/L	1
03/13/2014 16:31	Hexavalent chromium(Dissolved)	1.4		ug/L	0.02
03/18/2014 15:00	PH (H3=past HT not compliant)	7.8		Units	0.1
03/20/2014 20:50	Sulfate	120	250	mg/L	1
03/17/2014 16:55	Total Dissolved Solids (TDS)	500	500	mg/L	10
	201403120730 <u>W28-900</u>				
03/18/2014 15:08	Alkalinity in CaCO3 units	240		mg/L	2
03/20/2014 21:03	Chloride	38	250	mg/L	2
03/14/2014 14:03	Chromium Total ICAP/MS	1.1	100	ug/L	1
03/13/2014 14:11	Hexavalent chromium(Dissolved)	1.6		ug/L	0.02
03/18/2014 15:08	PH (H3=past HT not compliant)	7.8		Units	0.1
03/20/2014 21:03	Sulfate	120	250	mg/L	1
03/17/2014 16:57	Total Dissolved Solids (TDS)	500	500	mg/L	10
	201403120731 <u>WH28-2</u>				
03/18/2014 15:16	Alkalinity in CaCO3 units	240		mg/L	2
03/20/2014 21:16	Chloride	36	250	mg/L	2

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Hits Report: 472438

Samples Received on: 03/12/2014

Analyzed	Analyte	Sample ID	Result	Federal MCL	Units	MRL
03/13/2014 14:17	Chromium Total ICAP/MS	3	7.9	100	ug/L	1
03/13/2014 14:51	Hexavalent chromium(Dis	ssolved)	9.0		ug/L	0.02
03/18/2014 15:16	PH (H3=past HT not com	pliant)	7.7		Units	0.1
03/20/2014 21:16	Sulfate		140	250	mg/L	1
03/17/2014 16:58	Total Dissolved Solids (T	DS)	570	500	mg/L	10

🛟 eurofins

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Laboratory Data Report: 472438

Samples Received on: 03/12/2014

Prepared	Analyzed	QC Ref #	Method	Analyte	Result	Units	MRL	Dilution
W28-770	(20140312	0727)				Sampled	on 03/10/201	4 1605
		EPA 200.8 - I	CPMS Metals					
3/13/2014	03/14/2014	15:41 757708	(EPA 200.8)	Chromium Total ICAP/MS	9.7	ug/L	1	1
		EPA 218.6 - H	lexavalent chrom	ium(Dissolved)				
	03/13/2014	15:01 757323	(EPA 218.6)	Hexavalent chromium(Dissolved)	9.7	ug/L	0.02	1
		EPA 300.0 - C	Chloride, Sulfate b	9 EPA 300.0				
	03/20/2014	20:24 758836	(EPA 300.0)	Chloride	33	mg/L	2	2
	03/20/2014	20:24 758836	(EPA 300.0)	Sulfate	130	mg/L	1	2
		SM 2320B - A	Ikalinity in CaCO	3 units				
	03/18/2014	14:44 758028	(SM 2320B)	Alkalinity in CaCO3 units	240	mg/L	2	1
		E160.1/SM254	40C - Total Dissol	ved Solids (TDS)			10	
3/16/2014	03/16/2014	16:46 757621	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	540	mg/L	10	1
	02/40/2044	SM4500-HB -	PH (H3=past HT I	not compliant)	7 7	l loite	0.4	4
	03/18/2014	14:44 /58035	(SM4500-HB)	PH (H3=past H1 hot compliant)	1.1	Units	0.1	1
<u>W28-790</u>	(20140312	<u>0728)</u>				Sampled	on 03/10/201	4 1640
		EPA 200.8 - I	CPMS Metals					
3/13/2014	03/13/2014	14:09 757266	(EPA 200.8)	Chromium Total ICAP/MS	2.1	ug/L	1	1
		EPA 218.6 - H	lexavalent chrom	ium(Dissolved)				
	03/13/2014	15:31 757323	(EPA 218.6)	Hexavalent chromium(Dissolved)	0.75	ug/L	0.02	1
		EPA 300.0 - C	Chloride, Sulfate b	oy EPA 300.0				
	03/20/2014	20:37 758836	(EPA 300.0)	Chloride	37	mg/L	2	2
	03/20/2014	20:37 758836	(EPA 300.0)	Sulfate	120	mg/L	1	2
		SM 2320B - A	Ikalinity in CaCO	3 units			0	
	03/18/2014	14:52 758028	(SM 2320B)		230	mg/L	2	1
2/16/2014	02/16/2014	E160.1/SM254	40C - Total Dissol	ved Solids (TDS)	520	ma/l	10	1
3/10/2014	03/10/2014	10.40 / 5/021	(E160.1/SM2540C)		520	mg/L	10	I
	03/18/2014	SIVI45UU-HB -		PH (H3=past HT not compliant)	77	Unite	0.1	1
W00 000	(004 400 40	14.02 700000	(004000-10)		1.1		0.1	4 4 7 4 0
<u>w28-800</u>	(20140312	<u>u(29)</u>				Sampled	on 03/10/201	4 1/10
		EPA 200.8 - I	CPMS Metals					
3/13/2014	03/14/2014	15:32 757708	(EPA 200.8)	Chromium Total ICAP/MS	1.0	ug/L	1	1
		EPA 218.6 - H	lexavalent chrom	ium(Dissolved)				
	03/13/2014	16:31 757323	(EPA 218.6)	Hexavalent chromium(Dissolved)	1.4	ug/L	0.02	1
		EPA 300.0 - C	Chloride, Sulfate b	9 EPA 300.0				
	03/20/2014	20:50 758836	(EPA 300.0)	Chloride	37	mg/L	2	2

Rounding on totals after summation. (c) - indicates calculated results 🛟 eurofins

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

Eric Tambini Post Office Box 157 Santa Ynez, CA 93460 Samples Received on: 03/12/2014

Prepared	Analyzed	QC Ref #	Method	Analyte	Result	Units	MRL	Dilution
	03/20/2014	20:50 758836	(EPA 300.0)	Sulfate	120	mg/L	1	2
		SM 2320B - A	Ikalinity in CaCO3	units				
	03/18/2014	15:00 758028	(SM 2320B)	Alkalinity in CaCO3 units	230	mg/L	2	1
		E160.1/SM254	OC - Total Dissol	/ed Solids (TDS)				
3/16/2014	03/17/2014	16:55 757827	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	500	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	03/18/2014	15:00 758035	(SM4500-HB)	PH (H3=past HT not compliant)	7.8	Units	0.1	1
<u>W28-900</u>	(20140312	<u>0730)</u>				Sampled	on 03/10/201	4 1750
		EPA 200.8 - IO	CPMS Metals					
3/13/2014	03/14/2014	14:03 757354	(EPA 200.8)	Chromium Total ICAP/MS	1.1	ug/L	1	1
		EPA 218.6 - H	exavalent chromi	um(Dissolved)				
	03/13/2014	14:11 757323	(EPA 218.6)	Hexavalent chromium(Dissolved)	1.6	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate by	y EPA 300.0				
	03/20/2014	21:03 758836	(EPA 300.0)	Chloride	38	mg/L	2	2
	03/20/2014	21:03 758836	(EPA 300.0)	Sulfate	120	mg/L	1	2
		SM 2320B - A	Ikalinity in CaCO3	units				
	03/18/2014	15:08 758028	(SM 2320B)	Alkalinity in CaCO3 units	240	mg/L	2	1
		E160.1/SM254	OC - Total Dissol	/ed Solids (TDS)				
3/16/2014	03/17/2014	16:57 757827	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	500	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	03/18/2014	15:08 758035	(SM4500-HB)	PH (H3=past HT not compliant)	7.8	Units	0.1	1
<u>WH28-2</u>	(201403120	<u>1731)</u>				Sampled	on 03/10/201	4 1810
		EPA 200.8 - IO	CPMS Metals					
3/13/2014	03/13/2014	14:17 757266	(EPA 200.8)	Chromium Total ICAP/MS	7.9	ug/L	1	1
		EPA 218.6 - H	exavalent chromi	um(Dissolved)				
	03/13/2014	14:51 757323	(EPA 218.6)	Hexavalent chromium(Dissolved)	9.0	ug/L	0.02	1
		EPA 300.0 - C	hloride, Sulfate by	y EPA 300.0				
	03/20/2014	21:16 758836	(EPA 300.0)	Chloride	36	mg/L	2	2
	03/20/2014	21:16 758836	(EPA 300.0)	Sulfate	140	mg/L	1	2
		SM 2320B - A	Ikalinity in CaCO3	units				
	03/18/2014	15:16 758028	(SM 2320B)	Alkalinity in CaCO3 units	240	mg/L	2	1
		E160.1/SM254	OC - Total Dissol	ved Solids (TDS)				
3/16/2014	03/17/2014	16:58 757827	(E160.1/SM2540C)	Total Dissolved Solids (TDS)	570	mg/L	10	1
		SM4500-HB -	PH (H3=past HT n	ot compliant)				
	03/18/2014	15:16 758035	(SM4500-HB)	PH (H3=past HT not compliant)	7.7	Units	0.1	1

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

CC Ref # 75765 - 1CPMS interals Analysis Date: U3/13/2014 201403120728 W28-790 Analyzed by: SXK CC Ref # 757323 - Hexavalent chromium(Dissolved) Analyzed by: SXK QC Ref # 757323 - W28-770 Analyzed by: SXK 201403120728 W28-790 Analyzed by: TLH 201403120728 W28-790 Analyzed by: TLH 201403120729 W28-800 Analyzed by: TLH 201403120730 W28-900 Analyzed by: TLH 201403120730 W28-900 Analyzed by: SXK QC Ref # 75762 - I CIPMS Metals Analyzed by: SXK QC Ref # 75762 - I Total Dissolved Solids (TDS) Analyzed by: JRF 201403120727 W28-770 Analyzed by: JRF<
201403120728 W28-790 Analyzed by: SXK QC Ref # 757323 - Hexavalent ⊂hromium(Dissolved) Analysis Date: 03/13/2014 201403120727 W28-770 Analyzed by: TLH 201403120728 W28-790 Analyzed by: TLH 201403120729 W28-800 Analyzed by: TLH 201403120730 W28-900 Analyzed by: TLH 201403120731 WH28-2 Analyzed by: TLH 201403120730 W28-900 Analyzed by: TLH 201403120730 W28-900 Analyzed by: TLH 201403120731 WH28-2 Analyzed by: TLH 201403120730 W28-900 Analyzed by: SXK QC Ref # 757521 - Total Dissolved Solids (TDS) Analyzed by: SXK Analyzed by: SXK Q01403120727 W28-770 Analyzed by: SXK Analyzed by: SXK 201403120727 W28-770 Analyzed by: SXK Analyzed by: SXK QC Ref # 75708 - ICPMS Metals Analyzed by: SXK Analyzed by: SXK 201403120729 W28-700 Analyzed by: SXK 201403120729 W28-700 Analyzed by: SXK 201403120729 W28-700 Analyzed by: JRF 201403120727 <
201403120731 WH28-2 Analyzed by: SXR QC Ref # 757323 - Hexavalent chromium(Dissolved) Analysis Date: 03/13/2014 201403120727 W28-770 Analyzed by: TLH 201403120728 W28-790 Analyzed by: TLH 201403120730 W28-900 Analyzed by: TLH 201403120730 W28-900 Analyzed by: TLH 201403120731 WH28-2 Analyzed by: TLH 201403120730 W28-900 Analyzed by: SXK QC Ref # 757621 - Total Dissolved Solids (TDS) Analyzed by: SXK 201403120727 W28-770 Analyzed by: JRF 201403120728 W28-770 Analyzed by: SXK 201403120729 W28-700 Analyzed by: SXK 201403120729 W28-900 Analyzed by: JRF 201403120730 W28-900
QC Ref # 757323 - Hexavalent tromium(Dissolved) Analysis Date: 03/13/2014 201403120727 W28-770 Analyzed by: TLH 201403120728 W28-790 Analyzed by: TLH 201403120729 W28-800 Analyzed by: TLH 201403120730 W28-900 Analyzed by: TLH 201403120731 WH28-2 Analyzed by: TLH QC Ref # 757554 - ICPMS Met= Analyzed by: TLH Analyzed by: TLH 201403120730 W28-900 Analyzed by: TLH QC Ref # 7575621 - Total Dissoured Solids (TDS) Analyzed by: SXK Analyzed by: SXK QC Ref # 757708 - ICPMS Met= Analyzed by: JRF Analyzed by: SXK 201403120727 W28-770 Analyzed by: SXK 201403120728 W28-790 Analysis Date: 03/14/2014 201403120729 W28-800 Analyzed by: SXK 201403120729 W28-800 Analyzed by: SXK QC Ref # 757827 - Total Dissource Analyzed by: SXK 201403120729 W28-800 Analyzed by: SXK 201403120729 W28-800 Analyzed by: SXF 201403120729 W28-800 Analyzed by: S
201403120727 W28-770 Analyzed by: TLH 201403120728 W28-780 Analyzed by: TLH 201403120729 W28-800 Analyzed by: TLH 201403120730 W28-900 Analyzed by: TLH 201403120731 WH28-2 Analyzed by: TLH QC Ref # 757354 - ICPMS Metals Analyzed by: TLH Analyzed by: TLH 201403120731 WH28-2 Analyzed by: TLH QC Ref # 757621 - Total Dissot Solids (TDS) Analyzed by: SXK 201403120727 W28-700 Analysis Date: 03/16/2014 201403120728 W28-700 Analyzed by: SXK 201403120727 W28-700 Analyzed by: SXK 201403120727 W28-700 Analyzed by: SXK 201403120727 W28-700 Analyzed by: SXK 201403120729 W28-800 Analyzed by: JRF 201403120729 W28-800 Analyzed by: JRF 201403120730 W28-900 Analyzed by: JRF 201403120731 WH28-2 Analyzed by: JRF 201403120727 W28-700 Analyzed by: JRF 201403120730 W28-900 Analyzed by: JRF 201403120727
201403120728 W28-790 Analyzed by: TLH 201403120729 W28-800 Analyzed by: TLH 201403120730 W28-900 Analyzed by: TLH 201403120731 W182-2 Analyzed by: TLH QC Ref # 757354 - ICPMS Metaby Analyzed by: TLH Analyzed by: TLH 201403120731 W128-20 Analysis Date: 03/14/2014 201403120730 W28-900 Analysis Date: 03/16/2014 QC Ref # 757621 - Total Dissotted SUDS Analysis Date: 03/16/2014 201403120727 W28-770 Analyzed by: JRF 201403120727 W28-770 Analyzed by: SXK 201403120729 W28-800 Analysis Date: 03/17/2014 201403120729 W28-800 Analyzed by: JRF 201403120730 W28-900 Analyzed by: JRF 201403120730 W28-900 Analyzed by: JRF 201403120731 WH28-2 Analyzed by: JRF 201403120727 W28-770 Analyzed by: JRF 201403120730 W28-900 Analyzed by: JRF 201403120727 W28-770 Analyzed by: AF1 201403120727 W28-700 Analyzed by: AF1 201403120727
201403120729 W28-800 Analyzed by: TLH 201403120730 W28-900 Analyzed by: TLH 201403120731 WH28-2 Analyzed by: TLH 201403120731 WH28-2 Analyzed by: TLH 201403120730 W28-900 Analysis Date: 03/14/2014 201403120730 W28-900 Analysis Date: 03/16/2014 201403120727 W28-770 Analyzed by: JRF 201403120728 W28-790 Analysis Date: 03/14/2014 201403120727 W28-770 Analyzed by: SXK 201403120729 W28-800 Analyzed by: SXK 201403120729 W28-800 Analyzed by: JRF 201403120730 W28-900 Analyzed by: JRF 201403120731 WH28-2 Analyzed by: JRF 201403120727 W28-770 Analyzed by: JRF 201403120730 W28-900 Analyzed by: JRF 201403120727 W28-770 Analyzed by: JRF 201403120727 W28-770 A
201403120730 W28-900 Analyzed by: TLH 201403120731 WH28-2 Analyzed by: TLH QC Ref # 757354 - ICPMS Metats Analyzed by: SXK 201403120730 W28-900 Analysis Date: 03/14/2014 201403120730 W28-900 Analysis Date: 03/16/2014 201403120727 W28-770 Analyzed by: JRF 201403120727 W28-790 Analyzed by: JRF QC Ref # 75708 - ICPMS Metats Analyzed by: SXK 201403120727 W28-770 Analyzed by: SXK 201403120729 W28-700 Analyzed by: SXK 201403120729 W28-800 Analyzed by: SXK 201403120729 W28-800 Analyzed by: JRF 201403120730 W28-900 Analyzed by: JRF 201403120730 W28-900 Analyzed by: JRF 201403120730 W28-900 Analyzed by: JRF 201403120731 WH28-2 Analyzed by: AF1 201403120727 W28-70 Analyzed by: JRF 201403120730 W28-900 Analyzed by: JRF 201403120731 WH28-2 Analyzed by: AF1 201403120727 W28-70 Analyzed by: AF1
201403120731 WH28-2 Analyzed by: TLH QC Ref # 757354 - ICPMS Weta: Analyzed by: SXK 201403120730 W28-900 Analyzed by: SXK QC Ref # 757621 - Total Dissocity Analyzed by: JRF 201403120727 W28-770 Analyzed by: JRF 201403120727 W28-770 Analyzed by: SXK QC Ref # 757708 - ICPMS weta: Analyzed by: SXK Analyzed by: SXK 201403120727 W28-770 Analyzed by: SXK 201403120727 W28-770 Analyzed by: SXK 201403120727 W28-770 Analyzed by: SXK 201403120727 W28-700 Analyzed by: SXK 201403120729 W28-800 Analyzed by: JRF 201403120730 W28-900 Analyzed by: JRF 201403120731 WH28-2 Analyzed by: JRF QC Ref # 758028 - Alkalinity in CaOS units Analyzed by: JRF Q01403120728 W28-770 Analyzed by: JRF 201403120730 W28-700 Analyzed by: JRF 201403120731 WH28-2 Analyzed by: AF1 201403120728 W28-700 Analyzed by: AF1 201403120729 W28-800 Anal
QC Ref # 757354 - ICPMS Metals Analysis Date: 03/14/2014 201403120730 W28-900 Analyzed by: SXK QC Ref # 757621 - Total Dissocial (TDS) Analysis Date: 03/16/2014 Analyzed by: JRF 201403120727 W28-700 Analysis Date: 03/14/2014 Analyzed by: JRF QC Ref # 757708 - ICPMS Metals Analyze 700 Analyzed by: SXK Analyzed by: SXK QC Ref # 757708 - ICPMS Metals Analyzed by: SXK Analyzed by: SXK Analyzed by: SXK QC Ref # 75782 - Total Dissocial (TDS) W28-800 Analyzed by: JRF Analyzed by: JRF 201403120729 W28-800 Analyzed by: JRF Analyzed by: JRF 201403120730 W28-900 Analyzed by: JRF Analyzed by: JRF 201403120730 W28-900 Analyzed by: JRF Analyzed by: JRF 201403120730 W28-900 Analyzed by: JRF Analyzed by: JRF 201403120728 W28-770 Analyzed by: AF1 Analyzed by: JRF 201403120727 W28-700 Analyzed by: JRF Analyzed by: JRF 201403120728 W28-700 Analyzed by: AF1 Analyzed by: AF1 201403
201403120730 W28-900 Analyzed by: SXK QC Ref # 757621 - Total Dissocity Analysis Date: 03/16/2014 201403120727 W28-770 Analyzed by: JRF 201403120728 W28-790 Analysis Date: 03/14/2014 QC Ref # 757708 - ICPMS Metsocity Analyzed by: SXK 201403120727 W28-770 Analyzed by: SXK 201403120729 W28-770 Analyzed by: SXK 201403120729 W28-800 Analyzed by: SXK 201403120729 W28-800 Analyzed by: JRF 201403120729 W28-800 Analyzed by: JRF 201403120730 W28-900 Analyzed by: JRF 201403120731 WH28-2 Analyzed by: JRF 201403120727 W28-770 Analyzed by: JRF 201403120729 W28-900 Analyzed by: JRF 201403120727 W28-770 Analyzed by: JRF 201403120727 W28-770 Analyzed by: AF1 201403120729 W28-790 Analyzed by: AF1 201403120729 W28-790 Analyzed by: AF1 201403120729 W28-800 Analyzed by: AF1 201403120730 W28-900 Analyzed by:
QC Ref # 757621 - Total Dissue Solids (TDS) Analysis Date: 03/16/2014 201403120727 W28-770 Analyzed by: JRF 201403120728 W28-790 Analysis Date: 03/14/2014 QC Ref # 757708 - ICPMS Metator Analyzed by: SXK Analyzed by: SXK 201403120727 W28-770 Analysis Date: 03/11/2014 201403120729 W28-800 Analysis Date: 03/17/2014 QC Ref # 757827 - Total Dissue Solids (TDS) Analysis Date: 03/17/2014 Analyzed by: SXK 201403120729 W28-800 Analysis Date: 03/17/2014 201403120730 W28-900 Analyzed by: JRF 201403120731 W18-82 Analysis Date: 03/17/2014 QC Ref # 758028 - Alkalinity in COS units Analysis Date: 03/17/2014 Q1403120727 W28-770 Analyzed by: JRF 201403120727 W28-770 Analyzed by: JRF 201403120727 W28-770 Analyzed by: JRF 201403120728 W28-790 Analyzed by: AF1 201403120729 W28-800 Analyzed by: AF1 201403120729 W28-800 Analyzed by: AF1 201403120730 W28-900 </td
201403120727 W28-770 Analyzed by: JRF 201403120728 W28-790 Analyzed by: JRF 201403120727 W28-770 Analyzed by: SXK 201403120729 W28-800 Analyzed by: SXK QC Ref # 757827 - Total Dissoc SUIds (TDS) Analyzed by: SXK Analyzed by: JRF 201403120729 W28-800 Analyzed by: JRF 201403120730 W28-800 Analyzed by: JRF 201403120731 W128-2 Analyzed by: JRF 201403120727 W28-700 Analyzed by: JRF 201403120731 W128-2 Analyzed by: JRF 201403120727 W28-700 Analyzed by: JRF 201403120727 W28-700 Analyzed by: AF1 201403120728 W28-790 Analyzed by: AF1 201403120729 W28-800 Analyzed by: AF1 201403120729 W28-800 Analyzed by: AF1 201403120730 W28-900 Analyzed by: AF1 201403120730 W28-900 Analyzed by: AF1 201403120730 W28-900 Analyzed by: AF1 201403120731 W128-2 Analyzed by: AF1
201403120728 W28-790 Analyzed by: JRF QC Ref # 757708 - ICPMS Metal W28-770 Analysis Date: 03/14/2014 201403120727 W28-770 Analyzed by: SXK 201403120729 W28-800 Analyzed by: SXK QC Ref # 757827 - Total Dissobits (TDS) Analyzed by: JRF Analyzed by: JRF 201403120729 W28-800 Analyzed by: JRF 201403120730 W28-900 Analyzed by: JRF 201403120731 WH28-2 Analyzed by: JRF QC Ref # 758028 - Alkalinity to C3 units Analyzed by: AF1 201403120727 W28-700 Analyzed by: AF1 201403120728 W28-790 Analyzed by: AF1 201403120729 W28-800 Analyzed by: AF1 201403120729 W28-800 Analyzed by: AF1 201403120729 W28-800 Analyzed by: AF1 201403120730 W28-900 Analyzed by: AF1 201403120730 W28-900 Analyzed by: AF1 201403120730 W28-900 Analyzed by: AF1 201403120731 W128-2 Analyzed by: AF1 Analyzed by: AF1 Analyzed by: AF1 201403120731 W12
Analysis Date: 03/14/2014 201403120727 W28-770 Analyzed by: SXK 201403120729 W28-800 Analysis Date: 03/17/2014 Analyzed by: SXK QC Ref # 757827 - Total Dissect Solids (TDS) Analysis Date: 03/17/2014 201403120729 W28-800 Analyzed by: JRF 201403120730 W28-900 Analyzed by: JRF 201403120731 WH28-2 Analysis Date: 03/18/2014 QC Ref # 758028 - Alkalinity in CO3 units Analyzed by: AF1 201403120727 W28-770 Analysis Date: 03/18/2014 201403120728 W28-790 Analyzed by: AF1 201403120729 W28-800 Analyzed by: AF1 201403120729 W28-900 Analyzed by: AF1 201403120729 W28-790 Analyzed by: AF1 201403120729 W28-800 Analyzed by: AF1 201403120730 W28-900 Analyzed by: AF1 201403120731 WH28-2 Analyzed by: AF1 201403120731 WH28-2 Analyzed by: AF1 Analyzed by: AF1 Analyzed by: AF1 Analyzed by: AF1 Analyzed by: AF1 2014031207
201403120727 201403120729 W28-770 W28-800 Analyzed by: SXK Analyzed by: SXK QC Ref # 757827 - Total Dissolved Solids (TDS) Analysis Date: 03/17/2014 201403120729 201403120730 W28-800 W28-900 201403120731 Analyzed by: JRF Analyzed by: JRF Analyzed by: JRF Analyzed by: JRF QC Ref # 758028 - Alkalinity in CaCO3 units Analysis Date: 03/18/2014 QC Ref # 758028 - Alkalinity in CaCO3 units Analyzed by: AF1 Analyzed by: AF1
201403120729 W28-800 Analyzed by: SXK QC Ref # 757827 - Total Dissolwed Solids (TDS) Analysis Date: 03/17/2014 201403120729 W28-800 Analyzed by: JRF 201403120730 W28-900 Analyzed by: JRF 201403120731 WH28-2 Analyzed by: JRF QC Ref # 758028 - Alkalinity in CaCO3 units Analysis Date: 03/18/2014 Q2 01403120727 W28-770 Analysis Date: 03/18/2014 201403120728 W28-790 Analyzed by: AF1 201403120729 W28-800 Analyzed by: AF1 201403120729 W28-800 Analyzed by: AF1 201403120730 W28-900 Analyzed by: AF1 201403120731 WH28-2 Analyzed by: AF1
QC Ref # 757827 - Total Dissolet Solids (TDS) Analysis Date: 03/17/2014 201403120729 W28-800 Analyzed by: JRF 201403120730 W28-900 Analyzed by: JRF 201403120731 WH28-2 Analyzed by: JRF Analyzed by: JRF 201403120731 WH28-2 Analyzed by: JRF Analyzed by: JRF 201403120727 W28-770 Analyzed by: AF1 201403120728 W28-790 Analyzed by: AF1 201403120729 W28-800 Analyzed by: AF1 201403120730 W28-900 Analyzed by: AF1 201403120731 WH28-2 Analyzed by: AF1 Analyzed by: AF1
201403120729 W28-800 Analyzed by: JRF 201403120730 W28-900 Analyzed by: JRF 201403120731 WH28-2 Analyzed by: JRF QC Ref # 758028 - Alkalinity in CaCO3 units Analyzed by: AF1 201403120727 W28-770 Analyzed by: AF1 201403120728 W28-790 Analyzed by: AF1 201403120729 W28-800 Analyzed by: AF1 201403120730 W28-900 Analyzed by: AF1 201403120731 WH28-2 Analyzed by: AF1
201403120730 W28-900 Analyzed by: JRF 201403120731 WH28-2 Analyzed by: JRF QC Ref # 758028 - Alkalinity in CaCO3 units Analysis Date: 03/18/2014 201403120727 W28-770 Analyzed by: AF1 201403120728 W28-790 Analyzed by: AF1 201403120729 W28-800 Analyzed by: AF1 201403120730 W28-900 Analyzed by: AF1 201403120731 WH28-2 Analyzed by: AF1
201403120731 WH28-2 Analyzed by: JRF QC Ref # 758028 - Alkalinity in CaCO3 units Analysis Date: 03/18/2014 201403120727 W28-770 Analyzed by: AF1 201403120728 W28-790 Analyzed by: AF1 201403120729 W28-800 Analyzed by: AF1 201403120730 W28-900 Analyzed by: AF1 201403120731 WH28-2 Analyzed by: AF1
QC Ref # 758028 - Alkalinity IIICaCO3 unitsAnalysis Date: 03/18/2014201403120727W28-770Analyzed by: AF1201403120728W28-790Analyzed by: AF1201403120729W28-800Analyzed by: AF1201403120730W28-900Analyzed by: AF1201403120731WH28-2Analyzed by: AF1
201403120727W28-770Analyzed by: AF1201403120728W28-790Analyzed by: AF1201403120729W28-800Analyzed by: AF1201403120730W28-900Analyzed by: AF1201403120731WH28-2Analyzed by: AF1
201403120728W28-790Analyzed by: AF1201403120729W28-800Analyzed by: AF1201403120730W28-900Analyzed by: AF1201403120731WH28-2Analyzed by: AF1
201403120729 W28-800 Analyzed by: AF1 201403120730 W28-900 Analyzed by: AF1 201403120731 WH28-2 Analyzed by: AF1
201403120730 W28-900 Analyzed by: AF1 201403120731 WH28-2 Analyzed by: AF1
201403120731 WH28-2 Analyzed by: AF1
QC Ref # 758035 - PH (H3=past HT not compliant) Analysis Date: 03/18/2014
201403120727 W28-770 Analyzed by: AF1
201403120728 W28-790 Analyzed by: AF1
201403120729 W28-800 Analyzed by: AF1
201403120730 W28-900 Analyzed by: AF1
201403120731 WH28-2 Analyzed by: AF1
QC Ref # 758836 - Chloride, Sulfate by EPA 300.0 Analysis Date: 03/20/2014
201403120727 W28-770 Analyzed by: CYP
201403120728 W28-790 Analyzed by: CYP
201403120729 W28-800 Analyzed by: CYP
201403120730 W28-900 Analyzed by: CYP
201403120731 WH28-2 Analyzed by: CYP

Eaton Analytical

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

QC Type	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
QC Ref# 757266 - I	CPMS Metals by EPA 200.8					Analysis E	Date: 03/13/2	2014	
LCS1	Chromium Total ICAP/MS		100	98.5	ug/L	99	(85-115)		
LCS2	Chromium Total ICAP/MS		100	98.8	ug/L	99	(85-115)	20	0.30
MBLK	Chromium Total ICAP/MS			<1	ug/L				
MRL_CHK	Chromium Total ICAP/MS		1.0	0.947	ug/L	95	(50-150)		
MS_201403050932	Chromium Total ICAP/MS	ND	100	103	ug/L	103	(70-130)		
MS2_201403100207	Chromium Total ICAP/MS	3.8	100	106	ug/L	102	(70-130)		
MSD_201403050932	Chromium Total ICAP/MS	ND	100	102	ug/L	102	(70-130)	20	0.98
MSD2_201403100207	Chromium Total ICAP/MS	3.8	100	106	ug/L	102	(70-130)	20	0.0
QC Ref# 757323 - H	lexavalent chromium(Dissolved) by EP	A 218.6				Analysis D	Date: 03/13/2	2014	
LCS1	Hexavalent chromium(Dissolved)		2.0	1.99	ug/L	100	(90-110)		
LCS2	Hexavalent chromium(Dissolved)		2.0	2.00	ug/L	100	(90-110)		
MBLK	Hexavalent chromium(Dissolved)			<0.020	ug/L				
MRL_CHK	Hexavalent chromium(Dissolved)		0.02	0.0204	ug/L	102	(50-150)		
MS_201403120728	Hexavalent chromium(Dissolved)	0.75	2.0	2.84	ug/L	104	(90-110)		
MS_201403120735	Hexavalent chromium(Dissolved)	ND	2.0	2.06	ug/L	103	(90-110)		
MSD_201403120728	Hexavalent chromium(Dissolved)	0.75	2.0	2.83	ug/L	104	(90-110)	20	0.35
MSD_201403120735	Hexavalent chromium(Dissolved)	ND	2.0	2.04	ug/L	102	(90-110)	20	0.98
QC Ref# 757354 - ICPMS Metals by EPA 200.8						Analysis D	Date: 03/14/2	2014	
LCS1	Chromium Total ICAP/MS		100	99.4	ug/L	99	(85-115)		
LCS2	Chromium Total ICAP/MS		100	99.2	ug/L	99	(85-115)	20	0.20
MBLK	Chromium Total ICAP/MS			<1	ug/L				
MRL_CHK	Chromium Total ICAP/MS		1.0	0.962	ug/L	96	(50-150)		
MS_201403130514	Chromium Total ICAP/MS	1.8	100	93.8	ug/L	92	(70-130)		
MS2_201403130513	Chromium Total ICAP/MS	9.0	100	106	ug/L	97	(70-130)		
MSD_201403130514	Chromium Total ICAP/MS	1.8	100	98.7	ug/L	97	(70-130)	20	5.1
MSD2_201403130513	Chromium Total ICAP/MS	9.0	100	110	ug/L	101	(70-130)	20	3.7
QC Ref# 757621 - T	otal Dissolved Solids (TDS) by E160.1/	SM2540	C			Analysis D	Date: 03/16/2	2014	
DUP_201403100304	Total Dissolved Solid (TDS)	370		374	mg/L		(0-20)	20	1.6
DUP_201403120727	Total Dissolved Solid (TDS)	540		514	mg/L		(0-20)	20	4.2
LCS1	Total Dissolved Solid (TDS)		175	160	mg/L	91	(80-114)		
LCS2	Total Dissolved Solid (TDS)		700	686	mg/L	98	(80-114)		
MBLK	Total Dissolved Solid (TDS)			<10	mg/L				
MRL_CHK	Total Dissolved Solid (TDS)		10	13.0	mg/L	130	(50-150)		
QC Ref# 757708 - I	CPMS Metals by EPA 200.8					Analysis [Date: 03/14/2	2014	
LCS1	Chromium Total ICAP/MS		100	99.0	ug/L	99	(85-115)		

Spike recovery is already corrected for native results. Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u> Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level).

(S) - Indicates surrogate compound.
 (I) - Indicates internal standard compound.


```
Eaton Analytical
```

Laboratory QC Report: 472438

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

QC Type	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%	
LCS2	Chromium Total ICAP/MS		100	101	ug/L	101	(85-115)	20	2.0	
MBLK	Chromium Total ICAP/MS			<1	ug/L					
MRL_CHK	Chromium Total ICAP/MS		1.0	0.922	ug/L	92	(50-150)			
MS_201403050934	Chromium Total ICAP/MS	ND	100	105	ug/L	105	(70-130)			
MS2_201403120729	Chromium Total ICAP/MS	1.0	100	99.0	ug/L	98	(70-130)			
MSD_201403050934	Chromium Total ICAP/MS	ND	100	102	ug/L	102	(70-130)	20	2.9	
MSD2_201403120729	Chromium Total ICAP/MS	1.0	100	107	ug/L	106	(70-130)	20	7.8	
QC Ref# 757827 - 1	Total Dissolved Solids (TDS) by E160.1	/SM2540	C			Analysis I	Date: 03/17/	2014		
DUP_201403120729	Total Dissolved Solid (TDS)	500		516	mg/L		(0-20)	20	2.8	
DUP_201403120742	Total Dissolved Solid (TDS)	530		530	mg/L		(0-20)	20	0.38	
LCS1	Total Dissolved Solid (TDS)		175	170	mg/L	97	(80-114)			
LCS2	Total Dissolved Solid (TDS)		700	688	mg/L	98	(80-114)			
MBLK	Total Dissolved Solid (TDS)			<10	mg/L					
MRL_CHK	Total Dissolved Solid (TDS)		10	9.00	mg/L	90	(50-150)			
QC Ref# 758028 - /	Alkalinity in CaCO3 units by SM 2320B					Analysis I	Date: 03/18/	2014		
LCS1	Alkalinity in CaCO3 units		100	101	mg/L	101	(90-110)			
LCS2	Alkalinity in CaCO3 units		100	102	mg/L	102	(90-110)	20	0.99	
MBLK	Alkalinity in CaCO3 units			<2	mg/L					
MRL_CHK	Alkalinity in CaCO3 units		2.0	2.45	mg/L	123	(50-150)			
MS_201403120706	Alkalinity in CaCO3 units	69	100	152	mg/L	83	(80-120)			
MS_201403120708	Alkalinity in CaCO3 units	93	100	175	mg/L	81	(80-120)			
MSD_201403120706	Alkalinity in CaCO3 units	69	100	154	mg/L	85	(80-120)	20	1.3	
MSD_201403120708	Alkalinity in CaCO3 units	93	100	176	mg/L	83	(80-120)	20	0.57	
QC Ref# 758035 - F	PH (H3=past HT not compliant) by SM4	500-HB				Analysis I	Date: 03/18/	2014		
DUP_201403120710	PH (H3=past HT not compliant)	8.9		8.85	Units		(0-20)	20	0.23	
DUP2_201403130538	PH (H3=past HT not compliant)	7.9		7.87	Units		(0-20)	20	0.13	
LCS1	PH (H3=past HT not compliant)		6.0	6.02	Units	100	(98-102)			
LCS2	PH (H3=past HT not compliant)		6.0	6.01	Units	100	(98-102)	20	0.17	
QC Ref# 758836 - 0	Chloride, Sulfate by EPA 300.0 by EPA	300.0				Analysis Date: 03/20/2014				
LCS1	Chloride		25	25.2	mg/L	101	(90-110)			
LCS2	Chloride		25	25.2	mg/L	101	(90-110)	20	0.0	
MBLK	Chloride			<0.5	mg/L					
MRL_CHK	Chloride		0.5	0.428	mg/L	86	(50-150)			
MS_201403120739	Chloride	34	13	59.9	mg/L	102	(80-120)			
MS_201403190518	Chloride	9	13	22.4	mg/L	107	(80-120)			
MSD_201403120739	Chloride	34	13	59.4	mg/L	100	(80-120)	20	0.84	

Spike recovery is already corrected for native results. Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u> Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level).

(S) - Indicates surrogate compound.
 (I) - Indicates internal standard compound.

Eaton Analytical

Laboratory QC Report: 472438

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (626) 386-1101 1 800 566 LABS (1 800 566 5227)

Santa Ynez River WCD

QC Туре	Analyte	Native	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPDLimit (%)	RPD%
MSD_201403190518	Chloride	9	13	22.5	mg/L	107	(80-120)	20	0.45
LCS1	Sulfate		50	49.5	mg/L	99	(90-110)		
LCS2	Sulfate		50	49.5	mg/L	99	(90-110)	20	0.0
MBLK	Sulfate			<0.25	mg/L				
MRL_CHK	Sulfate		1.0	0.928	mg/L	93	(50-150)		
MRLLW	Sulfate		0.25	0.241	mg/L	97	(50-150)		
MS_201403120739	Sulfate	130	25	180	mg/L	96	(80-120)		
MS_201403190518	Sulfate	5.5	25	30.9	mg/L	102	(80-120)		
MSD_201403120739	Sulfate	130	25	178	mg/L	94	(80-120)	20	1.1
MSD_201403190518	Sulfate	5.5	25	31.0	mg/L	102	(80-120)	20	0.32

Spike recovery is already corrected for native results. Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u> Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level).

(S) - Indicates surrogate compound.
 (I) - Indicates internal standard compound.

APPENDIX D6

Ambient Pressure and Temperature Down-Well Surveys

Appendix E6: Ambient Pressure and Temperature Down-Well Surveys

1 DOWN-WELL SURVEYS

1.1 Ambient Pressure and Temperature Surveys

Prior to conducting the dynamic flow survey, ambient temperature and pressure surveys were conducted for wells No. 15, No. 25, No. 27, and No. 28. The temperature and pressure surveys were completed using an In-Situ Level TROLL 700 transducer, which measures both temperature and pressure, for wells No. 15, No. 25 and No. 28. The transducer was lowered into the well through a Hykon Cable Meter that measures the length of cable in the well. For well No. 27, a Mount Sopris temperature and fluid resistivity tool was lowered into the well on a wireline to record temperature and resistivity (Appendix E3).

The pressure and temperature surveys were conducted in order to determine the potential vertical flow within the well casing. Vertical flow within the well casing is induced by differences in pressure, or hydraulic head, between zones in an aquifer. When two zones with different hydraulic heads are connected by a well, water can flow vertically through the well casing from the zone with higher hydraulic head to the zone with lower hydraulic head. Flow within the well casing can be estimated by comparing the measured pressure gradient in the well to the theoretical pressure gradient in pure water, defined as 1 PSI/2.31 ft.

Flow within the well casing can also be estimated by comparing the measured ambient temperature at depth with the average geothermal gradient. If there is no vertical flow within a well, the temperature of the water in the well will equal that of the surrounding formation and the temperature profile will be a straight line with a slope equal to the local geothermal gradient. If, however, there is vertical flow within a well, there will be inflections in the measured temperature profile indicating zones where water is entering and exiting the well. The average geothermal gradient for the Upland Basin was determined from the ambient temperature log in well No. 27. This well was chosen because the shallowest screen interval is from 940 to 1040 feet bgs. The long section of blank casing above this interval allows water within the well casing to equilibrate with the formation temperature, thereby providing an estimate of the local geothermal gradient. Based on the temperature log from well No.27, the geothermal gradient in the Upland Basin is approximately 1.7 °F/ 100 ft (0.013 °C/m).

Identifying the zones in which water enters and exits the wells is critical for evaluating the depth distribution of Cr(VI) in the wells. If water with higher concentrations of Cr(VI) enters the well at one depth and exits the well at a different depth, it can increase the concentration of Cr(VI) in the depth interval at which it exits the well. Depth discrete samples from this interval may contain elevated concentrations of Cr(VI) relative to the concentrations in the formation farther from the well. Conversely, if water with lower concentrations of Cr(VI) exits the well in a zone of higher Cr(VI) concentrations in the formation adjacent to the well and potentially mask the zone of higher Cr(VI) concentrations.

1.1.1 Pressure Surveys

The results of the pressure surveys are presented in Appendices E1, E2 and E3 and are summarized below.

- Well 15: An increase in the normalized pressure (the difference between the theoretical and measured pressure gradients) between 240 and 270 feet bgs indicates that water enters well No. 15 in this interval and flows downward within the well casing (Appendix E1).
- Well 25: An increase in the normalized pressure between 750 and 930 feet bgs indicates water enters well No. 25 through the lower and middle well screens. The water flows upward within the well and may exit the well within the middle to upper portions of the upper well screen (Appendix E2).
- Well 28: An increase in the normalized pressure between 300 and 350 feet bgs indicates that water enters the well in this interval and flows downward within the well casing. Water likely exits the well in the lower portion of the middle screen, at approximately 780 feet bgs (Appendix E3).

1.1.2 <u>Temperature Surveys</u>

The results of the temperature surveys are presented in Figures 5 through 8 of the main text and are summarized below.

- Well 15: The measured temperatures in well No. 15 are consistently higher than the estimated geothermal gradient (Figure 5). This is inconsistent with the pressure survey that suggests water enters the well between 240 and 250 feet bgs and flows downward within the well.
- Well 25: Between 310 and 630 feet bgs, there is little increase in the measured temperatures (Figure 6). This suggests water enters the well through the welds between the sections of blank casing and flows downward in the well to the top of the upper screen interval. At 630 feet bgs the measured temperature increases by approximately 4 °C, and then remains stable from 630 to 800 feet bgs. Between 800 and 930 feet bgs, the temperature profile increases at a higher rate than that of the estimated geothermal gradient. This is consistent with the pressure survey, which indicates water enters the well in the lower and middle screen intervals and exits the well in the upper screen interval.
- Well 27: Between 200 and 970 feet bgs the temperature increases at a rate that was used to define the local geothermal gradient (Figure 7). At 970 feet bgs, the temperature increases by approximately 3 °C. Between 970 and 1090 feet bgs there is little increase in the measured temperatures. Between 1090 and 1195 feet bgs, the temperatures increase at the rate of the geothermal gradient. This suggests water enters the well in the upper portion of the lower screen interval, at approximately 1090 feet bgs.
- Well 28: There are multiple inflection points in the temperature profile (Figure 8). Between 640 and 920 feet bgs, the interval in which the well is screened, there is an inflection point at approximately 780 feet bgs. Above this point the temperature profile is isothermal and below this point, the temperature increases at the rate of the local geothermal gradient. This suggests that water flows downward in the well above 780 feet bgs where it exits the well into the formation, and is consistent with the pressure survey.